Problem 1. The integral

$$\int_{a}^{\infty} \frac{1}{x^{\sqrt{3}}} \, dx$$

converges:

- (a) For all values of a > 0;
- (b) For all values of $a \ge 0$;
- (c) For a = 1 only;
- (d) For no value of a.

Problem 2. Evaluate the integral

$$\int \frac{4x^2 + 4x + 1}{4x^2 - 4x + 1} \, dx.$$

Problem 3. The area of the surface obtained by rotating the curve y = f(x) from a < x < b about the x-axis is given by:

from
$$a \le x \le b$$
 about the x-axis is given by:
(a) $\int_{a}^{b} \pi f(y)^{2} dy$;
(b) $\int_{a}^{b} 2\pi y \sqrt{1 + \left(\frac{df}{dx}\right)^{2}} dx$;
(c) $\int_{f(a)}^{f(b)} 2\pi x \sqrt{1 + \left(\frac{df}{dx}\right)^{2}} dy$.
(d) $\int_{f(a)}^{f(b)} 2\pi y \sqrt{1 + \left(\frac{df}{dx}\right)^{2}} dx$.

Problem 4. Evaluate the integral

$$\int \sqrt{x} \ln x \, dx.$$

Problem 5. Which of the following does not have an elementary antiderivative?

- (a) $x^2 \ln x$; (b) $\sinh x$;
- (c) xe^{x^2} ; (d) e^{x^2} .

Problem 6. Evaluate the integral

$$\int \csc^4 x \, dx.$$

Problem 7. If the function f(x) is continuous on $-1 \le x \le 1$ except at the point x = a for some -1 < a < 1, then the improper integral

$$\int_{-1}^{1} f(x) \, dx$$

 $is \ written:$

- (a) $\lim_{t\to a^+} \int_{-1}^t f(x) \, dx + \lim_{t\to a^-} \int_{t}^1 f(x) \, dx;$ (b) $\lim_{x\to a} \int_{-1}^x f(x) \, dx;$ (c) $(df/dx)(a) \lim_{t\to a} \int_{-t}^t f(x) \, dx;$

- (d) $\lim_{a\to\infty} \int_{-1}^1 f(x) dx$.

Problem 8. Evaluate the integral

$$\int \sqrt{x^2 - 1} \, dx.$$

Problem 9. The sequence

$$a_n = \frac{2n^2}{n^2 + 1}$$

is:

- (a) Bounded, monotonic, and convergent;
- (b) Unbounded, monotonic, and not convergent;
- (c) Bounded, not monotonic, and convergent;
- (d) Bounded, not monotonic, and not convergent.

Problem 10. Find the area of the surface obtained by rotating the curve

$$y = x^2 + 1$$

about the y-axis for $0 \le x \le 1$.

Problem 11. The partial fractions decomposition of

$$\frac{1}{(x-3)^2(x^2+3)}$$

is:

(a)
$$\frac{A}{x-3} + \frac{Bx+C}{(x-3)^2} + \frac{Dx+E}{x^2+3};$$

(b) $\frac{A}{(x-3)^2} + \frac{B}{x^2+3};$
(c) $\frac{A}{x-3} + \frac{B}{(x-3)^2} + \frac{Cx+D}{x^2+3};$
(d) $\frac{Ax+B}{(x-3)^2} + \frac{Cx+D}{x^2+3};$
(e) $\frac{A}{x-3} + \frac{B}{(x-3)^2} + \frac{C}{x^2+3}.$

(b)
$$\frac{A}{(x-3)^2} + \frac{B}{x^2+3}$$
;

(c)
$$\frac{A}{x-3} + \frac{B}{(x-3)^2} + \frac{Cx+D}{x^2+3}$$
;

(d)
$$\frac{Ax+B}{(x-3)^2} + \frac{Cx+D}{x^2+3}$$
;

(e)
$$\frac{A}{x-3} + \frac{B}{(x-3)^2} + \frac{C}{x^2+3}$$

Problem 12. Evaluate the integral

$$\int_0^\pi \sin^5 x \, \cos^2 x \, dx.$$

Problem 13. For the integral

$$\int_0^2 e^x \, dx,$$

given the formula

$$|E_S| \le \frac{K(b-a)^5}{180n^4}$$

with $|f^{(4)}(x)| \le K$ for $a \le x \le b$, the error in approximating the integral using Simpson's rule for n=2 is:

- (a) $|E_S| \le 1/90$;

- (b) $|E_S| \le e/90$; (c) $|E_S| \le e^2/90$; (d) $|E_S| \le e^2/2880$.

Problem 14. Determine if the integral

$$\int_{1}^{2} \frac{1}{x\sqrt{\ln x}} \, dx$$

is convergent, and evaluate it if so.

Problem 15. The sum of the series

$$1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{8} + \dots$$

is:

- (a) 1/2; (b) 1; (c) 2/3; (d) 3/2;

- (e) The series is divergent.

Problem 16. Evaluate

$$\int_{e}^{e^2} \frac{\ln(\ln x)}{x} \, dx.$$

Problem 17. For the integral

$$\int_{a}^{b} (2x^2 + 3x - 4) \, dx,$$

which of the following gives the best approximation for fixed n?

- (a) Left endpoint approximation;
- (b) Right endpoint approximation;
- (c) Midpoint approximation;
- (d) The Trapezoidal rule;
- (e) Simpson's rule.

Problem 18. Set up an integral to compute the length of the curve $y = e^x$ for $1 \le y \le e$. Suggest a substitution, but do not evaluate completely.

Problem 19. If f is continuous, then

$$\int_{-\infty}^{\infty} f(x) dx = \lim_{t \to \infty} \int_{-t}^{t} f(x) dx.$$

- (a) True;
- (b) False;
- (c) Cannot be determined from the information given.

Problem 20. Determine if the integral

$$\int_{1}^{\infty} \frac{\sqrt{1+\sqrt{x}}}{\sqrt{x}} \, dx$$

is convergent, and evaluate it if so.