
MIDTERM EXAM REVIEW SOLUTIONS
MATH 115: NUMBER THEORY

Problem 1. There are many possible solutions to this question. To show that S is
not well-ordered, we need to show that there is a subset which does not have a least
element; it is certainly enough to show that the set S does not have a least element,
or what will also suffice, that there exists a decreasing sequence of elements from
S.

We consider the elements 1/
√

p for p a prime. By Euclid’s theorem, there are
infinitely many primes, so the sequence 1/

√
pn is infinite and strictly decreasing.

To conclude, we need to show that 1/
√

p is irrational. Suppose 1/
√

p = a/b where
a, b ∈ Z and gcd(a, b) = 1. Then pa2 = b2, so p | b2 and thus since p is prime, p | b.
Let b = pb′, so then pa2 = (pb′)2 = p2(b′)2, hence a2 = p(b′)2, thus p | a2 so p | a.
This is a contradiction, since gcd(a, b) = 1.

Problem 2. To find a solution to a congruence modulo 65 = 5 · 13, we first solve
the congruence modulo 5 and modulo 13. Indeed, the congruence

x2 + 1 ≡ 0 (mod 5)

has only the solutions x ≡ ±2 ≡ 2, 3 (mod 5), and

x2 + 1 ≡ 0 (mod 13)

has only the solutions x ≡ ±5 ≡ 5, 8 (mod 13). Now by the Chinese Remainder
Theorem, combining each pair of solutions modulo 5 and 13 gives a solution modulo
65, so there are a total of 2 · 2 = 4 solutions modulo 65.

A quick application of the CRT gives x ≡ ±8,±18 ≡ 8, 18, 47, 57 (mod 65) as
the 4 solutions, but any one of them will do.

Problem 3. We note first that gcd(p, q) = 1 since p, q are distinct primes. There-
fore by Fermat’s little theorem,

pq−1 ≡ 1 (mod q)

hence also

qp−1 + pq−1 ≡ 1 (mod q)

since q ≡ 0 (mod q). Similarly,

pq−1 + qp−1 ≡ 1 (mod p).

Therefore

p, q | (pq−1 + qp−1 − 1)

and so since gcd(p, q) = 1, we have

pq | (pq−1 + qp−1 − 1)

hence pq−1 + qp−1 ≡ 1 (mod pq).
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Problem 4. Recall that π(x) = #{1 ≤ a ≤ x : a is prime} counts the number of
primes up to a real number x ∈ R>0, and that

π(x) ∼ x

log x
.

Therefore we can estimate
π(x) ≈ x

log x
hence

π(1000) ≈ 1000
log 103

=
1000

3 log 10
≈ 1000

7.5
≈ 133

and

π(100) ≈ 102

2 log 10
≈ 20.

Therefore the number of primes between 1000 and 100 is

π(1000)− π(100) ≈ 133− 20 = 113.

Therefore the probability that such a number is prime is ≈ 113/900.

Problem 5. Since (n − 2) | (2n2 − 1), we have gcd(n − 2, 2n2 − 1) = n − 2. But
since gcd(a, c) | gcd(ab, c) for all integers a, b, c by unique factorization, we have

n− 2 = gcd(n− 2, 2n2 − 1) | gcd(2(n− 2)(n + 2), 2n2 − 1) = gcd(2n2 − 8, 2n2 − 1).

Now using the fact that the greatest common divisor only depends on linear com-
binations, we have by subtracting that

gcd(2n2 − 8, 2n2 − 1) = gcd(−7, 2n2 − 1) | 7
so (n − 2) | 7, therefore n − 2 = ±1,±7, which gives n = −5, 1, 3, 9, and indeed,
each of these checks out.

Alternatively, one can use long division to show that (2n2 − 1)/(n − 2) = 2n +
4 + 7/(n− 2), which is an integer if and only if (n− 2) | 7, as before.

Problem 6. We easily see that x ≡ 10 (mod 101) is a solution. We now wish to
apply Hensel’s lemma. We check that

f ′(10) = 2(10) = 20 6≡ 0 (mod 1012)

so Newton’s method applies. We next want to compute 20−1 (mod 101), and since

20(5) ≡ −1 (mod 101)

we see that 20−1 ≡ −5 (mod 101). Therefore by Newton’s method,

r1 = r0 − f(r0)(−5) = 10 + 5(102 + 1) = 515 (mod 1012)

is a solution modulo 1012.


