Problem 1. The equation

$$e^x y' = x + y$$

is:

- (a) Linear;
- (b) Separable;
- (c) Both linear and separable;
- (d) Neither linear nor separable.

Problem 2. Evaluate the limit:

$$\lim_{x \to 0} \frac{(e^{-x} - 1 + x)^3}{x^2(\cos 2x - 1)^2}.$$

Problem 3. Consider the differential equation

$$y' = -x^2(x^2 + y^2).$$

Which of the following statements is not true?

- (a) The solutions to this equation are decreasing functions.
- (b) Every solution has a critical point.
- (c) If y(x) is a solution to this equation, then so is cy(x).
- (d) There are no constant solutions to this equation.

Problem 4. Compute a series expansion for

$$\int \sqrt{1+x^3} \, dx.$$

Given an estimate for the integral

$$\int_0^1 \sqrt{1+x^3} \, dx$$

with an error bounded by 1/160.

Problem 5. If $f(x) = \ln(1 - x^2)$, what is the value of $f^{(2n)}(0)$?

- (a) 1/2n
- (b) (2n)!/n
- (c) -1/n
- (d) 0
- (e) -(2n)!/n(f) 1/(2n)!

Problem 6. Determine if the series

$$\sum_{n=2}^{\infty} \frac{1}{n \ln n (\ln \ln n)^2}$$

is convergent or divergent.

Problem 7. The interval of convergence of the series

$$f(x) = \sum_{n=1}^{\infty} \frac{(x-6)^n}{3^n(n+2)}$$

is:

- (a) |x-6| < 3(b) |x| < 3(c) [3, 9]

- (d) $3 \le x < 9$
- (e) The series converges for all x.

Problem 8. Solve the initial value problem

$$(x^2+1)\frac{dy}{dx} = 2xy + 4x^2 + 4, \quad y(0) = 0.$$

Problem 9. Which of the following statements is true?

- (a) If $\sum_n c_n 2^n$ converges, then $\sum_n c_n (-3)^n$ converges. (b) If $\sum_n c_n 2^n$ converges, then $\sum_n c_n (-2)^n$ converges. (c) If $\sum_n c_n (x-3)^n$ diverges when x=2, then it diverges when x=5.
- (d) None of the above statements are true.

Problem 10. A tank contains 100 L of water with a salt concentration of 0.01~kg/L. Brine that contains 0.02~kg/L of salt enters the tank at 5~L/min. The solution is kept thoroughly mixed and drains from the tank at the same rate. How much salt is in the tank after t minutes?

Problem 11. Calculate the Maclaurin series for

$$f(x) = \frac{x^2}{(1+x)^2}.$$

Problem 12. Determine if the series

$$\sum_{n=2}^{\infty} \frac{(-1)^n n}{2n^3 - n - 1}$$

is convergent or divergent.

Problem 13. Which of the following statements is true?

- (a) If ∑_n a_n and ∑_n b_n are divergent, then so is ∑_n(a_n + b_n).
 (b) If a_n > 0 and lim_{n→∞}(a_{n+1}/a_n) < 1, then lim_{n→∞} a_n = 0.
 (c) If a_n > 0 and ∑_n a_n is divergent, then ∑_n √a_n is convergent.
 (d) If a_n, b_n > 0, then ∑_n(-1)ⁿ(a_n + b_n) = ∑_n(-1)ⁿa_n + ∑_n(-1)ⁿb_n.
 (e) Mathematics is not a rewarding discipline of study.

Problem 14. Determine if the series

$$\sum_{n=1}^{\infty} \frac{2^n}{n\sqrt{n^n}}$$

is convergent or divergent.

Problem 15. The series

$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin n}{n}$$

is:

- (a) Convergent by the alternating series test.
- (b) Divergent by the test for divergence.
- (c) Convergent by the integral test.
- ${\rm (d)}\ {\it Convergent}\ {\it by}\ {\it the}\ {\it comparison}\ {\it test}.$
- (e) None of the above.

Problem 16. Find the Taylor series for

$$f(x) = e^{2x}$$

at x = 1. What is its radius of convergence? Compute the Taylor polynomial $T_3(x)$ for f(x) at x = 1.

Problem 17. Find the orthogonal trajectory of the family of curves given by

$$y = \frac{k}{1 + x^2}.$$

Problem 18. Determine if the series

$$\sum_{n=1}^{\infty} \ln \left(\frac{1 + 1/n}{(n+2)/(n+1)} \right)$$

is convergent or divergent. If it is convergent, find its sum.