FINAL EXAM REVIEW SOLUTIONS
MATH 115: NUMBER THEORY

Problem 1. If p is odd, then without loss of generality, a is even and b is odd.
Therefore
p=a’>+bv*’=0+1=1 (mod 4).
For (b), note that since p = 1 (mod 4) is prime and a is prime as well, by

quadratic reciprocity,
a ( p) ~ [a*+b?
p) \a/ a '

Now the Legendre symbol only depends on the numerator modulo a, so since a? +
b? = b2 (mod a), we have
@4 (1)
a “\a/) 7

Problem 2. We compute using quadratic reciprocity:

103 229 23 103 11 23 1 1
(229) B (103) - (103) B (23) B (23) B (11) B (11) -
Problem 3. Since 3? + 1 =0 (mod n), we have 3? = —1 (mod n), hence 3% = 1
(mod n). Therefore h = o(3 mod n) | 2p, hence h € {1,2,p,2p}. If h = 1, then
31 =3 =1 (modn), son | (3—1) = 2, but we see that n > 28, so this is
impossible. Similarly, if » = 2, then 32 = 9 = 1 (mod n), so n | 8, impossible.
Finally, if h = p, then 3? =1 = —1 (mod n), which is again impossible. Therefore

h = o0(3 mod n) = 2p.
For (b), first note that the arguments above work with n replaced by q. We have
the same congruences (except modulo ¢), and now we cannot have 3 = 1 (mod q)

or 9 =1 (mod ¢) since ¢ is odd. So o(3 mod ¢q) = 2p. Therefore 2p | (¢ — 1), so
2pk = q — 1, hence ¢ = 1 + 2pk.

Problem 4. Let n = p{* - - - p¢r, with e; > 0, p; prime. Then

¢(n) =pi' (o1 — 1) pr T o — 1) [ 3p - py
Cancelling the common factors from both sides, we see this can happen if and only
if
(pr—1)-(pe— 1) | 3p1 -+ Dy

Now note that if p is odd, then p — 1 is even. Therefore the left-hand side is
divisible by at least » — 1 factors of 2, since only one of the primes can be 2. On
the other hand, the right-hand side is divisible by at most 2 (at not 4) for the same
reason. Therefore n can have at most one odd prime divisor, so either n = 2¢,
n = pf, or n = 2°p! for some odd prime p and e, f > 1. In the first case, we have
#(2°) = 2°71 | 2¢ indeed. In the second case, we have ¢(p/) = p/~1(p — 1) { p7,
since p — 1 is even but p/ is odd. In the last case, we have

2-Dep-)=p@-1)3-2-p.
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Since ged(p — 1,p) = 1, this implies p — 1 | 6, so p = 2,3,4,7, hence p = 3,7.
Checking these, we conclude that n =1, n = 2°, n = 2¢3, or n = 2¢7f fore, f > 1.
Problem 5. We take logs of both sides to get
logs (%) = 40logz 2 = logz 2 (mod 78).

Now log; 2 = 4 since 3* = 81 = 2 (mod 79). Therefore we solve

40logzz =4 (mod 78).
Now ged(40,78) = 2| 4, so this becomes

20loggz =2 (mod 39).
Note that 207! =2 (mod 39), since 20 -2 = 1 (mod 39), hence

logsz=20"'2=4 (mod 39).

Therefore logs z = 4,43, and z = 3*,3*% (mod 79). We compute that 3* = 2
(mod 79), and although it would be painful to compute 3*3 (mod 79), we notice
that —2 is also a solution to the congruence, hence 3*3 = —2 (mod 79).

For part (b), note that by (a) we have 20 = 2 (mod 79), hence 23° = 1
(mod 79), hence o(2 mod 79) | 39. Hence o(2 mod 79) # 78, so no, 2 is not a

primitive root.

Problem 6. Let N = p{* ---p¢ . Then

61+171 er+1 _
o(N) =2 P = 9N = 2p% - por.
pl_l pr_l

Dividing both sides by p{*** - pert! and multiplying by (p; — 1) --- (p, — 1), we
obtain

R WD At S TRk S Ut
e1+1 er+1 -

D1 Dr b1 Dr
which rearranging becomes

1 1 1 1 1 1
l—— ) (1-=)=Z(1-—F ) (1-—7 ) <=
P1 Dr 2 pilJr pir+ 2
Problem 7. We compute that ¢(n) = 16 - 82 = 1312 and using the extended

Euclidean algorithm that d = e™! = 83571 = 11 (mod 1312). Thus P = C? =
211 = 2048 = 637 (mod 1411) is her PIN number.

Problem 8. Note that if a has order h and b has order k modulo p, with ged(h, k) =
1, then ab has order hk modulo p. Together with the fact that —1 has order 2
modulo p, we conclude that

—53-39=29 (mod 131)
has order 2-5-13 = p — 1 modulo p, so r = 29 is a primitive root.

Problem 9. Consider the equation 2 = a (mod p). Taking log,. of both sides, we
obtain

2log, x =log,a (modp—1).
This has a solution if and only if ged(2,p — 1) = 2 | log, a, so a is a quadratic
residue if and only if log, a is even.
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For (b), we write a = 7'°8-% (mod p). Now r* mod p is a primitive root if and
only if ged(u,p — 1) = 1. If a is quadratic residue, then u = log, a is even, so
ged(u,p — 1) = 2, so a is not a primitive root.

For (c), all of the primitive roots modulo p are quadratic nonresidues by (a), so
there are ¢(¢(p)) such (of the (p — 1)/2 quadratic nonresidues).

Problem 10. We apply Moébius inversion; since oy (n) is the summatory function
of f(n) =n*, we conclude

Zu(d)ak(n/d) =
d|n

For (b), we first note that f(n) = n* is (completely) multiplicative (f(mn) =
(mn)* = mFn* = f(m)f(n)). Therefore oj(n) is multiplicative since it is the
summatory function of f which is multiplicative. Now p(n)og(n) is multiplicative
as well, since p is multiplicative and hence

p(mn)or(mn) = p(m)p(n)or(mor(n) = (u(m)or(m))(p(n)or(n)),
if gcd(m,n) = 1. Finally, Si(n) is the summatory function of p(n)og(n), so it is
also multiplicative.

Thanks everyone, you were a great class. Good luck on the final!



