
FINAL EXAM SOLUTIONS
MATH 115: NUMBER THEORY

Problem 1. The congruence implies that pk | (x2 − 1) = (x− 1)(x + 1). Now, if p
is an odd prime such that p | (x− 1) and p | (x + 1), then p | (x− 1) + (x + 1) = 2x
so since p is odd, p | x. Thus p | x− (x− 1) = 1, a contradiction. Therefore either
pk | (x− 1) or pk | (x + 1), hence x ≡ ±1 (mod pk).

Alternatively, we know that f(x) = x2 − 1 ≡ 0 (mod p) which has only the
solutions x ≡ ±1 (mod p); by Hensel’s lemma, since f ′(±1) = ±2 6≡ 0 (mod p),
these lift uniquely, so there are exactly two solutions modulo pk, hence they must
be x ≡ ±1 (mod pk).

[N.B. There is also a solution which uses the fact that pk has a primitive root!]

Problem 2. First, the congruence has the solution x ≡ 1 (mod 3) for p = 3. Now
assume p 6= 3, so that x ≡ 1 (mod p) is not a solution. Note that

(x− 1)(x2 + x + 1) = x3 − 1 ≡ 0 (mod p).

Therefore the original congruence has a solution if and only if there is a nontrivial
solution to this congruence, i.e. an element of order 3. This happens if and only if
3 | (p− 1), i.e. p ≡ 1 (mod 3).

Alternatively, note that by a homework exercise (completing the square), the
original congruence has a solution if and only if y2 ≡ d ≡ 12−4(1)(1) = −3 (mod p)
has a solution. This has the solution y ≡ 0 (mod 3) if p = 3, and otherwise, we
need (−3/p) = 1, which again by a homework exercise (using quadratic reciprocity)
we see that p ≡ 1 (mod 3).

Problem 3. We note that

σ(n) = σ(pq) = (p + 1)(q + 1) = pq + p + q + 1 = 51809 + p + q + 1 = 52416,

so p + q = 606. Thus p, q are the roots of

(x− p)(x− q) = x2 − (p + q)x + pq = x2 − 606x + 51809 = 0

so

p, q =
606±

√
6062 − 4(51809)

2
= 303± 200 = 103, 503.

Problem 4. For (a), suppose m,n ∈ Z≥1 with gcd(m,n) = 1. Note that

f(mn) = (−1)mn−1

and
f(m)f(n) = (−1)m−1(−1)n−1 = (−1)(m−1)+(n−1) = (−1)m+n

hence we need to show that

mn− 1 ≡ m + n (mod 2).
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Since gcd(m,n) = 1, not both of m,n are even. Without loss of generality, then,
we may assume m ≡ 0, 1 (mod 2) and n ≡ 1 (mod 2). The congruence is true in
both of these cases.

For (b), the easiest method is to use the homework: if n = pe1
1 · · · per

r , then∑
d|n

µ(d)f(d) = (1− f(p1)) · · · (1− f(pr)).

Now if one pi is odd, then f(pi) = 1 so the sum is zero.
To essentially reprove this result, argue as follows: since f is multiplicative and

µ is multiplicative, so is their product µf . Therefore, since g is the summatory
function of µf , so is g.

So suppose n = pe is an odd prime power, e ≥ 1. Then

g(pe) =
∑
d|pe

µ(pe)f(pe) = µ(1)f(1) + µ(p)f(p) + · · ·+ µ(pe)f(pe)

= f(1) + f(p) = (−1)1−1 − (−1)p−1 = 1− 1 = 0

since p is odd.
Now suppose that n is not a power of 2. Then there is an odd prime p which

divides n. Write n = pem where p - m. Then by multiplicativity,

g(n) = g(pe)g(m) = 0.

Problem 5. We first note that p ≡ 1 (mod 4). This follows since

p ≡ a2 + 5b2 ≡ a2 + b2 ≡ 0, 1, 2 (mod 4)

but p is an odd prime, so p ≡ 1 (mod 4).
Therefore by quadratic reciprocity, since a is an odd prime,(

a

p

)
=

(p

a

)
=

(
a2 + 5b2

a

)
and since a2 + 5b2 ≡ 5b2 (mod a), and (b2/a) = 1 clearly, we have(

a2 + 5b2

a

)
=

(
5b2

a

)
=

(
5
a

) (
b2

a

)
=

(
5
a

)
which by quadratic reciprocity is (

5
a

)
=

(a

5

)
.

Therefore a is a quadratic residue modulo p if and only if
(

a
5

)
= 1. This latter

holds if and only if a ≡ ±1 (mod 5), which implies that

p ≡ a2 ≡ 1 (mod 5).

Problem 6. By Euler’s theorem, we note that

aφ(p
ei
i ) ≡ 1 (mod pei

i ).

Therefore since φ(pei
i ) | m, we have

am ≡ 1 (mod pei
i ).

By the Chinese remainder theorem, this implies that

am ≡ 1 (mod n).
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Therefore o(a mod n) | m. This solves (a).
For (b), the answer is “no”. Indeed, if we take n = 8 = 23, there is no element

of order φ(8) = 4 modulo 8.

Problem 7. Note first that p - a. Now since o(−a2 mod p) | p − 1 = 2q, we have
o(−a2 mod p) ∈ {1, 2, q, 2q}.

First, suppose o(−a2 mod p) | 2, so that

(−a2)2 ≡ a4 ≡ 1 (mod p).

Hence o(a mod p) = 1, 2, 4. If o(a mod p) = 1, 2, then a2 ≡ 1 (mod p), so a ≡ ±1
(mod p), a contradiction. If o(a mod p) = 4, then 4 | (p − 1) so p ≡ 2q + 1 ≡ 1
(mod 4), a contradition since q is odd.

Therefore we only need to rule out o(−a2 mod p) = q. If so, then

(−a2)q ≡ −a2q ≡ 1 (mod p).

But φ(p) = p − 1 = 2q, so by Fermat’s little theorem, since p - a, we know that
a2q ≡ 1 (mod p). Therefore −a2q ≡ −1 ≡ 1 (mod p), a contradiction since p is
odd. Thus o(−a2 mod p) = 2q = φ(p), so −a2 mod p is a primitive root.

Problem 8 (Bonus). [N.B. Note that φ(1) = 1 =
√

1, φ(4) = 2 =
√

4 but
φ(2) = 1 <

√
2 and φ(6) = 2 <

√
6.]

For any real number x ≥ 3, we claim that

x− 1 >
√

x.

This follows since it is equivalent to

(x− 1)2 = x2 − 2x + 1 > x

and this is equivalent to
f(x) = x2 − 3x + 1 > 0.

Note that f is a continuous function; f ′(x) = 2x − 3 > 0 for x > 3/2, so f is
increasing there; so since f(3) = 9− 9 + 1 > 0, f(x) > 0 for x ≥ 3.

Now, suppose n = pe is an odd prime power, with e ≥ 1. Then

φ(pe) = pe−1(p− 1) > pe−1√p

and since e− 1/2 ≥ e/2 (this is equivalent to e/2 ≥ 1/2, or e ≥ 1), we have

pe−1√p = pe−1/2 ≥ pe/2 =
√

pe.

Finally, if n is odd, then

φ(n) = φ(pe1
1 ) · · ·φ(per

r ) >
√

pe1
1 · · · per

r =
√

n.

To conclude, one must treat the case that n is even! We leave it as a challenge to
the reader to modify the above argument appropriately.


