
DES AND SDES

MATH 195

First, some notation: F2 = Z/2Z. In general, Fq denotes a finite field with q
elements: So Fp = Z/pZ if p is prime; in general, q needs to be of the form q = pn,
with p prime and n ≥ 1. Note: Fpn 6= Z/pnZ.

In SDES and DES, we have P = C = F2k=8 or 64
2 , k = 4 or 32, K = F10 or 56

2 ,
S = F8 or 48

2 (the subkey space), t = 2 or 16 (the number of rounds). In order to
define

E : P ×K → P
(z,K) 7→ EK(z)

and similarly DK , we need three ingredients:
• A map K → St = S × · · · × S︸ ︷︷ ︸

t

, K 7→ (K1, . . . ,Kt);

• A round function F : Fk
2 × S → Fk

2 ;
• An initial permutation ι (of P).

Given these three ingredients, E and D are defined as follows:

EK(z) = (ι−1 ◦Gt ◦ s ◦ · · · ◦ s ◦G2 ◦ s ◦G1 ◦ ι)(z),

where s(x, y) = (y, x) and Gi(x, y) = (x + F (y, Ki), y) and therefore

DK(z) = (ι−1 ◦G1 ◦ s ◦ · · · ◦ s ◦Gt−1 ◦ s ◦Gt ◦ ι)(z).

The initial permutation ι : F2k
2 → F2k

2 permutes the 2k coordinates accord-
ing to the following formula [see p. 53 in the text]: in SDES: ι(z1, . . . , z8) =
ι(z2, z6, z3, z1, z4, z8, z5, z7), and in DES [see Table 3.2(a), p. 68],

ι(z1, . . . , z64) = (z58, z50, . . . , z15, z7).

As a check, we include “parity bits” in our key. We let

K = {(k1, . . . , k64) ∈ F64
2 :

8(j+1)∑
i=8j+1

ki = 0, j = 0, 1, . . . , 7}

i.e. k1 + k2 + · · ·+ k8 = 0, k9 + k10 + · · ·+ k16 = 0, . . . , k57 + · · ·+ k64 = 0. We let
the least significant bit in each byte be treated as extraneous information, so we
have only 56 meaningful bits.

Now the subkey generation is a map K 7→ (K1, . . . ,Kt) (for DES) where K ∈ F64
2 ,

Ki ∈ F48
2 :

Ki = (τ ◦ λni ◦ σ)(K) :
where [Table 3.4(a), p. 72]

σ(k1, . . . , k56, . . . , k64) = (k57, k49, k41, . . . , k12, k4)

This is some of the material covered February 19–21, in Math 195: Cryptography, taught by
Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

1



2 MATH 195

(recall we write the 56 bits as 64 bits, using the bits k8, . . . , k64 as parity bits),
[Table 3.4(b), p. 72]

τ(k1, . . . , k56) = (k14, k17, . . . , k29, k32) ∈ F48
2 ,

and

λ(k1, . . . , k28, k29, . . . , k56) = (k2, k3, . . . , k28, k1, k30, k31, . . . , k56, k29)

and [Table 3.4(c), p. 72] n1 = 1, n2 = 2, n3 = 4, . . . , n16 = 28 = 0.
The round function F : F32

2 ×F48
2 → F32

2 is equally explicit. To compute F (x, k),
expand

x =


x1 x2 x3 x4

x5 x6 x7 x8

...
x29 x30 x31 x32


to

ε(x) =


x32 x1 x2 x3 x4 x5

x4 x5 x6 x7 x8 x9

...
x28 x29 x30 x31 x32 x1

 ;

write k also as an 8× 6-matrix

k =

 k1 k2 . . . k6

...
k43 k44 . . . k48


and then add them:

k + ε(x) =

 k1 + x32 . . . x5 + k6

...
k43 + x28 . . . x1 + k48

 .

Then apply the ith S-box Si to the ith row of that matrix, i = 1, . . . , 8 [p. 71].
This compresses the bits on the basis of a table-lookup. Finally, follow it by the
permutation of the 32 positions [Table 3.2(d), p. 68]. That results in an 8 × 4
matrix, which read as a vector gives F (x, k) ∈ F32

2 .
For a word about design criteria—diffusion and confusion, resistance against

differential cryptanalysis and linear cryptanalysis, ease of use and analysis—see the
text [e.g. p. 60/61].


