THE HILL CIPHER (CONTINUED): COMPUTING THE
INVERSE OF A MATRIX

MATH 195

Recall that given a commutative ring R, we consider the k X k square matrices
with entries in R, denoted M (k, R). We have a map det : M(k,R) — R called
the determinant. We also have the following rule of thumb: All usual rules for
computing determinants avoiding divisions are valid over any commutative ring R.

Now we would like to compute inverses of a matrix. Suppose A is a (k X k)-
matrix over a commutative ring R, say A = (aij)1<i j<k, @ij € R. Define A* =
(af)1<i <k € M(k, R) by

a;kj = (—1)i+j det(Aji) €ER
where Aj; is the (k — 1) x (k — 1) matrix obtained from A by deleting the jth row
and the ith column.

(It is important to transpose ¢ and j: the text is wrong on this point.)

For example, if
a b
=)

then aj; = a* = (=1)%d = d, a}y = d* = a, and a}, = b* = (=1)*2b = —b,

a3 =c* = —c, s0
wo (1.
—c a

Note that given a ring R, the set R* = {a € R: 3b € R, ab = 1} of units of R
is much different than the adjoint matrix A* of a matrix A € M (k, R)!
Then we have the following amazing fact:

det(A) 0 e 0
0 det(4) ... 0
AA* = A*A =det(A)] = . .
0 0 ... det(A)

For example, for the 2 X 2 matrix above, we have

a b d —b ad — bc 0 1 0
<c d) <—c a ) n ( 0 ad — bc) = (det 4) (0 1) '
Fact. A is invertible (i.e. belongs to GL(k, R)) if and only if det(A) € R*.

(Note that the text makes an error: the determinant needs to be not only nonzero
but invertible!)

This is some of the material covered February 12, in Math 195: Cryptography, taught by
Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.
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Proof. If A is invertible, there exists a B such that AB = I, hence
det(AB) = det(A) det(B) = det(I) =1

so det(A) € R* (the inverse is det(B)). In the other direction, suppose det A € R*,
then A((det A)~1A*) =1,s0 A1 = (det A)~1A*. O

Ezample. Let R =7/267, k = 3. Let

-9 -9 5
K=[-5 -8 -5
2 2 -7
Then
(=8)(=7) — (-5)2 ~12 -1 7
K" = —((=9(=5)-5(=5) | = 7 1 8| (mod26)
6 0 1
and indeed
-9 -9 5 -12 -1 7 3 00
-5 -8 -5 7 1 8] =10 3 0
2 N 6 0 1 0 0 3

Here is the “usual algorithm” for finding the inverse of a matrix over a field F.
Say for example F = Z/7Z, and

3 3 -2

A=10 -3 0
2 2 =2

We write down

3 3 -2 1 0 0

0 -3 0 0 1 0

2 2 -2 0 0 1

Now we multiply the first row by the inverse 37! = —2 (mod 7) to get:

1 1 -3 -2 0 0
0 -3 0 0 10
2 2 =2 0 01

Now multiply the first row by 2 and subtract it from the last row:
11 -3 -2 0 0
0 -3 0 0 10
0 0 -3 -3 0 1
Now invert (—3)~! = 2 and scale the middle and bottom rows:
11 -3 =2 0 0
01 0 0 20
0 0 1 1 0 2

Now subtract the second row from the first and add three times the last to the first:
1 0 01 -2 -1
01 0 0 2 0
0011 o0 2

Recall inside the matrices M (k, R), we have the invertible matrices GL(k, R)
called the general linear group. Inside GL(k, R) we have SL(k, R) = {A € M(k, R)
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det A = 1}, called the special linear group. Inside SL(k, R) we have the elementary
subgroup E(k, R), those matrices that can be obtained as the product of elementary
matrices. If R is a field or Z or Z/nZ, E(k, R) = SL(k, R). But it is not true for
every commutative ring R: this is a fascinating field of mathematics known as
K-theory.



