
DISCRETE LOGARITHMS AND THE DIFFIE-HELLMAN
EXCHANGE

MATH 195

[For more information, see §6.4 (and Exercise 6.19), §7.7, and §6.5 in the text.]

Notation

The following are examples of what we will talk about: Multiplicative groups,
(Z/nZ)∗ and F∗q (an example of both is (Z/pZ)∗), the group of points on an elliptic
curve E.

Let G be a finite group. Write G multiplicatively. We may as well assume that
G is abelian. Let g ∈ G. Look at the powers of g:

g0 = 1, g1 = g, g2 = g · g, . . . , gn = gn−1 · g.

For example, taking G = F∗17, g = 2, we have the sequence 1, 2, 4, 8, 16, 15, 13, 9, 1,
and then it repeats.

Suppose m is the smallest positive integer such that gm = gi for some i, 0 ≤
i < m. (In fact, one has i = 0 since otherwise one would have gm−1 = gi−1,
0 ≤ i− 1 < m− 1.) The number m is called the order of g, notation: m = ord(g).

We also have g−1 = gm−1, and in general, if i, j ∈ Z then gi = gj if and only
if i ≡ j (mod m). For example, 2311 = 27 = 9 in F17 = Z/17Z, since 311 ≡ 7
(mod 8).

Notation: 〈g〉 = {gn : n ∈ Z} is a subset of G of precisely m different elements.
It is an abelian group, with gigj = gi+j = gjgi and (gi)−1 = g−i. Such a group is
called cyclic.

If h ∈ 〈g〉, then the discrete logarithm of h to the base g is the unique integer i
(mod m) such that h = gi. Notation: i = logg h = indg h. If h ∈ G but h 6∈ 〈g〉
then the discrete logarithm is not defined.

In general, we have that ord(g) | #G. This follows from the theorem of Lagrange:
the cyclic group generated by g is a subgroup of G, so its order (m) must divide
the order of the group. Or, as above, we have that g#G = 1 = g0, so #G ≡ 0
(mod m), i.e. m = ord(g) | #G.

In particular, we see that the groups

〈g〉 ' Z/mZ
h 7→ logg h

are isomorphic by the logarithm map. This map is a homomorphism because

logg(h1h2) = logg(h1) + logg(h2),

which is the statement that h1h2 = gigj = gi+j . The inverse map is given by
i 7→ gi. The logarithm map also has the property that logg g = 1, logg 1 = 0,

This is some of the material covered April 11–16, in Math 195: Cryptography, taught by
Hendrik Lenstra, prepared by John Voight jvoight@math.berkeley.edu.

1



2 MATH 195

logg(h−1) = − logg h, and logg(hn) = n logg h, just as with the usual logarithm
defined on real numbers. (One also has logg a = (logh a) logg h—this multiplication
is in Z/mZ—but we usually consider a fixed base.)

We now define the discrete logarithm problem for the group G. Given g, h ∈ G,
decide whether logg h is defined and if so, compute it.

The point is: computing the logarithm map is difficult for certain choices of G.
Or put another way, for discrete logarithm based systems, we need G and g (the
base) to be such that logg is difficult to compute.

Finite Fields

First, we begin with the example of a finite field.

Theorem. If k is any finite field (e.g. k = Fp, p prime), then there exists g ∈ k∗

such that 〈g〉 = k∗.

Equivalently, the order of g is m = (#k)−1, or logg is defined on all of k∗. Such
an element is called a primitive root of k (or modulo p if k = Fp).

Indeed, if we take 3 in F∗17, we compute:

1, 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1

Notice that 38 = 16 = −1, so the last 8 elements are the negatives of the first 8.
Notice that this is a crazy ordering of these elements, and so to compute log3 7 = 11
we can do no better than locate this element in the table.

Question: Given a (big) prime number p, how does one find a primitive root
modulo p? This question is very difficult and gives rise to a number of unsolved
problems in number theory. One may ask instead: given p a prime number and
g ∈ F∗p, how does one quickly decide whether or not g is a primitive root? This is
still too hard:

Theorem. Suppose k is a finite field, #k = q, and let g ∈ k∗. Then: g is a
primitive root for k if and only if for each prime number ` | q−1, one has g(q−1)/` 6=
1.

For k = F17, q = 17, q − 1 = 16, so we need only check ` = 2, so g is a primitive
root if and only if g8 6= 1. So checking 38 = −1 (mod 17), we see that this is a
primitive root without doing any other work.

If p is a prime number, for which the complete prime factorization of p − 1
is known, then there is a fast algorithm for deciding if an element is a primitive
root modulo p. More generally, if p is such a prime number, then one can quickly
compute the order of a given element of F∗p.

There are several variations on this theme:

• We also may take Fp replaced by any finite field k (and conditions ensuring
that the discrete logarithm is hard in k∗).

• One can also take 〈g〉 = k∗ replaced by the condition that m = ord(g) is
a large divisor of #k∗ = q − 1, where q = #k, i.e. (q − 1)/m should be
small.)

• Without explaining what this means, one can also take G = E(Fp) (or
E(k)), the group of rational points on an elliptic curve E defined over Fp

(or k).



DISCRETE LOGARITHMS AND THE DIFFIE-HELLMAN EXCHANGE 3

Diffie-Hellman Key Exchange

Alice and Bob wish to agree on a common secret, a key, which for example can
be used as the basis for exchanging messages using a cryptosystem requiring such a
key. To set up a common key, A and B proceed as follows. They agree on a group
G of order m and an element g ∈ G to be used (e.g. G = F∗p, p a big prime, g a
primitive root). Note: G and g are public knowledge (the eavesdropper Eve knows
them).

Now A picks a secret number a (mod m) (unknown to everyone other than A)
and similarly B picks a secret number b (mod m). A computes ga (so that ga is
public knowledge); but assuming that the discrete logarithm problem is difficult, it
is impossible to find a from ga. Similarly, B computes gb and sends it to A.

Then A computes (gb)a = h. Alice is the only person which knows a, so she is
the only one who can do this computation. Similarly, B computes (ga)b, also equal
to h. (Note h = gab.) Now h is the common key.

Eve knows G, g, ga, gb and would like to compute h = gab. Can Eve do this? Yes,
if she can do the discrete logarithm (given ga, then she could compute a). What if
she cannot solve the discrete log? This is an unsolved problem.


