
RSA (CONTINUED): COMPUTATIONAL ISSUES

MATH 195

Still to be discussed:
• Computing ae (mod n) for given a, e, n.
• How to generate prime numbers of a given order of magnitude, how to tell

whether a given number is prime (primality testing), and how to factor the
number if it is not prime.

• “Leaking d enables one to factor n.”

Computing powers

There is a ‘fast’ algorithm that given n ∈ Z>0, a ∈ Z/nZ, m ∈ Z>0, computes
am as an element of Z/nZ.

Here is a really slow way to do it: View a as an element of Z, compute am =
a · a · · · · · a using m− 1 multiplications in Z, and compute am (mod n) by division
with remainder. This is dreadful, because when n ≈ 10200, and m ≈ 1050, a = 2,
and am = 21050

: writing 100000 . . . will take forever.
One can improve this by doing multiplications in Z/nZ (replace every element by

its remainder after division with n). But this would still take 1050 multiplications!
Therefore we group the terms, since squaring will double our exponent.

Therefore when m = 2i, then am = a2i ∈ Z/nZ can be computed from a

by performing i squarings in Z/nZ: at the ith step, we obtain (a2i−1
)2 = a2i

.
For general m, write m =

∑k
i=0 bi2i = bkbk−1 . . . b1b0 where bi ∈ {0, 1}, bk = 1,

k = blog m/ log 2c (round down). Then

am =
k∏

i=0
bi=1

a2i

.

For example, if m = 57 = (111001)2, we compute a1, a2, a4, a8, then multiply
to get a9, then a16 and multiply to get a25, then compute a32 and multiply to get
a57. One can also read this in the other order, which requires the same number of
squarings and multiplications: we follow the chain a1, a2, a3, a6, a7, a14, a28, a56, a57.

Notice that the number of squarings is k = blog m/ log 2c, and the number of
multiplications is #{i : bi = 1} − 1.

One can also compute in base 64, with digits between 0 and 63, and then one
precomputes ac for 0 ≤ c ≤ 63.

If one needs to compute many a all to the same exponent (say 57), then we
arrive at the theory of addition chains: in the chain 1, 2, 3, 6, 7, 14, 28, 56, 57, or
1, 2, 4, 8, 9, 16, 25, 32, 57, we insist that every number can be written as the sum of

This is some of the material covered February 28, in Math 195: Cryptography, taught by

Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

1



2 MATH 195

two of the previous numbers. For example, we could also take 1, 2, 3, 4, 8, 16, 19, 38, 57
(see Knuth, The Art of Computer Programming).

The time taken by this algorithm is c(log m) multiplications in Z/nZ. If t ≈
log n/ log 2 (the number of bits), and we assume multiplication is proportional to
this, then the multiplication (with taking remainder) takes t2 time, so the total
is c(log m)(log n)2. (There are actually fast multiplications which take roughly
c(log n)(log log n), relying upon the Fast Fourier Transform.) When m is roughly
n, then this is c(log n)3.

As a comparison, consider the (extended) Euclidean algorithm: Suppose a and
n have t bits (t proportional to c log n). Then the Euclidean algorithm takes at
most ct steps, each step a division-with-remainder of two numbers of < t bits each
(up to a constant). Therefore the total time is ≈ ct2. With the FFT methods, we
can obtain ≈ ct1+ε.

Leaking d

There is a fast algorithm that given an odd integer n > 1, as well as an integer
m > 0 with the property that

for all a ∈ (Z/nZ)∗, am = 1 (mod n),
in practice completely factors n into prime factors.

You may assume this fact for the homework.


