Math 251: Abstract Algebra I

Fall 2011

 

Course Info:

 

Syllabus:

[PDF] Syllabus

 

Homework:

[PDF] Homework Submission Guidelines

Homework is due on the same day as the row in which it appears. Problem 3.5.2 means in section 3.5, exercise 2.

Chapter 0: Basics
129 Aug(M)Hurricane Irene
231 Aug(W)Introduction, 0.1: Basics
32 Sep(F)0.2: Properties of the Integers0.1.5, 0.1.7
5 Sep(M)No class, Labor Day
47 Sep(W)0.3: The Integers modulo n0.2.1(b), 0.2.2, 0.2.11
Chapter 1: Introduction to Groups
59 Sep(F)No class
612 Sep(M)1.1: Basic Axioms and Examples0.3.9, 0.3.12, 0.3.15(a)
714 Sep(W)1.2: Dihedral Groups1.1.1(a), 1.1.5, 1.1.8(a), 1.1.12, 1.1.20
816 Sep(F)1.3: Symmetric Groups1.2.1(a), 1.2.2, 1.2.3, 1.2.10
919 Sep(M)1.4: Matrix Groups, 1.5: The Quaternion Group1.3.1, 1.3.7, 1.1.24, 1.3.15
1021 Sep(W)1.6: Homomorphisms and Isomorphisms1.4.2, 1.4.3, 1.5.1, 1.5.2
1123 Sep(F)1.7: Group Actions1.6.1(a), 1.6.2, 1.6.4, 1.6.8, 1.6.17
1226 Sep(M)2.1: Definitions and Examples1.7.3, 1.7.21
1328 Sep(W)Chapter 1 Review1.1.9, 1.1.25, 1.3.9, 1.4.10, 1.6.3
1430 Sep(F)Exam 1, covering 0.1-1.6
Chapter 2: Subgroups
153 Oct(M)2.2: Centralizers, Normalizers, Stabilizers, and Kernels2.1.1(b), 2.1.2(a), 2.1.9
165 Oct(W)2.3: Cyclic Groups and Cyclic Subgroups2.2.4, 2.2.6
177 Oct(F)2.4: Subgroups Generated by Subsets2.3.1, 2.3.10, 2.3.11, 2.3.16
1810 Oct(M)2.5: The Lattice of Subgroups2.3.20, 2.3.21, 2.4.5, 2.4.10
Chapter 3: Quotient Groups and Homomorphisms
1912 Oct(W)3.1: Definitions and Examples2.5.9(c), 2.5.11
2014 Oct(F)3.13.1.1, 3.1.3, 3.1.5, 3.1.7, 3.1.8
2117 Oct(M)3.2: More on Cosets and Lagrange's Theorem3.1.22(a), 3.1.24, 3.1.25(a), 3.1.32
2219 Oct(W)3.3: The Isomorphism Theorems3.2.5, 3.2.7, 3.2.8, 3.2.16
2321 Oct(F)3.4: Composition Series and the Holder Program3.3.1, 3.3.5
2424 Oct(M)3.5: Transpositions and the Alternating Group3.4.1, 3.4.2
2526 Oct(W)4.1: Group Actions and Permutation Representations3.5.1 (from 1.3.1), 3.5.3, 3.5.9
2628 Oct(F)Chapters 2-3 Review2.2.14, 2.5.10, 3.1.11(a), 3.2.4, 3.2.6, 3.5.7, 3.5.8
2731 Oct(M)4.2: Groups Acting on Themselves
282 Nov(W)Exam 2, covering 2.1-3.5
Chapters 4 and 5: Group Actions, Direct Products, and Abelian Groups
294 Nov(F)4.4: Automorphisms4.1.4, 4.2.6
307 Nov(M)4.5: Sylow's Theorem
319 Nov(W)4.54.4.1, 4.4.3, 4.4.5
3211 Nov(F)5.1: Direct Products4.5.8, 4.5.13, 4.5.30
Chapter 7: Introduction to Rings
3314 Nov(M)5.2: Finitely Generated Abelian Groups5.1.1, 5.1.5
3416 Nov(W)7.1: Basic Definitions and Examples5.2.2(a)(b)(c), 5.2.3(a)(b)(c)
3518 Nov(F)7.2: Polynomial Rings, Matrix Rings, and Group Rings7.1.1, 7.1.2, 7.1.7, 7.1.15
21-25 Nov(M-F)No class, Thanksgiving Recess
3628 Nov(M)7.3: Ring Homomorphisms and Quotient Rings
3730 Nov(W)7.37.3.2, 7.3.11, 7.3.18(a), 7.3.20, 7.3.21
382 Dec(F)7.4: Properties of Ideals7.3.29, 7.3.31, 7.3.34
395 Dec(M)7.47.4.6, 7.4.9, 7.4.15
407 Dec(W)Chapters 4,5,7 Review4.2.10, 4.3.2, 4.4.17(e), 4.5.15, 5.2.9, 7.1.12, 7.3.4, 7.4.11
16 Dec(F)Comprehensive Final Exam, 7:30 a.m.-10:15 a.m.

 

Exams:

There will be two midterm exams and a comprehensive final exam.

[PDF] Exam #1 ... [PDF] Solutions

[PDF] Review #2

[PDF] Exam #2 ... [PDF] Solutions

[PDF] Final Exam ... [PDF] Solutions

 

Links:

There are additional resources on the 251 Fall 2007 website.