REVIEW, FINAL (Key): MATH 1B ADDITIONAL PROBLEMS

Warning: I have not seen a copy of the final examination. Concepts and problems reviewed here should not be taken as an exclusive list! It should give you a good sense, though, of what will be asked.

Problem 15. The integral

$$\int_{a}^{b} f(x) \, dx$$

was approximated using the Trapezoidal rule and n=10. Using the error bound it was found that $|E_T| \leq 1$. Which of the following is the smallest value of n in the list for which $|E_T| \leq 10^{-6}$?

- (a) 999
- (b) 10074
- (c) 1053
- (d) 60
- (e) The answer cannot be determined from the information given.

SOLUTION. We know that

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$

where $K = \max_{x \in [a,b]} |f''(x)|$. Therefore the error bound for n = 10 gives

$$\frac{K(b-a)^3}{1200} = 1$$

so $K(b-a)^3 = 1200$. Therefore

$$|E_T| \le \frac{K(b-a)^3}{12n^2} = \frac{1200}{12n^2} = \frac{100}{n^2} \le 10^{-6}$$

so $n > 10^4 = 10000$. The answer is (b).

Problem 16. Find the area of the region bounded by the curve

$$y = \sin^{-1} x$$

and y = 0, x = 1/2.

SOLUTION. Drawing a picture we see that we are to compute the integral

$$\int_0^{1/2} \sin^{-1} x \, dx,$$

since $y = 0 = \sin^{-1} x$ gives x = 0.

To do this integral, we (sneakily) use integration by parts, with $u = \sin^{-1} x$, dv = dx, so that $du = 1/\sqrt{1-x^2} dx$ and v = x, and then we have

$$\int \sin^{-1} x \, dx = x \sin^{-1} x - \int \frac{x}{\sqrt{1 - x^2}} \, dx.$$

For the second integral, we substitute $u = 1 - x^2$, so then du = -2x dx, and hence we have

$$\int \frac{x}{\sqrt{1-x^2}} \, dx = \frac{-1}{2} \int \frac{du}{\sqrt{u}} = -\sqrt{u} + C = -\sqrt{1-x^2} + C$$

and in sum

$$\int \sin^{-1} x \, dx = x \sin^{-1} x + \sqrt{1 - x^2} + C.$$

Therefore

$$\int_0^{1/2} \sin^{-1} x \, dx = \frac{1}{2} \sin^{-1} (1/2) + \sqrt{\frac{3}{4}} - 1 = \frac{\pi}{12} - 1 + \frac{1}{2} \sqrt{3}.$$

Problem 17. Let z_1, z_2 be the solutions to the equation $z^2 - z + 7 = 0$. What is the value of $z_1 + z_2 + 7/(z_1 z_2)$?

- (a) 0
- (b) 2
- (c) 1+i
- (d) -1
- (e) None of the above.

SOLUTION. We have
$$z = (1 \pm \sqrt{1-28})/2 = 1/2 \pm (3/2)\sqrt{3}i$$
. Therefore $z_1 + z_2 = (1/2 + (3/2)\sqrt{3}i) + (1/2 - (3/2)\sqrt{3}i) = 1$

and

$$z_1 z_2 = (1/2 + 3/2\sqrt{3}i)(1/2 - 3/2\sqrt{3}i) = 1/4 + 9/4(3) = 7,$$

hence

$$z_1 + z_2 + 7/(z_1 z_2) = 1 + 1 = 2.$$

The answer is (b).

(A previous version had $z^2 - z - 7 = 0$, which had two real roots, something you should already know how to compute with.)

Problem 18. Solve the differential equation

$$y'' - 2y' + y = x.$$

SOLUTION. The homogeneous problem y'' - 2y' + y = 0 has characteristic equation $r^2 - 2r + 1 = (r - 1)^2 = 0$, so r = 1 is a double root, hence $y_h(x) = c_1 e^x + c_2 x e^x$.

We use the method of undetermined coefficients to find the particular solution, and guess $y_p(x) = Ax + B$, so $y'_p(x) = A$ and $y''_p(x) = 0$, so

$$y_p'' - 2y_p' + y_p = 0 - 2A + Ax + B = Ax + (-2A + B) = x$$

So $A = 1$ and $-2A + B = -2 + B = 0$, so $B = 2$. Therefore
$$y(x) = y_h(x) + y_p(x) = c_1 e^x + c_2 x e^x + x + 2.$$

Problem 19. Determine if the series

$$\sum_{n=3}^{\infty} \frac{1}{n(\ln n)^3}$$

is convergent or divergent.

SOLUTION. We use the integral test. The function $f(x) = 1/x(\ln x)^3$ is continuous, positive, and decreasing since $x(\ln x)^3$ is obviously increasing (or just differentiate). Hence we look at

$$\int_3^\infty \frac{1}{x(\ln x)^3} \, dx.$$

Substitute $u = \ln x$ to get du = 1/x dx, then the integral is just

$$\int \frac{1}{x(\ln x)^3} \, dx = \int \frac{du}{u^3} = \frac{-1}{2u^2} = \frac{-1}{2(\ln x)^2}$$

hence

$$\int_{3}^{\infty} \frac{1}{x(\ln x)^3} \, dx = 0 - \frac{-1}{2(\ln 3)^2} < \infty$$

so the integral and hence the sum are convergent.

Problem 20. Use Euler's method with step size 1/2 to estimate y(1) where y(x) is the solution to the intial-value problem $y' = x + 2y^2$, y(0) = 0.

SOLUTION. We start with $x_0 = 0$, $y_0 = 0$, with h = 1/2, and

$$y_n = y_{n-1} + hF(x_{n-1}, y_{n-1}) = y_{n-1} + \frac{1}{2}(x_{n-1} + 2y_{n-1}^2).$$

Hence

$$y_1 = 0 + \frac{1}{2}(0+0) = 0$$

and

$$y(1) \approx y_2 = 0 + 1/2(1/2 + 0)^2 = 1/8.$$

Problem 21. What is the value of

$$\sum_{n=1}^{\infty} \frac{(-1)^n \pi^{2n}}{2^{2n+1}(2n+1)!}?$$

- (a) 0
- (b) -1
- (c) $1/\pi \pi/2$
- (d) $1/\pi + \pi/2$
- (e) $(2-\pi)/2\pi$

Solution. We recognize the series as almost

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}.$$

To do this, we first need to add on the n=0 term, which is $(-1)^0\pi^0/2(1)!=1/2$, hence

$$\sum_{n=1}^{\infty} \frac{(-1)^n \pi^{2n}}{2^{2n+1}(2n+1)!} = \sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n}}{2^{2n+1}(2n+1)!} - \frac{1}{2}.$$

Now the second series is just by multiplying in a π

$$\frac{1}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^n \pi^{2n+1}}{2^{2n+1} (2n+1)!} = \frac{1}{\pi} \sin(\pi/2) = \frac{1}{\pi}$$

so the sum is $1/\pi - 1/2 = (2-\pi)/2\pi$. The answer is (e).

Problem 22. Evaluate the limit

$$\lim_{x \to 0} \frac{(\sin 2x - 2x)^2}{x^2 (e^x - 1)^3}.$$

Solution. We have $\sin 2x = 2x - (8/3)x^3 + \dots$ and $e^x = 1 + x + \dots$, so we get

$$\frac{(\sin 2x - 2x)^2}{x^2(e^x - 1)^3} = \frac{((-8/3)x^3 + \dots)^2}{x^2(x + \dots)^3} = \frac{(64/9)x^6 + \dots}{x^5 + \dots} = \frac{(16/9)x + \dots}{1 + \dots} \to 0$$
 as $x \to 0$.

Problem 23. Consider the series

$$\sum_{n=0}^{\infty} (-1)^n \frac{n-1}{n} \sin^2 n.$$

Which of the following statements is true?

- (a) The series is absolutely convergent by the integral test.
- (b) The series is convergent by the alternating series test.
- (c) The series is divergent by the test for divergence.
- (d) The series is convergent by the comparison test.
- (e) None of the above.

SOLUTION. The answer is (c), since

$$\lim_{n \to \infty} (-1)^n \frac{n-1}{n} \sin^2 n \neq 0.$$

Statement (a) is false: we end up with $(n-1)/n(\sin^2 n)$ which is positive but not decreasing (it is oscillating, note that $(n-1)/n \to 1$ as $n \to \infty$. Statement (b) is false, again we need the terms $(n-1)/n\sin^2 n$ to be decreasing. Statement (d) is false because the series is divergent.

Problem 24. Evaluate

$$\int \frac{dx}{\sqrt{x^2 - 2x}}.$$

SOLUTION. We need to complete the square in the denominator so we can use a trigonometric substitution. We note that $x^2 - 2x = (x - 1)^2 - 1$, so the integral becomes

$$\int \frac{dx}{\sqrt{(x-1)^2 - 1}} = \int \frac{du}{\sqrt{u^2 - 1}}$$

where u = x - 1. Now we substitute $u = \sec \theta$, so $du = \sec \theta \tan \theta d\theta$, and $\sqrt{u^2 - 1} = \tan \theta$, hence we are left with

$$\int \frac{\sec \theta \tan \theta \, d\theta}{\tan \theta} = \int \sec \theta \, d\theta = \ln|\sec \theta + \tan \theta| + C$$
$$= \ln|u + \sqrt{u^2 - 1}| + C = \ln|(x - 1) + \sqrt{x^2 - 2x}| + C.$$

Problem 25. Consider the sequence defined by

$$a_n = \frac{ne^{1/n}}{3n-1}.$$

What is

$$\lim_{n\to\infty} a_n?$$

- (a) 0
- (b) ∞
- (c) 1/3
- (d) 1
- (e) The sequence does not have a limit.

SOLUTION. We use L'Hopital's rule:

$$\lim_{x \to \infty} \frac{xe^{1/x}}{3x - 1} = \frac{\infty}{\infty} = \lim_{x \to \infty} \frac{e^{1/x} + x(-1/x^2)e^{1/x}}{3} = \frac{1 + 0}{3} = \frac{1}{3}.$$

The answer is (c).

Problem 26. Evaluate

$$\int_0^\pi \sec x \, dx.$$

SOLUTION. The integral is improper (!) since $\sec \pi/2 = 1/(\cos \pi/2)$ and $\cos \pi/2 = 0$. So we write this as the limit of proper integrals:

$$\int_0^\pi \sec x\,dx = \lim_{t\to\pi/2^-} \int_0^t \sec x\,dx + \lim_{t\to\pi/2^+} \int_t^\pi \sec x\,dx.$$

We have

$$\int \sec x \, dx = \ln|\sec x + \tan x| + C$$

so

$$\lim_{t\to\pi/2^-}\int_0^t \sec x\,dx = \lim_{t\to\pi/2^-} \ln|\sec t + \tan t| - 0.$$

Now as $t \to \pi/2$, $\sec t \to \infty$ and $\tan t \to \infty$ as well, so $\ln|\sec t + \tan t| \to \infty$. The integral is divergent.

Problem 27. Find the area of the surface obtained by rotating the parabola $y = x^2$ from x = 0 to x = 1 around the y-axis.

SOLUTION. We use the formula for surface area

$$A = \int_C r \, ds.$$

Drawing a picture, we see that the radius is x since we are rotating around the y-axis, so we end up with

$$A = \int_0^1 x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx = \int_0^1 x \sqrt{1 + 4x^2} \, dx.$$

Substitute $u = 1 + 4x^2$ to get du = 8x dx, so

$$\int x\sqrt{1+4x^2}\,dx = \int \frac{1}{8}\sqrt{u}\,du = \frac{1}{12}u^{3/2} + C = \frac{1}{12}(1+4x^2)^{3/2} + C.$$

Hence

$$\int_0^1 x\sqrt{1+4x^2} \, dx = \frac{1}{12}(5\sqrt{5}-1).$$

Problem 28. Find the particular solution of

$$y' + y = x + e^x$$

satisfying y(0) = 0.

SOLUTION. This is a linear first-order equation. We have P(x) = 1 so $I(x) = e^{\int P(x) dx} = e^x$, and

$$d(I(x)y) = d(e^x y) = e^x (x + e^x) dx$$

so

$$e^{x}y = \int (xe^{x} + e^{2x}) dx = (x - 1)e^{x} + \frac{1}{2}e^{2x} + C,$$

the first integral done by parts. Therefore

$$y(x) = x - 1 + \frac{1}{2}e^x + Ce^{-x}$$
.

So

$$y(0) = -1 + 1/2 + C = 0$$

so C = 1/2, and

$$y(x) = x - 1 + \frac{1}{2}(e^x - e^{-x}) = x - 1 + \sinh x.$$

Problem 29. Find the twelfth derivative of $(x+1)^3e^x$ at x=-1.

SOLUTION. We must find a Taylor series for e^x at x = -1. You can do this by computing derivatives: if $f(x) = e^x$, then $f^{(n)}(x) = e^x$ so $f^{(n)}(-1) = 1/e$, hence

$$e^x = \sum_{n=0}^{\infty} \frac{f^{(n)}(-1)}{n!} (x+1)^n = \sum_{n=0}^{\infty} \frac{1}{e^n!} (x+1)^n.$$

Hence

$$(x+1)^3 e^x = \sum_{n=0}^{\infty} \frac{1}{e^n!} (x+1)^{n+3}.$$

Since we want the twelfth derivative, we want the coefficient of $(x+1)^{12}$ in this series, which is 1/(e9!). At the same time, if $g(x) = (x+1)^3 e^x$ then

$$g(x) = \sum_{n=0}^{\infty} \frac{g^{(n)}(-1)}{n!} (x+1)^n$$

tells us that the coefficient of $(x+1)^{12}$ is $g^{(12)}(-1)/12!$, so equating these two, we get

$$g^{(12)}(-1) = \frac{12!}{e^{9!}} = 1320/e.$$

Problem 30. Determine if the series

$$\sum_{n=1}^{\infty} \frac{\cos(1/n)}{n}$$

is convergent or divergent.

SOLUTION. Since $\cos(1/n) \to 1$ as $n \to \infty$, we compare the above series to $\sum_{n=1}^{\infty} 1/n$. According to the limit comparison test, we should calculate

$$\lim_{n \to \infty} \frac{\cos(1/n)/n}{1/n} = \lim_{n \to \infty} \cos(1/n) = 1.$$

Therefore the series diverges since the harmonic series diverges.