
MATH 250B: COMMUTATIVE ALGEBRA
HOMEWORK #8

JOHN VOIGHT

Problem 1. Let K be a Galois extension of the Q with group G. Let B the integral
closure of Z in K, and let α ∈ B be such that K = Q(α). Let f(X) be the irreducible
polynomial for α over Q. Let p be a prime number, and assume that f remains
irreducible modulo p over Z/pZ. What can you say about the Galois group G?

Solution. Let p be a prime above p in B. Then the decomposition group Gp is
a subgroup of G; by Proposition 2.5, the extension B/p over Z/pZ is Galois with
group cyclic of order n = [K : Q] = deg f . By proposition 2.8, Gp is isomorphic to
this Galois group, so Z/nZ ⊂ G. Since both groups are finite of order n, G ∼= Z/nZ,
i.e. G is cyclic.

Problem 2. Let A be an entire ring and K its quotient field. Let t be transcendental
over K. If A is integrally closed, show that A[t] is integrally closed.

Solution. Let x ∈ K(t) be integral over A[t]. Since K[t] is a UFD, it is integrally
closed, so x ∈ K[t] (Proposition 1.7). Let x satisfy the integral equation

f(X) = Xn + an−1X
n−1 + · · ·+ a0

with coefficients ai ∈ A[t]. Write x = x(t) = cntn + · · · + c0 with ci ∈ K. Substi-
tuting these into f , looking at the coefficients of each ti we see that the coefficients
ci are themselves integral over A, hence ci ∈ A, and x ∈ A[t].

Problem 4. Let L be a finite extension of Q and let OL be the ring of algebraic
integers in L. Let σ1, . . . , σn be the distinct embeddings of L into the complex
numbers. Embed OL into a Euclidean space by the map

α 7→ (σ1α, . . . , σnα).

Show that in any bounded region of this Euclidean space, there is only a finite
number of elements of OL. [Hint: The coefficients in an integral equation for α
are elementary symmetric functions of the conjugates of α and thus are bounded
integers.] Use Exercise 5 of Chapter III to conclude that OL is a free Z-module of
dimension ≤ n. In fact, show that the dimension is n, a basis of OL over Z also
being a basis of L over Q.

Solution. Suppose α lies in the bounded region. Then the numbers σiα are all
bounded; in particular, the coefficients of an integral equation for α (being elemen-
tary symmetric functions of the conjugates of α) are bounded integers. Since the
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degree of an integral equation for α is also bounded (by the degree [L : Q]), there
are only finitely many such integral equations, hence only finitely many α.

By Exercise III.5, OL is a free Z-module of rank ≤ n. Let α1, . . . , αn be a basis
for L over Q. For each αi, there exists an integer ci ∈ Z>0 such that ciαi ∈ OL;
therefore ciαi ∈ OL are Z-linearly independent, so OL contains a free Z-submodule
of rank n, hence OL is itself free of rank n.

Problem 7. Let O be an entire ring which is noetherian, integrally closed, and
such that every nonzero prime ideal is maximal. Define a fractional ideal a to be
a nonzero O-submodule of the quotient field K such that there exists c ∈ O, c 6= 0
for which ca ⊂ O. Prove that fractional ideals form a group under multiplication:

(a) Given an ideal a 6= 0 in O, there exists a product of prime ideals p1 . . . pr ⊂
a.

(b) Every maximal ideal p is invertible, i.e. if we let p−1 be the set of elements
x ∈ K such that xp ⊂ O, then p−1p = O.

(c) Every nonzero ideal is invertible, by a fractional ideal. [Use the noetherian
property that if this is not true, there exists a maximal noninvertible ideal
a and get a contradiction.]

Solution. For (a), consider the set of ideals which do not contain a product of
primes. If the set is nonempty, since O is noetherian, there exists a maximal such
ideal a. We cannot have a prime, therefore there exists x, y ∈ O such that xy ∈ a
but x, y 6∈ a. Since a is maximal, the ideals a + (x) and a + (y) contain a product
of prime ideals: but

(a + (x))(a + (y)) ⊂ a

so a contains a product of primes, a contradiction.
For (b), it is clear that p−1p is an ideal of O, so since p is maximal, we must

have either p−1p = p, or p−1p = O. Let a ∈ p be nonzero: then by (a) there exists
a product of primes p1 . . . pr ⊂ (a) ⊂ p. We may assume that p1 . . . pr is a minimal
such product (r taken as small as possible). Since every prime is maximal, we know
p = pi for some i, so we may assume p = p1. Then p2 . . . pr 6⊂ (a), so there exists
b ∈ p2 . . . pr such that b 6∈ (a). But bp ⊂ (a), so ba−1p ⊂ O, so ba−1 ∈ p−1. Since
b 6∈ aO, ba−1 6∈ O, so p−1 6= O. This implies p−1p = O.

For (c), suppose that the set of nonzero noninvertible ideals is nonempty. Then
since O is noetherian, there exists a maximal such noninvertible ideal a. If a is
maximal, then by (b) it is invertible; otherwise, it is contained (properly) in a
maximal ideal p, and

a ⊂ ap−1 ⊂ pp−1 = O.

We cannot have a = ap−1, so ap−1 is invertible. But then

O = (ap−1)ap

implies that a is invertible, a contradiction.
To conclude, note that every fractional ideal a has ca ⊂ O for some c 6= 0: then

(1/c)(ca)−1 is an inverse for a.

Problem 9. Let A be an entire ring, integrally closed. Let B be entire, integral
over A. Let q1, q2 be prime ideals of B with q1 ⊃ q2 but q1 6= q2. Let pi = qi ∩ A.
Show that p1 6= p2.
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Solution. Suppose p1 = p2 = p. Then the ring Ap is a local ring with maximal
ideal pAp, and Bp is an integral extensions of Ap with qiBp ∩ Ap = pAp, so since
the latter is maximal, so too is each qi. In particular, if q1 ⊂ q2, then q1 = q2, a
contradiction.


