FINITE FIELDS

MATH 195

INTRODUCTION

A finite field is a field (commutative ring R with R* = R\ {0}) with only finitely
many elements. For example, Z/pZ with p prime is a field, which we denote F,,.

Theorem. We have the following:

(a) If q is a positive integer, then there is a field k such that #k = q if and
only if ¢ = p™ for some prime number p and n > 1.

(b) Suppose ko and k1 are two finite fields, #k; = p;*, p; prime, n; > 1. Then
there is an embedding kg — ki1 as a subfield if and only if po = p1 and
ng | n1 if and only if #k1 is a power of #ko. In addition, if these three
statements are true, then the number of embeddings kg — ki is equal to ng.

In this case, p is called the characteristic of k, and n is the degree of n if #k =
q=p"

For example, if #k = p", then F, can be embedded in % in exactly one manner.
After all, we must map 0 and 1 uniquely, and this respects the addition law, so
141,1+141,... andsoonuptol14+1+---+1=p=0 will already have fixed
image.

As a second consequence, we note that if kg and kq are finite fields with the same
number of elements, then kg ~ ki: the two fields are isomorphic, meaning we can
view them as the same field. In other words, given ¢ = p™, there is ‘essentially’
only one field of ¢ elements, which we denote F,.

Ezample. The field of 3 elements is represented by the addition and multiplication

table for Z/3Z.
For a finite field of 4 = 22 elements, we must work harder: F, is built from Fo,

so it will have the elements 0, 1, a, b, and tables

+10 1 a b
010 1 a b
111 0 b a
ala b 0 1
b|b a 1 0
and
|0 1 a b
0|0 0O 0 O
10 1 a b
al0 a b 1
b0 b 1 a

This is some of the material covered March 12-14, in Math 195: Cryptography, taught by
Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu; Revised March 17, 2002.
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By the ring axioms,
a+a=1-a+1-a=(14+1)-a=0-a=0
for any a which contains Fy as a subring (with the same unit element). Hence this
is true for any ring of characteristic 2.

Generally, if R is any ring containing F,, as a subring (with the same unit element)
then for all a € R one hasa+a+---4+a=0.
—_——

P
Notice that F, has an automorphism which fixes 0,1 and maps a +— b, b — a.

CONSTRUCTING

Given p and n we would like to produce a ‘model’ of F,». How?
In general, tables are not a sufficient model. For ¢ = p™, an addition table and
multiplication table would take up space

log q
2 2
! Log J
which is quite bad. We would like to eliminate any powers of q.
The connection to linear algebra: in the above example, {a, 1} are a basis for Fy

viewed as a vector space over Fs. From the example, b = a + 1, so we represent
this as

0=0-a+0-1=00
1=0-a+1-1=01
a=1-a+0-1=10
b=1-a+1-1=11.
Hence each element of F4 can in a unique way be written as ¢ya+col with ¢g, ¢; € Fs.
We have
C1Co + dldo = (C1 + dl)(CO + do)
How does multiplication work in this scheme?
(cla + Co)(dla + do) = (cldl)a2 + (Codl + Cldo)a + Codo.

But we need to know what a? is for this to work. This is 1 entry in the table:

a? = b= a + 1, then substitute again to get the formula in terms of the basis a, 1.
This says that a®> + a + 1 = 0, and we have

(01a —+ Co)(dla —+ do) = (Cldl —+ Cldo —+ Codl)a —+ (Codo —+ Cldl)l.

In other words, the arithmetic in the field Fj is summarized by the equation
a>+a+1=0.

POLYNOMIALS OVER [F),

Let p be a prime number, and F,, = Z/pZ. A polynomial over IF,, is an expression
of the form ¢, X" + cp_1 X" 1+ -+ 1. X + ¢y, where X is just a symbol and each
c; € ]Fp.

Usually, we resrict to the case where the highest degree term has a nonzero
coefficient, ¢, # 0. Then n is called the degree of f, written n = deg f. The set of
all polynomials over ), is denoted by F,,[X], and it is a commutative ring containing
F, as a subring. This is far from being a finite field as this ring is infinite.
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Under addition,
(en X"+ -+ X +co)+ (dn X"+ +d1 X +do) = (cp+dp) X" + -+ (co+do)
(adding in a few zero terms we assume m = n). We multiply as usual, subject to
the conditions that the coefficients are in IF),: this looks like
m—+n
(cnX™ + -+ co)(dmX™ 4+ +dy) = Z Z Cidek.
k=0 i+j=k
The typical name for a polynomial is f = f(X). Notice that we have deg(fg) =
deg f +degg. If ¢, =1, then f is monic.
There are extended analogies between Z and F,[X]. If we do computations with
polynomials, we may write f = c,cp—1...co, for ¢; € F,.

Example. For p=2,1-X2+1-X + 1 would be written 1011.

This is not always a more compact representation: the polynomial X 2 =
100 - 0.
—
210zeros

Addition of polynomials can be done digitwise modulo 2: (X3 + X +1) + (X* +
X2 +1) becomes 1011 + 10101 = 11110, X* 4+ X3 + X2 4+ X, with no carries. To
multiply these, we write

1 011
1 01 01
1 011
1 01 1
11
01 0111

10

1 0
represents the multiplication (X3 + X +1)(X*+ X% +1) = X"+ X4+ X2+ X +1,
just like multiplying integers, the second representing the repeated “shifts” of the
first to be added together.

We have seen, then, the following analogies between Z and F,[X]:

In Z, we may write numbers in base b = 10, whereas we think of polynomials as
“base” X. The degree function on F,[X] corresponds roughly then to log |n| for Z.
The unit groups are Z* = {£1}, F,[X]* = F,. Note then that every integer can be
written as a positive integer times a unit (£1), and similarly, every polynomial in
F,[X] can be written as a monic polynomial times the leading coefficient ¢,, # 0,
hence a unit.

This analogy is limited: for example, if you add two integers which are posi-
tive, you again get a positive integer, but this is not true if you add two monic
polynomials.

As another example, (X3 4+ X + 1)2 can be computed as

10 11
1011
1 0 1 1
10 11
10 1 1
1000101
so that (X3 + X +1)? = X6+ X2 + 1.
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This is a more general phenomenon, called Freshperson’s dream: (a+b)? = a?+b?
in any commutative ring (e.g. F3[X]) containing Fo. (For a proof, consider the
missing term 2ab.) Note that

(a4 )% = a® + 3a%b + 3ab® + V*

so if 3 = 0 in the ring, i.e. if F3 is contained in your ring, then this becomes just
a® + b3. More generally:

Claim (Freshperson’s dream). If a commutative ring R contains ), then (a+b)? =
a? +bP in R.

From this, and the trivial facts that (ab)? = aPb? and 17 = 1, we see that the
map a — af for a ring R containing [F, is called the Frobenius map is in fact a ring
homomorphism. Notice that there is no analogy of the Frobenius map for Z.

Recall that the integers have division with remainder: for any positive integers
a, b, there exists ¢ > 0 and 0 < r < b — 1 such that

a=qgb+r

where ¢ is the quotient and r the remainder. There is an analogous statement for
F,[X].

Claim. If f,g € F,[X], g # 0, then there exists unique ¢, € F,[X] such that
f=a9+r
where degr < degg or r = 0.

Example. For p = 3. Take f = X* — X3 g = X3 — X — 1, with coefficients
Fs = {0,1,—1}. We perform long division (synthetic division just subject to the
arithmetic in F,), and obtain g =X — 1, r = X2 1.

Here is another schematic way to compute this:

Example. Forp=2,g=X>+ X +1=1011, f = X'+ X° + X2 = 10000100100,
SO we compute:

100 00100100
1 0 1 1
1 0 1 1
1 01 1
1 01 1
1 011

We repeatedly add 1011 so that the columns add to to the top. This says that, in
fact, r = 0.

We say that Z and F,[X] are Euclidean domains since they have this division
with remainder.

Theorem (Unique factorization). Every monic polynomial in F,,[X] can in a unique
way (up to ordering) be written as a product of monic irreducible polynomials.

A polynomial f € F,[X] is called irreducible if deg f > 0 and there do not exist
g,h € Fp[X] such that f = gh, degg,degh < deg f.
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Ezample. We compute the factorization of f = X0 + X% + X% + X2 in Fy. We
note that this has a double root X = 0, giving us X%+ X% 4+ X° 4+ X2 = X2(X® +
X%+ X3 4 1). This second polynomial has X = 1 as a root, so we compute (using
long division) that X8+ X6+ X3+1= (X +1)( X"+ X+ X3+ X%+ X +1). This
again has X = 1 as a root, and we are left with the factor X® 4+ X° + X4 + X2 + 1.
This has no roots. If it has an (irreducible) factor, it will be degree 2 or degree 3.
The only monic quadratic with a root is X2 + X + 1, and a cubic is irreducible if
and only if it does not have a root, hence we have only X3+ X241 and X3+ X +1.
(X =11is aroot if and only if there is an even number of termss.) Dividing each
of these into our degree 6 factor we see that there is a remainder, so a complete
factorization is given by

X0 X9 X4 X2 = XA(X +1D)A(XC+ X5+ X+ X2 +1).
Recall that
an(p) = #{f € F,[X] : deg f = n, f monic irreducible}.

We have a1(2) = 2, az(2) = 1 (the unique irreducible is X2+ X +1) and az(3) = 2.

Since any monic polynomial of degree 1 is of the form X — a, and each of these
is irreducible, we have a1 (p) = p.

We count that there are p? monic polynomials of degree 2 (X2 +aX +b, p choices
for each of a and b). If it factors, it does so as X? +aX +b= (X —¢)(X —d): if
¢ # d, there are (127) choices, and if ¢ = d, total p, for a total of (p+1)p/2. Therefore
there are a total of

as(p) =p2 - w = %(pQ - D).

This reasoning will continue: if a cubic factors, it does so as the product of a linear
and irreducible quadratic or as the product of three linear factors. This is a bit of
a headache, hence a homework problem:

az(p) = 5 (p° — p)-

If you continue in this way, you find

as(p) = = (p* — p?)
and
1
as(p) = 5(195 - p),

with an amazing amount of cancellation. The next term becomes

1 (
ag(p) = g(p6 —p* —p* +p),

which is much more complicated.
We have the following analogue to the prime number theorem:

Claim. For all n > 1 and all primes p, one has

> daa(p) = p".
dln
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FEzxzample. For example, with n = 2, since d = 1 or d = 2 we have
> daa(p) = p* = a1 (p) + 2a2(p),
d|

SO
1 1
az(p) = §(p2 —a1(p)) = 5(1)2 - p).
Similarly,
6ag(p) = p° — 3az(p) — 2az(p) — a1 (p) = p° — p* — p* + p.

This gives a,(p) < p"™/n as an upper bound, and for a lower bound,

[n/2]
nan(p) =p" — Y dag(p) >p" — Y p?>p" -2l
d|n d=1
d<|n/2]
Therefore e
"o 2 n n
P <ap <2
n n



