DISCRETE LOGARITHMS AND THE DIFFIE-HELLMAN
EXCHANGE

MATH 195

[For more information, see §6.4 (and Exercise 6.19), §7.7, and §6.5 in the text.]

NOTATION

The following are examples of what we will talk about: Multiplicative groups,
(Z/nZ)* and F;, (an example of both is (Z/pZ)*), the group of points on an elliptic
curve F.

Let G be a finite group. Write G multiplicatively. We may as well assume that
G is abelian. Let g € G. Look at the powers of g:

9=19"=9.9"=9-9,...,9"=9g"""-9g

For example, taking G = F},, g = 2, we have the sequence 1, 2,4, 8,16,15,13,9, 1,
and then it repeats.

Suppose m is the smallest positive integer such that ¢"™ = ¢* for some i, 0 <
i < m. (In fact, one has i = 0 since otherwise one would have g"~! = g1
0<i—1<m—1.) The number m is called the order of g, notation: m = ord(g).

We also have g=! = ¢g™~!, and in general, if i,j € Z then ¢° = ¢/ if and only
if i = j (mod m). For example, 23! = 27 = 9 in Fy; = Z/17Z, since 311 = 7
(mod 8).

Notation: (g) = {g" : n € Z} is a subset of G of precisely m different elements.
It is an abelian group, with g‘¢? = ¢'*/ = ¢7¢* and (¢°)~! = g*. Such a group is
called cyclic.

If h € (g), then the discrete logarithm of h to the base g is the unique integer i
(mod m) such that h = g*. Notation: i = log,h = indgh. If h € G but h & (g)
then the discrete logarithm is not defined.

In general, we have that ord(g) | #G. This follows from the theorem of Lagrange:
the cyclic group generated by g is a subgroup of G, so its order (m) must divide
the order of the group. Or, as above, we have that ¢#¢ = 1 = ¢° so #G = 0
(mod m), i.e. m = ord(g) | #G.

In particular, we see that the groups

(9) ~Z/mZ
h—log, h
are isomorphic by the logarithm map. This map is a homomorphism because
log, (h1hs) = log,(h1) +log,(h2),
which is the statement that hihe = ¢°¢? = ¢*t7. The inverse map is given by
i — g'. The logarithm map also has the property that log,g = 1, log,1 = 0,
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log,(h™') = —log, h, and log,(h") = nlog, h, just as with the usual logarithm
defined on real numbers. (One also has log, a = (log;, a) log, h-—this multiplication
is in Z/mZ—but we usually consider a fixed base.)

We now define the discrete logarithm problem for the group G. Given g,h € G,
decide whether log, & is defined and if so, compute it.

The point is: computing the logarithm map is difficult for certain choices of G.
Or put another way, for discrete logarithm based systems, we need G and g (the
base) to be such that log,, is difficult to compute.

FiNITE FIELDS
First, we begin with the example of a finite field.

Theorem. If k is any finite field (e.g. k =T,, p prime), then there exists g € k*
such that (g) = k*.

Equivalently, the order of g is m = (#k) — 1, or log,, is defined on all of £*. Such
an element is called a primitive root of k (or modulo p if k =TF,).
Indeed, if we take 3 in F},, we compute:

1,3,9,10,13,5,15,11,16,14,8,7,4,12,2,6, 1

Notice that 3% = 16 = —1, so the last 8 elements are the negatives of the first 8.
Notice that this is a crazy ordering of these elements, and so to compute log; 7 = 11
we can do no better than locate this element in the table.

Question: Given a (big) prime number p, how does one find a primitive root
modulo p? This question is very difficult and gives rise to a number of unsolved
problems in number theory. One may ask instead: given p a prime number and
g € I}, how does one quickly decide whether or not g is a primitive root? This is
still too hard:

Theorem. Suppose k is a finite field, #k = q, and let g € k*. Then: g is a
primitive root for k if and only if for each prime number ¢ | g—1, one has gl4=1/¢ £
1.

For k =F17, ¢ =17, ¢ — 1 = 16, so we need only check ¢ = 2, so ¢ is a primitive
root if and only if ¢g® # 1. So checking 3% = —1 (mod 17), we see that this is a
primitive root without doing any other work.

If p is a prime number, for which the complete prime factorization of p — 1
is known, then there is a fast algorithm for deciding if an element is a primitive
root modulo p. More generally, if p is such a prime number, then one can quickly
compute the order of a given element of F.

There are several variations on this theme:

e We also may take F,, replaced by any finite field k£ (and conditions ensuring
that the discrete logarithm is hard in &*).

e Omne can also take (g) = k* replaced by the condition that m = ord(g) is
a large divisor of #k* = q — 1, where ¢ = #k, i.e. (¢ — 1)/m should be
small.)

e Without explaining what this means, one can also take G = E(F,) (or
E(k)), the group of rational points on an elliptic curve E defined over F,
(or k).
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DirrFIE-HELLMAN KEY EXCHANGE

Alice and Bob wish to agree on a common secret, a key, which for example can
be used as the basis for exchanging messages using a cryptosystem requiring such a
key. To set up a common key, A and B proceed as follows. They agree on a group
G of order m and an element g € G to be used (e.g. G = Fy, p a big prime, g a
primitive root). Note: G and g are public knowledge (the eavesdropper Eve knows
them).

Now A picks a secret number a (mod m) (unknown to everyone other than A)
and similarly B picks a secret number b (mod m). A computes g% (so that g2 is
public knowledge); but assuming that the discrete logarithm problem is difficult, it
is impossible to find a from ¢®. Similarly, B computes g” and sends it to A.

Then A computes (¢°)* = h. Alice is the only person which knows a, so she is
the only one who can do this computation. Similarly, B computes (g%)°, also equal
to h. (Note h = ¢g**.) Now h is the common key.

Eve knows G, g, g%, g® and would like to compute h = ¢**. Can Eve do this? Yes,
if she can do the discrete logarithm (given g%, then she could compute a). What if
she cannot solve the discrete log? This is an unsolved problem.



