FINAL EXAM SOLUTIONS
MATH 115: NUMBER THEORY

Problem 1. The congruence implies that p* | (22 —1) = (z — 1)(z +1). Now, if p
is an odd prime such that p | (x —1) and p | (z+ 1), thenp | (z — 1)+ (z+1) = 2z
so since p is odd, p | . Thus p | z — (z — 1) = 1, a contradiction. Therefore either
p¥ | (x — 1) or p* | (z + 1), hence z = £1 (mod p¥).

Alternatively, we know that f(r) = 22 — 1 = 0 (mod p) which has only the
solutions z = +1 (mod p); by Hensel’s lemma, since f'(+£1) = +2 # 0 (mod p),
these lift uniquely, so there are exactly two solutions modulo p¥, hence they must
be z = +1 (mod p*).

[N.B. There is also a solution which uses the fact that p* has a primitive root!]

Problem 2. First, the congruence has the solution z =1 (mod 3) for p = 3. Now
assume p # 3, so that z =1 (mod p) is not a solution. Note that
(z—1)(@*+x+1)=2>-1=0 (mod p).

Therefore the original congruence has a solution if and only if there is a nontrivial
solution to this congruence, i.e. an element of order 3. This happens if and only if
3| (p—1),ie p=1 (mod 3).

Alternatively, note that by a homework exercise (completing the square), the
original congruence has a solution if and only if y?> = d = 12—4(1)(1) = —3 (mod p)
has a solution. This has the solution y = 0 (mod 3) if p = 3, and otherwise, we
need (—3/p) = 1, which again by a homework exercise (using quadratic reciprocity)
we see that p =1 (mod 3).

Problem 3. We note that
on)=c(pg)=p+1)(g+1)=pg+p+q+1=>51809 +p+q+1=>52416,
so p+ q = 606. Thus p, ¢ are the roots of
(x—p)(x—q) =2* — (p+ q)x + pg = x* — 6062 + 51809 = 0

+ /6062 — 4(51
606 6062 (51809) = 303 £ 200 = 103, 503.

SO

p,q=

Problem 4. For (a), suppose m,n € Z>1 with gecd(m,n) = 1. Note that
f(mn) = (=)™~
and
f(m) f(n) = (=)™~ (=1)" 7t = (=) DD = (—qymEn
hence we need to show that

mn—1=m+n (mod 2).
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Since ged(m, n) = 1, not both of m,n are even. Without loss of generality, then,
we may assume m = 0,1 (mod 2) and n = 1 (mod 2). The congruence is true in
both of these cases.

For (b), the easiest method is to use the homework: if n = p7* - - - p¢r, then

doud)f(d) =1~ fpr) - (1= flpr).
d|n

Now if one p; is odd, then f(p;) =1 so the sum is zero.

To essentially reprove this result, argue as follows: since f is multiplicative and
w1 is multiplicative, so is their product uf. Therefore, since g is the summatory
function of pf, so is g.

So suppose n = p° is an odd prime power, e > 1. Then

9(p°) = > n(*) () = p(V) F(1) + u(p) f(p) + - -+ + 1(p*)  (0°)

d|pe
=fW+fp)=C)"" = (=) t=1-1=0
since p is odd.

Now suppose that n is not a power of 2. Then there is an odd prime p which
divides n. Write n = p®m where p { m. Then by multiplicativity,

g(n) = g(p©)g(m) = 0.

Problem 5. We first note that p = 1 (mod 4). This follows since
p=a®+50°=a’>+b*=0,1,2 (mod 4)

but p is an odd prime, so p =1 (mod 4).
Therefore by quadratic reciprocity, since a is an odd prime,

<a> - (2) - (M)
P a a
and since a? + 5b®> = 5b% (mod a), and (b*/a) = 1 clearly, we have
(=) -(0) -0 ) -0)
a a a a a

which by quadratic reciprocity is

Therefore a is a quadratic residue modulo p if and only if ( ) = 1. This latter

holds if and only if a = &1 (mod 5), which implies that
p=da’=1 (mod 5).

a
5

Problem 6. By Euler’s theorem, we note that
a®®) =1 (mod p5?).
Therefore since ¢(p;*) | m, we have
a™ =1 (mod p).
By the Chinese remainder theorem, this implies that

a™ =1 (mod n).
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Therefore o(a mod n) | m. This solves (a).
For (b), the answer is “no”. Indeed, if we take n = 8 = 23, there is no element
of order ¢(8) = 4 modulo 8.

Problem 7. Note first that p { a. Now since o(—a? mod p) | p — 1 = 2¢, we have
o(—a® mod p) € {1,2,q,2q}.

First, suppose o(—a? mod p) | 2, so that

(—a®>?=a*=1 (mod p).

Hence o(a mod p) = 1,2,4. If o(a mod p) = 1,2, then a? = 1 (mod p), so a = +1
(mod p), a contradiction. If o(amodp) =4, then4d | (p—1)sop=2q+1=1
(mod 4), a contradition since ¢ is odd.

Therefore we only need to rule out o(—a? mod p) = q. If so, then

(—a*)?=—-a**=1 (mod p).
But ¢(p) = p — 1 = 2¢q, so by Fermat’s little theorem, since p 1 a, we know that
a*? = 1 (mod p). Therefore —a?? = —1 = 1 (mod p), a contradiction since p is
odd. Thus o(—a? mod p) = 2¢ = ¢(p), so —a® mod p is a primitive root.
Problem 8 (Bonus). [N.B. Note that ¢(1) = 1 = V1, ¢(4) = 2 = V4 but
#(2) =1 < /2 and ¢(6) =2 < V6]
For any real number x > 3, we claim that
x—1>+x.
This follows since it is equivalent to
(r—1)2=2>-22+1>x
and this is equivalent to
flz)=2*=3z4+1>0.
Note that f is a continuous function; f'(z) = 2z —3 > 0 for z > 3/2, so f is
increasing there; so since f(3) =9—-9+1>0, f(z) >0 for z > 3.
Now, suppose n = p° is an odd prime power, with e > 1. Then
¢(p°) =p"Hp—1)>p T VD
and since e — 1/2 > ¢/2 (this is equivalent to e/2 > 1/2, or e > 1), we have

pefl\/ﬁ _ p571/2 > pe/2 — \/E'
Finally, if n is odd, then
o(n) = ¢(py*) -~ dpy7) > /1" -7 = V/n.

To conclude, one must treat the case that n is even! We leave it as a challenge to
the reader to modify the above argument appropriately.



