
REVIEW, FINAL (Key): MATH 1B
ADDITIONAL PROBLEMS

Warning: I have not seen a copy of the final examination. Concepts and
problems reviewed here should not be taken as an exclusive list! It should
give you a good sense, though, of what will be asked.

Problem 15. The integral ∫ b

a
f(x) dx

was approximated using the Trapezoidal rule and n = 10. Using the error
bound it was found that |ET | ≤ 1. Which of the following is the smallest
value of n in the list for which |ET | ≤ 10−6?

(a) 999
(b) 10074
(c) 1053
(d) 60
(e) The answer cannot be determined from the information given.

Solution. We know that

|ET | ≤
K(b− a)3

12n2

where K = maxx∈[a,b] |f ′′(x)|. Therefore the error bound for n = 10 gives

K(b− a)3

1200
= 1

so K(b− a)3 = 1200. Therefore

|ET | ≤
K(b− a)3

12n2
=

1200
12n2

=
100
n2

≤ 10−6

so n ≥ 104 = 10000. The answer is (b).

Problem 16. Find the area of the region bounded by the curve

y = sin−1 x

and y = 0, x = 1/2.

Solution. Drawing a picture we see that we are to compute the integral∫ 1/2

0
sin−1 x dx,

since y = 0 = sin−1 x gives x = 0.
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To do this integral, we (sneakily) use integration by parts, with u =
sin−1 x, dv = dx, so that du = 1/

√
1− x2 dx and v = x, and then we have∫

sin−1 x dx = x sin−1 x−
∫

x√
1− x2

dx.

For the second integral, we substitute u = 1−x2, so then du = −2x dx, and
hence we have∫

x√
1− x2

dx =
−1
2

∫
du√

u
= −

√
u + C = −

√
1− x2 + C

and in sum ∫
sin−1 x dx = x sin−1 x +

√
1− x2 + C.

Therefore∫ 1/2

0
sin−1 x dx =

1
2

sin−1(1/2) +

√
3
4
− 1 =

π

12
− 1 +

1
2

√
3.
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Problem 17. Let z1, z2 be the solutions to the equation z2 − z + 7 = 0.
What is the value of z1 + z2 + 7/(z1z2)?

(a) 0
(b) 2
(c) 1 + i
(d) −1
(e) None of the above.

Solution. We have z = (1±
√

1− 28)/2 = 1/2± (3/2)
√

3i. Therefore

z1 + z2 = (1/2 + (3/2)
√

3i) + (1/2− (3/2)
√

3i) = 1

and
z1z2 = (1/2 + 3/2

√
3i)(1/2− 3/2

√
3i) = 1/4 + 9/4(3) = 7,

hence
z1 + z2 + 7/(z1z2) = 1 + 1 = 2.

The answer is (b).
(A previous version had z2 − z − 7 = 0, which had two real roots,

something you should already know how to compute with.)

Problem 18. Solve the differential equation

y′′ − 2y′ + y = x.

Solution. The homogeneous problem y′′−2y′+y = 0 has characteristic
equation r2 − 2r + 1 = (r − 1)2 = 0, so r = 1 is a double root, hence
yh(x) = c1e

x + c2xex.
We use the method of undetermined coefficients to find the particular

solution, and guess yp(x) = Ax + B, so y′p(x) = A and y′′p(x) = 0, so

y′′p − 2y′p + yp = 0− 2A + Ax + B = Ax + (−2A + B) = x

So A = 1 and −2A + B = −2 + B = 0, so B = 2. Therefore

y(x) = yh(x) + yp(x) = c1e
x + c2xex + x + 2.
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Problem 19. Determine if the series
∞∑

n=3

1
n(lnn)3

is convergent or divergent.

Solution. We use the integral test. The function f(x) = 1/x(lnx)3

is continuous, positive, and decreasing since x(lnx)3 is obviously increasing
(or just differentiate). Hence we look at∫ ∞

3

1
x(lnx)3

dx.

Substitute u = ln x to get du = 1/x dx, then the integral is just∫
1

x(lnx)3
dx =

∫
du

u3
=
−1
2u2

=
−1

2(lnx)2

hence ∫ ∞

3

1
x(lnx)3

dx = 0− −1
2(ln 3)2

<∞

so the integral and hence the sum are convergent.

Problem 20. Use Euler’s method with step size 1/2 to estimate y(1) where
y(x) is the solution to the intial-value problem y′ = x + 2y2, y(0) = 0.

Solution. We start with x0 = 0, y0 = 0, with h = 1/2, and

yn = yn−1 + hF (xn−1, yn−1) = yn−1 +
1
2
(xn−1 + 2y2

n−1).

Hence
y1 = 0 +

1
2
(0 + 0) = 0

and
y(1) ≈ y2 = 0 + 1/2(1/2 + 0)2 = 1/8.
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Problem 21. What is the value of
∞∑

n=1

(−1)nπ2n

22n+1(2n + 1)!
?

(a) 0
(b) −1
(c) 1/π − π/2
(d) 1/π + π/2
(e) (2− π)/2π.

Solution. We recognize the series as almost

sin(x) =
∞∑

n=0

(−1)nx2n+1

(2n + 1)!
.

To do this, we first need to add on the n = 0 term, which is (−1)0π0/2(1)! =
1/2, hence

∞∑
n=1

(−1)nπ2n

22n+1(2n + 1)!
=

∞∑
n=0

(−1)nπ2n

22n+1(2n + 1)!
− 1

2
.

Now the second series is just by multiplying in a π

1
π

∞∑
n=0

(−1)nπ2n+1

22n+1(2n + 1)!
=

1
π

sin(π/2) =
1
π

so the sum is 1/π − 1/2 = (2− π)/2π. The answer is (e).

Problem 22. Evaluate the limit

lim
x→0

(sin 2x− 2x)2

x2(ex − 1)3
.

Solution. We have sin 2x = 2x − (8/3)x3 + . . . and ex = 1 + x + . . . ,
so we get

(sin 2x− 2x)2

x2(ex − 1)3
=

((−8/3)x3 + . . . )2

x2(x + . . . )3
=

(64/9)x6 + . . .

x5 + . . .
=

(16/9)x + . . .

1 + . . .
→ 0

as x→ 0.
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Problem 23. Consider the series
∞∑

n=0

(−1)n n− 1
n

sin2 n.

Which of the following statements is true?
(a) The series is absolutely convergent by the integral test.
(b) The series is convergent by the alternating series test.
(c) The series is divergent by the test for divergence.
(d) The series is convergent by the comparison test.
(e) None of the above.

Solution. The answer is (c), since

lim
n→∞

(−1)n n− 1
n

sin2 n 6= 0.

Statement (a) is false: we end up with (n−1)/n(sin2 n) which is positive but
not decreasing (it is oscillating, note that (n− 1)/n → 1 as n →∞. State-
ment (b) is false, again we need the terms (n− 1)/n sin2 n to be decreasing.
Statement (d) is false because the series is divergent.

Problem 24. Evaluate ∫
dx√

x2 − 2x
.

Solution. We need to complete the square in the denominator so we
can use a trigonometric substitution. We note that x2 − 2x = (x− 1)2 − 1,
so the integral becomes∫

dx√
(x− 1)2 − 1

=
∫

du√
u2 − 1

where u = x − 1. Now we substitute u = sec θ, so du = sec θ tan θ dθ, and√
u2 − 1 = tan θ, hence we are left with∫

sec θ tan θ dθ

tan θ
=

∫
sec θ dθ = ln | sec θ + tan θ|+ C

= ln |u +
√

u2 − 1|+ C = ln |(x− 1) +
√

x2 − 2x|+ C.
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Problem 25. Consider the sequence defined by

an =
ne1/n

3n− 1
.

What is
lim

n→∞
an?

(a) 0
(b) ∞
(c) 1/3
(d) 1
(e) The sequence does not have a limit.

Solution. We use L’Hopital’s rule:

lim
x→∞

xe1/x

3x− 1
=
∞
∞

= lim
x→∞

e1/x + x(−1/x2)e1/x

3
=

1 + 0
3

=
1
3
.

The answer is (c).

Problem 26. Evaluate ∫ π

0
sec x dx.

Solution. The integral is improper (!) since sec π/2 = 1/(cos π/2) and
cos π/2 = 0. So we write this as the limit of proper integrals:∫ π

0
sec x dx = lim

t→π/2−

∫ t

0
sec x dx + lim

t→π/2+

∫ π

t
sec x dx.

We have ∫
sec x dx = ln | sec x + tanx|+ C

so

lim
t→π/2−

∫ t

0
sec x dx = lim

t→π/2−
ln | sec t + tan t| − 0.

Now as t → π/2, sec t →∞ and tan t →∞ as well, so ln | sec t+tan t| → ∞.
The integral is divergent.
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Problem 27. Find the area of the surface obtained by rotating the parabola
y = x2 from x = 0 to x = 1 around the y-axis.

Solution. We use the formula for surface area

A =
∫

C
r ds.

Drawing a picture, we see that the radius is x since we are rotating around
the y-axis, so we end up with

A =
∫ 1

0
x

√
1 +

(
dy

dx

)2

dx =
∫ 1

0
x
√

1 + 4x2 dx.

Substitute u = 1 + 4x2 to get du = 8x dx, so∫
x
√

1 + 4x2 dx =
∫

1
8
√

u du =
1
12

u3/2 + C =
1
12

(1 + 4x2)3/2 + C.

Hence ∫ 1

0
x
√

1 + 4x2 dx =
1
12

(5
√

5− 1).

Problem 28. Find the particular solution of

y′ + y = x + ex

satisfying y(0) = 0.

Solution. This is a linear first-order equation. We have P (x) = 1 so
I(x) = e

∫
P (x) dx = ex, and

d(I(x)y) = d(exy) = ex(x + ex) dx

so
exy =

∫
(xex + e2x) dx = (x− 1)ex +

1
2
e2x + C,

the first integral done by parts. Therefore

y(x) = x− 1 +
1
2
ex + Ce−x.

So
y(0) = −1 + 1/2 + C = 0

so C = 1/2, and

y(x) = x− 1 +
1
2
(ex − e−x) = x− 1 + sinhx.
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Problem 29. Find the twelfth derivative of (x + 1)3ex at x = −1.

Solution. We must find a Taylor series for ex at x = −1. You can do
this by computing derivatives: if f(x) = ex, then f (n)(x) = ex so f (n)(−1) =
1/e, hence

ex =
∞∑

n=0

f (n)(−1)
n!

(x + 1)n =
∞∑

n=0

1
en!

(x + 1)n.

Hence

(x + 1)3ex =
∞∑

n=0

1
en!

(x + 1)n+3.

Since we want the twelfth derivative, we want the coefficient of (x+1)12

in this series, which is 1/(e9!). At the same time, if g(x) = (x + 1)3ex then

g(x) =
∞∑

n=0

g(n)(−1)
n!

(x + 1)n

tells us that the coefficient of (x + 1)12 is g(12)(−1)/12!, so equating these
two, we get

g(12)(−1) =
12!
e9!

= 1320/e.

Problem 30. Determine if the series
∞∑

n=1

cos(1/n)
n

is convergent or divergent.

Solution. Since cos(1/n)→ 1 as n →∞, we compare the above series
to

∑∞
n=1 1/n. According to the limit comparison test, we should calculate

lim
n→∞

cos(1/n)/n

1/n
= lim

n→∞
cos(1/n) = 1.

Therefore the series diverges since the harmonic series diverges.


