MATH 250B: COMMUTATIVE ALGEBRA
HOMEWORK #86

JOHN VOIGHT

Problem 1. Let R be a ring. Let N = rad R = [, m be the intersection of all
maximal left ideals of R.
(a) Show that NE = 0 for every simple R-module E. Show that N is a two-
sided ideal.
(b) Show that rad(R/N) = 0.

Solution. By the beginning of (XVII §6), there is a bijection between maximal left
ideals and simple R-modules (up to isomorphism) and E = R/M for a maximal
left ideal M. Already, then, N € M = AnnFE, so NE = 0. Moreover, since
N(R/M) = 0 for all maximal left ideals M, NR C M for all M and therefore
NR C ;M =N, so N is also a right ideal.

For (b), note that every maximal ideal of R/N is the image of a maximal ideal
M of R containing N (under the natural surjection R — R/N). But every maximal
ideal contains N, so rad(R/N) is the image of rad(R) = N in R/N, i.e. rad(R/N) =
0.

Problem 2. A ring is (left) artinian if every descending sequence of left ideals
stabilizes.

(a) Show that a finite-dimensional algebra A over a field k is artinian.

(b) If R is artinian, show that every nonzero left ideal contains a simple left
ideal.

(¢) If R is artinian, show that every nmonempty set of left ideals S contains a
minimal left ideal.

Solution. A left ideal of A is in particular a finite-dimensional k-vector space, so
for any sequence J; D Jo D ... we have dimy A > dimg J; > ... and this can
only have finitely many strict inequalities; therefore the original sequence of ideals
stabilizes.

For (b), let J = J; be any nonzero left ideal of R. If J itself is simple, we are
done; otherwise it properly contains a nonzero left ideal J;. Continuing in this
fashion, we obtain J = J; 2 Jo 2 ... which stabilizes as R is artinian. The final
stable factor J,, # 0 is a simple left ideal of J.

Finally, for (c) let J; € S; if J; is not minimal, there exists Jo € S such that
J1 2 Jo. Continuing in this way we obtain a descending chain of left ideals and
since R is artinian, this procedure must eventually terminate and J,, is a minimal
ideal in S.
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Problem 3. Let R be artinian. Show that rad R = 0 if and only if R is semisimple.

Solution. We must assume that R is not the zero ring since by definition the zero
ring is not semisimple (§4).

Since R is artinian, we claim that we can write rad R = ﬂ§=1 M; for a finite
set of maximal (left) ideals M, ..., M;. Otherwise, there would exist a descending
chain M7 2 My N Ms 2 ... of left ideals of R.

Suppose that rad R = 0. Then the map R — €, R/M; is injective, since its
kernel is (), M; = rad R = 0. But each R/M; is simple, since each M; is maxi-
mal; therefore R is (isomorphic to) a submodule of a semisimple module, so R is
semisimple.

If R is semisimple, write R = €, E; an isomorphism of R-modules with E;
simple. Then M; = Ann F; is a maximal left ideal of R and (), Ann E; = (), M; = 0.
But rad R C (), M; = 0, sorad R = 0. Note this does not require that R be artinian!

Problem 4 (Nakayama’s Lemma). Let R be a ring and M a finitely generated
module. Let N =rad R. If NM = M, show that M = 0.

Solution. Let mq,...,m, be a minimal generating set for M (i.e. no smaller subset
generates M). Then there exist ni,...,n, € N such that nymy + -+ + n,m, =
my, 8o (1 — n.)m, = nymy + -+ + np—1my_1. We know 1 — ny must be left
invertible (otherwise 1—n; is contained in some maximal left ideal and so too would
ny + (1 —ny) = 1)—but then mq, ..., m,_; generate M, contradicting minimality.
Therefore M had no such minimal generating set, i.e. M = 0.

Problem 5.

(a) Let J be a two-sided nilpotent ideal of R. Show that J is contained in the
(Jacobson) radical.

(b) Conversely, assume that R is Artinian. Show that its Jacobson radical is
nilpotent, i.e., that there exists an integer v > 1 such that N" = 0. [Hint:
Consider the descending sequence of powers N”, and apply Nakayama to a
minimal finitely generated left ideal L C N°° such that N°L # 0./

Solution. For (a), suppose that « € J has ¢ ¢ M for some maximal ideal M. Then
Rx + M = R, so there exists an a € R and m € M such that ax +m = 1. But
az € J is nilpotent, so say (ax)™ = 0. Then

14+ (ax)" H(1 —az)=1—(az)" =1

so m = 1 — ax is left invertible, a contradiction since m € M. Hence no such z
exists, and J C rad R.

For (b), let N = rad R; then N D N2 O ... is a descending chain of left ideals,
so it stabilizes, say the limit is N™ = N"*! = ... Suppose that N” # 0: then in
particular, NN = N"t! = N” # 0. Let S be the set of left ideals L such that
N"L # 0. We have shown that N € S, so S # (), so by Exercise 2(c), there is a
minimal element L € S. By minimality, we know that L is finitely generated (if
NTL # 0 there exists x € L such that N"z # 0, so Rz € S and hence L = Rz). By
Nakayama’s lemma, since N(N"L) = N"L, we must have N"L = 0, a contradiction.
Therefore N™ = 0.
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Problem 6. Let R be a semisimple commutative ring. Show that R is a direct
product of fields.

Solution. By Theorem 4.3, every semisimple ring is the (finite) product of simple
rings. A commutative simple ring k£ must be a field: the zero ring is not simple, and
if a € k is nonzero, then (a) is a (two-sided) ideal hence by Theorem 5.2, (a) = k,
so a € k* and k is a field.

Problem 7. Let R be a finite-dimensional commutative algebra over a field k. If
R has no nilpotent element # 0, show that R is semisimple.

Solution. R is Artinian by Exercise 2(a), and rad R is nilpotent by Exercise 5(b);
by hypothesis, then, rad R = 0, so by Exercise 3, R is semisimple.

Problem 10. Let E be a finite-dimensional vector space over a field k. Let A €
Endg(E). Show that the k-algebra R generated by A is semisimple if and only if its
minimal polynomial has no factors of multiplicity > 1 over k.

Solution. Let m(t) = []._, pi(t)¢ be the minimal polynomial of A written as the
product of irreducibles. Then by the Chinese remainder theorem,

R =E[t]/(m(t)) = H k[t]/ (pi(£)).

The k-algebra R is commutative, so by Exercise 6, R is semisimple (if and) only
if R is a direct product of fields. But R is a product of fields if and only if ¢; = 1
for each i, for otherwise one factor has a nilpotent element, which is the result.



