Problem 1. Consider the differential equation

$$y'' + y = \sin^2 x.$$

 $Which\ of\ the\ following\ statements\ is\ true?$

- (a) Every solution y(x) to this equation is concave up.
- (b) $2\cos x + 3\sin x$ is a solution.
- (c) A particular solution can be found using $A \sin^2 x$.
- (d) If $y_1(x)$ and $y_2(x)$ are solutions to the equation, then so is $y_1(x) + y_2(x)$.
- (e) None of the above.

Problem 2. Use series to compute

$$\int \frac{e^x - 1}{x} \, dx.$$

What is its radius of convergence?

Problem 3. Which of the following functions does not have an elementary antiderivative ?

- $e^{\tan^{-1}x}$ (a) $\frac{e^{-x}}{1+x^2}$ (b) $\sqrt{x^3+1}$ (c) x^5e^x (a)

- (d) $\frac{\cos(\ln x)}{x}$ (e) $\tan^3 x$.

Problem 4. Consider the differential equation

$$y'' + xy' - 2y = 0.$$

Suppose that $y(x) = \sum_{n=0}^{\infty} c_n x^n$ is a solution to this equation satisfying y(0) = 0, y'(0) = 1. Compute the fourth Taylor polynomial for y(x) at x = 0.

Problem 5. Consider the antiderivative of a rational function:

$$F(x) = \int_{a}^{x} \frac{P(t)}{Q(t)} dt.$$

Which of the following is true?

- (a) F(x) is a rational function.
- (b) F(x) is a combination of rational functions and logarithms.
- (c) F(x) is a combination of rational functions, logarithms, and inverse trigonometric functions.
- (d) F(x) may fail to be an elementary function.
- (e) $\lim_{x\to\infty} F(x) = \infty$.

Problem 6. Use series to estimate the arc length of $y=(2/5)x^{5/2}$ for $0 \le x \le 1$ with an error < 0.02.

Problem 7. Let f(x) be a continuous function on the interval [a,b]. Which of the following is correct?

- (a) If f(x) is increasing, then the midpoint approximation gives an upper bound for ∫_a^b f(x) dx.
 (b) If f(x) is increasing, then the trapezoidal rule gives an upper bound for ∫_a^b f(x) dx.
 (c) If f(x) is decreasing, then the left endpoint approximation gives an upper bound for ∫_a^b f(x) dx.
 (d) If f(x) is concave up, then the right endpoint approximation gives a lower bound for ∫_a^b f(x) dx.
 (e) None of the above. (a) If f(x) is increasing, then the midpoint approximation gives an

Problem 8. Solve the differential equation

$$y' = xe^x y(y+1).$$

Problem 9. Which of the following is a solution to $z^4 = -1 + \sqrt{3}i$?

- (a) $\sqrt[4]{2}e^{5i\pi/6}$ (b) $\sqrt[4]{2}e^{-2i\pi/3}$
- (c) $\sqrt[4]{1/8}(-1+\sqrt{3}i)$ (d) $\sqrt[4]{2}(-\sqrt{3}+i)$.

Problem 10. Evaluate

$$\int_{-1}^{1} \frac{1}{\sqrt{4x^2 - x^4}} \, dx.$$

Problem 11. For which value of m do we have

$$\int_0^\pi \cos^2 mx \sin mx \, dx = 2/3?$$

- (a) 0
- (b) 2
- (c) -1
- (d) 1
- (e) None of the above.

Problem 12. The punch at a party is kept in a 10 L bowl and is initially half-full of cranberry juice. Some unruly partygoers decide to spike the punch with PCP and are able to slip a conconction with a toxicity of 5 mg/L into the punch at a rate of 1 L/min. The punch is being drunk at a rate of 1/2 L/min. When the bowl is full, how toxic is the punch?

Problem 13. Which of the following statements is incorrect?

- (a) If $a_n, b_n > 0$, $\sum_n a_n$ converges and the sequence $\{b_n/a_n\}$ converges, then $\sum_n b_n$ converges.
- (b) If $a_n > 0$ for all n and $a_n \to 0$, then $\sum_n (-1)^n a_n$ converges. (c) If $a_n > 0$ for all n and $\sum_n a_n$ converges, then $\sum_n (-1)^n a_n$ con-
- (d) If $\sum_{n} a_n$ converges then $\sum_{n} a_n/2^n$ converges. (e) If $a_n > 0$ and $\sum_{n} a_n$ converges then $\sum_{n} (-1)^n a_n^2$ converges absolutely.

Problem 14. Determine if the series

$$\sum_{n=1}^{\infty} (-1)^n (\sqrt[n]{n} - 1)^n$$

is convergent or divergent.