PRIMALITY

MATH 195

PRIMALITY TESTING

In cryptography, we need to generate large prime numbers. How can we test if
a large number is prime?
If n is really prime, then by Fermat’s little theorem, one has

Ya € (Z/nZ)*, a" ' =1 (mod n).

If this condition is not satisfied, then we can either be happy anyway or we stumble
upon an a € (Z/nZ)* with a"~! # 1 (mod n) and in that case we output “no”. (If
“no”, we can prove that n cannot be prime.)

The resulting probabilistic primality test is called the witness test of Miller and
Rabin [see also §7.4 in the text, the Miller-Rabin test].

Suppose that n is an odd prime, @ € Z. Then n | a” — a (by Fermat’s little
theorem), so if we write n — 1 = 2Fu (where u is odd, k > 1), we have

nla(@ ' —1)=a@™ V2 41)V/2 1)
— a(a(nfl)/Q + 1)(a(n71)/4 + 1)(a(n71)/4 _ 1)

k—1
=...=a(a" - 1) [ +1).

v=0

So we have at least one of
a=0 (modmn)
a*=1 (mod n)
a¥v = -1 (mod n)

for some ¢ with 0 <17 < k.
So now let n be any odd integer > 1 (not necessarily prime) and n — 1 = 2%y
where u is odd. If a is an integer satisfying

a#0 (modn)
a#£1 (modn)
' # —1 (mod n)

for any 0 <14 < k, then a is called a witness to the compositeness of n.

So, if a witness to the compositeness of n exists, n is really composite. Though
you can be certain n is composite, you cannot extract a divisor (easily) from the
proof or algorithm. We do have the following:
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Theorem. Let n > 1 be an odd integer. If n is prime, then no witnesses for n
exist. If n is composite, then

#{a:1<a<n-—1,a a witness for n} >3
n—1 — 4

Therefore, approximately 75% of congruence classes represent witnesses.

Ezxample. Every one of the numbers 2,3,4,5,6,7 is a witness for n = 9, but neither
1 or 8 works. (Since 9 —1 =8 =23, u = 1, so the conditions are easily satisfied.)

We then have the following algorithm to probabilistically test for primality:

(1) Pick a € {1,...,n — 1} at random, and test whether a is a witness. If yes,
output “yes”.

(2) Otherwise, repeat. [Stop after a certain amount of time because probabilis-
tically, n is likely tto be prime, but no mathematical proof.]

LARGE PRIMES

Now we can attend to the problem of finding a prime number with a given
number of digits. For RSA, we need n = pg with p and ¢ both approximately
150-200 digits.

We have the following naive algorithm:

(1) Pick a random number with k digits.
(2) Test it for primality as above (using the witness test).
(3) Continue until the answer is “yes”.
All algorithms you find will be a variation of this scheme.
Why does this algorithm work? In effect, how often are numbers of size 10*

prime? This question is answered by the prime number theorem (proved in 1896)
by Hadamard (1865-1963) and de la Valle-Poussin (1866-1962).

Theorem (Prime number theorem).

#{p < x:p prime} 1
x log

as r — 0.

This says that the limit of the left-hand side over the right-hand side tends to
1 as ¢ — oco. “Roughly 1 out of every logz positive integers up to x is a prime
number.”

For example, with k& = 200, log(102°°) ~ 460, which means the probability that
a 200 digit number is prime is 1/460.

By restricting to odd numbers, the probability is twice as large, restricting to
numbers not divisible by 3, it is 3/2 times as large, and so on, so we can multiply
the probability by

3 5 p
2 4 p—1
if we eliminate numbers divisible by primes up to p.

The prime number theorem is not easy to prove: D. Newman found an easier

proof relying on complex analysis.



