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Abstract. We prove that the transitive permutation group 17T7, isomorphic to a split
extension of C2 by PSL2(F16), is a Galois group over the rationals. The group arises from
the field of definition of the 2-torsion on an abelian fourfold with real multiplication defined
over a real quadratic field. We find such fourfolds using Hilbert modular forms. Finally,
building upon work of Dembélé, we show how to conjecturally reconstruct a period matrix
for an abelian variety attached to a Hilbert modular form; we then use this to exhibit an
explicit degree 17 polynomial with Galois group 17T7.
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1. Introduction

1.1. Motivation and first result. The Inverse Galois Problem (IGP) [Ser08, MM99,
JLY02], which asks if every finite group (up to isomorphism) occurs as a Galois group
over Q, remains of enduring fascination. Here we will be interested in the effective IGP,
where given a transitive subgroup G ≤ Sd (up to conjugation), one asks further for an ex-
plicit polynomial f(x) ∈ Q[x] whose Galois group, as a permutation group via the action on
the roots, is equivalent to G.

Except for two intransigent groups, the effective IGP has a positive answer for every
transitive group G ≤ Sd with d ≤ 23 [Dok21, KM01, KM24]. Of these two exceptions, the
most notorious is the sporadic simple group M23, the Mathieu group of order 10 200 960.
Although not realized over Q, the group M23 has been realized as a Galois group over any
number field K where −1 is a sum of two squares in K [Gra96].

The remaining exception, the one of smallest transitive degree, is the group G with label
17T7 and order #G = 8160 = 253151171. The group G is isomorphic to PSL2(F16)⋊C2 and
so fits into a split exact sequence

1 → PSL2(F16) → G→ C2 → 1, (1.1.1)
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where the nontrivial element σ of C2 acts entrywise by the element of Gal(F16 |F2) of order
2 (i.e., by a 7→ a4). We obtain a permutation representation G ↪→ S17 via the natural action
on P1(F16), with σ again acting entrywise.

Our first main result is as follows.

Theorem 1.1.2. The group G = 17T7 is a Galois group over Q. More precisely, the
polynomial

x17 − 2x16 + 12x15 − 28x14 + 60x13 − 160x12 + 200x11 − 500x10 + 705x9 − 886x8

+ 2024x7 − 604x6 + 2146x5 + 80x4 − 1376x3 − 496x2 − 1013x− 490 ∈ Q[x]
(1.1.3)

has Galois group G.

Verification that the polynomial in (1.1.3) indeed has Galois group G is a quick calculation
in Magma [BCP97] using the method of relative invariants due to Stauduhar [Sta73] as
described and implemented by Fieker–Klüners [FK14]. What remains interesting, then, is
the method by which such a polynomial can be exhibited. (See Remark 2.4.7 for a discussion
of the related groups 17T6 ≃ PSL2(F16) and 17T8 ≃ PSL2(F16)⋊ C4.)

1.2. Further motivation and second result. The (effective) IGP welcomes input from
all branches of mathematics; our approach uses methods from arithmetic geometry, more
specifically from abelian varieties and modular forms. For example, there has been sub-
stantial work using classical modular forms to solve the IGP for simple groups of the form
PSL2(Fq), see e.g. Zywina [Zyw23] for a recent advance and many references. In principle,
these methods are also effective (computable in deterministic polynomial time), due to work
of Edixhoven [Edi11, Theorem 14.1.1] and others; and calculations have been carried out by
Bosman [Bos11], Mascot [Mas18], and again many others. Although this approach to the
IGP admits many variations, a recurring theme is to exhibit Galois groups over Q via their
action on torsion points of modular abelian varieties over Q as quotients of the Jacobian of
a modular curve.

A natural extension of this method works with abelian varieties and modular forms over
number fields F . When F is a totally real field, we may work with Hilbert modular forms
in a manner analogous to the classical case [DeV09]. However, in general the Galois groups
over Q obtained from the normal closure yield wreath products.

We record an explicit criterion (Theorem 2.4.2) that allows us to descend from F to Q,
yielding Galois groups that are (subgroups of) semidirect products. This criterion takes
advantage of additional symmetries observed by Gross in work of Dembélé [Dem09] and
appearing in work of Dembélé–Greenberg–Voight [DGV11, § 1]: see Remark 2.4.8. We then
use this to solve the IGP for 17T7 by exhibiting certain Hilbert modular forms over abelian
totally real fields F , see Theorem 2.5.2. Indeed, this method applies to many groups G like
17T7 that are split extensions of finite cyclic groups by PGL2(Fq).

Our final task then is the effective resolution of the IGP for these groups. In principle, when
the Hilbert modular form arises via the Jacquet–Langlands correspondence on a Shimura
curve, it should be possible to generalize the work above from the case of classical modular
curves. However, such an approach in practice poses theoretical limitations and substantial
computational challenges (some aspects of which we hope to return to in future work).
Instead, what is needed is a version of the Eichler–Shimura construction for Hilbert modular
forms suitable for computation, attaching to a Hilbert modular newform f of weight 2
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an abelian variety Af with matching Galois representation and L-function. In work of
Dembélé [Dem08], a numerical approach was outlined in the special case where F is a real
quadratic field of narrow class number one and f has rational coefficients, so that Af is
an elliptic curve. This algorithm computes the period lattice assuming a conjecture of
Oda [Oda82] as refined by Darmon–Logan [DL03] (see Theorem 3.4.6).

Our final contribution is to generalize this approach, allowing arbitrary narrow class num-
ber and coefficient field. Given the Hilbert modular newform f over the Galois totally real
field F , with coefficient field Kf of degree g = [Kf : Q], the rough outline is as follows.

1. Compute periods for Af by computing L(f, 1, χ) for many quadratic characters χ
(including those with varying signature).

2. Construct the moduli point z ∈ (C∖R)g corresponding to A as ratios of the periods,
and form the corresponding period matrix Π.

3. Repeat for the conjugates of f under Gal(F |Q).
We then form suitable polynomials in the theta constants with characteristic evaluated at
Π and its conjugates. Several new features arise in this generalization, as is perhaps clear
from this description. In this way, we solve the effective IGP for 17T7: the calculation is
explained in detail in section 4.

Finally, when the period matrix lies in the Schottky locus, we could then also seek to
reconstruct the abelian variety as a Jacobian of a curve.

We carry this out for the Hilbert modular form f over Q(
√
3) with LMFDB label 2.2.12.1-

578.1-d of level norm 578. (We also work with its quadratic twist by the nontrivial character
of the narrow class group, with 2.2.12.1-578.1-c.) In this case, there is a Shimura curve
(Proposition 4.3.1) whose Jacobian is isogenous over F to the abelian fourfold A attached
to f , and we give the following explicit realization, combining Proposition 4.3.4) and Propo-
sition 4.3.6.

Theorem 1.2.1. Let X be the smooth projective curve of genus 4 over Q birational to the
affine curve defined by the equation

8x4y + 8x3y2 + 10x2y3 + 4xy4 + 2y5 − 8x4 + 24x3y + 6x2y2 + 12xy3

− 2y4 − 2x3 − 3x2y + 6xy2 − 11y3 + 14x2 − 6xy − 4y2 − 7x+ 2y + 1 = 0.
(1.2.2)

Then the Jacobian of X is isogenous over F = Q(
√
3) to the Abelian variety A attached to

the Hilbert modular form 2.2.12.1-578.1-d, and Q(A[2]) is the splitting field of the polynomial
(1.1.3).

1.3. Structure of the article. In §2, we dive into our descent approach to the IGP. We
then exhibit our general numerical method for the Eichler–Shimura construction in §3. We
conclude in §4 by applying our methods to the particular modular form that produced the
17T7-polynomial in Theorem 1.1.2.

1.4. Acknowledgements. The authors thank the organizers, Jennifer Balakrishnan, Bjorn
Poonen, and Akshay Venkatesh, of the PCMI 2022 program on Number Theory Informed by
Computation. The idea to use Hilbert modular forms was also noted early by Pip Goodman,
and an initial list of candidates was compiled in collaboration with him; we acknowledge and
thank him for his contribution. We also thank Maarten Derickx for his initial contribution to
the project, specifically regarding his work determining the necessary properties of Hilbert

3

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-d
https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-d
https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-c
https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-d


modular forms used in our method. We thank Thomas Bouchet for his help in computing the
curve (4.3.3), Lassina Dembélé for suggesting the argument that proves modularity of this
curve (Proposition 4.3.4), and Stephan Elsenhans for help with a Galois group computation
(Proposition 4.3.6). We also thank the inspiring lectures of Tim Dokchitser in the PCMI
2021 Graduate Summer School, Number Theory Informed by Computation, which brought
this problem to the authors’ attention. We thank Nicolas Mascot for his computational
verification in Remark 4.3.8 and for his comments on Proposition 4.3.6. Finally, we thank
Sachi Hashimoto, Adam Logan, and many other participants of the PCMI 2022 program
who contributed to the early stages of the project.

Van Bommel, Costa, and Schiavone were supported by a Simons Collaboration grant
(550033). Elkies was supported by a Simons Collaboration grant (550031). Keller was
supported by the 2021 MSCA Postdoctoral Fellowship 01064790 – ExplicitRatPoints. Voight
was supported by grants from the Simons Foundation: (550029, JV) and (SFI-MPS-Infra-
structure-00008650, JV).

2. Inverse Galois problem via Hilbert modular forms

In this section, we describe an approach to the Inverse Galois Problem for groups that are
split extensions of finite cyclic groups by GL2(Fq), as well as certain subgroups and quotients,
using Hilbert modular forms. The main result is the criterion in Theorem 2.4.2.

2.1. Group theory setup. Let k be a finite field of characteristic char k = ℓ with prime
field k0 ⊆ k. Let A ≤ k× be a subgroup. We define

GL2(k)A := {g ∈ GL2(k) : det g ∈ A} (2.1.1)
for the subgroup of matrices whose determinant lies in A. We write

P: GL2(k) → PGL2(k) (2.1.2)
for the canonical projection, and for G ≤ GL2(k), we write PG ≤ PGL2(k) for the projective
image. The map u : GL2(k) → k defined by

u(g) := (tr g)2/(det g) (2.1.3)
satisfies u(cg) = u(g) for all c ∈ k∗ and g ∈ GL2(k), and thus descends to a map PGL2(k) → k
that we also denote by u. This map is constant on conjugacy classes, and is surjective because

u
((

0 1
1 0

))
= 0 and u

((
v −v
1 0

))
= v for any v ∈ k∗.

As usual, we write SL2(k) ⊴ GL2(k) (taking A = {1}) for the determinant 1 subgroup and
PSL2(k) = SL2(k)/{±1}. When ℓ is odd, we have PSL2(k) ≤ PGL2(k) of index 2; otherwise
(when ℓ = 2) we have SL2(k) = PSL2(k) = PGL2(k). Finally, we have PGL2(k)A = PSL2(k)
if A ≤ (k×)2; otherwise PGL2(k)A = PGL2(k).

Lemma 2.1.4. We have GL2(k)A =

(
A 0
0 1

)
SL2(k). Moreover, G ≤ GL2(k) contains

SL2(k) if and only if PG contains PSL2(k) if and only if G = GL2(k)A where A = detG.

Proof. If g ∈ GL2(k) has det g = a ∈ A, then g =
(
a 0
0 1

)
g′ with the first factor in

(
A 0
0 1

)
and the second in SL2(k); this proves the first statement. The first equivalence follows by
a direct calculation when #k ≤ 3, and for #k ≥ 4 since then SL2(k) has no subgroup of
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index 2 (it is equal to its commutator subgroup). For the second equivalence, the containment
G ≤ GL2(k)A is an equality since #G = #A#SL2(k) = #GL2(k)A. □

The group Gal(k |Fℓ) is cyclic, generated by the Frobenius automorphism x 7→ xℓ; it acts
on GL2(k) entrywise, giving an injective homomorphism Gal(k |Fℓ) ↪→ Aut(GL2(k)), and
this action descends to PGL2(k). Similarly, the stabilizer of A in Gal(k |Fℓ) acts on GL2(k)A
and PGL2(k)A. More generally, if G ≤ GL2(k) has stabilizer C ≤ Gal(k |Fℓ), then the
natural projection also gives a well-defined homomorphism

P: G⋊ C → PG⋊ C (2.1.5)

(as C must also stabilize the scalar subgroup of G).
Finally, the natural action of PGL2(k) on P1(k) extends to an action by PΓL2(k) :=

PGL2(k)⋊Gal(k |Fℓ) via((
a b
c d

)
, σ

)
· (x : y) = (aσ(x) + bσ(y) : cσ(x) + dσ(y)); (2.1.6)

the action is faithful, so we obtain an injective homomorphism PΓL2(k) ↪→ Sn where n =
#P1(k) = #k+1. (We similarly obtain a permutation representation of ΓL2(k) := GL2(k)⋊
Gal(k |Fℓ) on A2(k)∖ {(0, 0)} of degree #k2 − 1.)

Example 2.1.7. Taking k = F16, we have the subgroup

SL2(F16)⋊Gal(F16 |F4) ≤ SL2(F16)⋊Gal(F16 |F2) =: ΣL(F16)

via the above permutation representation, which as a subgroup of S17 is the group 17T7 (up
to conjugacy).

2.2. Large image. We quickly indicate a few statements that allow us to conclude that a
subgroup G ≤ GL2(k) contains SL2(k).

Proposition 2.2.1. Let G ≤ GL2(k) be a subgroup with #k ≥ 7. Then G contains SL2(k)
if and only if G contains:

(i) a split semisimple element (its characteristic polynomial splits into distinct linear
factors in k);

(ii) a nonsplit semisimple element (its characteristic polynomial is irreducible);
(iii) an element whose projective order (i.e., order in PGL2(k)) exceeds 5; and
(iv) an element g such that k = Fℓ(u(g)).

Proof. The implication (⇒) is direct, so we prove (⇐). By Lemma 2.1.4, it is enough to show
that PG ≥ PSL2(k). By Dickson’s classification (see e.g., King [Kin05, Corollaries 2.2–2.3]),
the maximal subgroups of PGL2(k) are affine, dihedral, exceptional (isomorphic to S4, A4,
or A5), or projective. We rule out subgroups of affine and dihedral groups by (i) and (ii);
we rule out exceptional groups by (iii). It follows that G is projective: up to conjugacy, we
have PG = PSL2(k0) or PG = PGL2(k0) for some subfield k0 ⊆ k. But then u(g) ∈ k0 for
all g ∈ G. By (iv), we conclude k = k0, so G ≥ PSL2(k). □

We may also work just with traces, as follows.

Proposition 2.2.2 (Trace lemma). Let G ≤ SL2(k) with #k ≥ 4 and #k ̸= 5. Then
G = SL2(k) if and only if trG = k.
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Proof. For #k = 4, we verify the claim with a direct calculation. So we may suppose that
#k ≥ 7, and apply Proposition 2.2.1.

(i) Let λ ∈ k×∖{±1}. Then by hypothesis there exists g ∈ G such that tr(g) = λ+λ−1,
whence its characteristic polynomial is x2 − (λ+ λ−1)x+ 1 = (x− λ)(x− λ−1), so g
is split semisimple.

(ii) There exists a ∈ k such that x2 − ax + 1 ∈ k[x] is irreducible, since the map k× ∖
{±1} → k given by λ 7→ λ + λ−1 is not surjective: it has fibers of cardinality 2 and
hence image of cardinality at most (#k − 3)/2 < #k − 2. Any g ∈ G with tr(g) = a
is therefore nonsplit semisimple.

(iii) An element g of projective order ≤ 5 has tr g = a ∈ {±2,±1, 0} or a2±a−1 = 0 ∈ k.
This removes at most 7 elements from k, and when k = F7 there is no a ∈ k with
a2 ± a − 1 = 0. Any g ∈ G with trace among the remaining elements of k satisfies
(iii).

(iv) Let a ∈ k× generate k× as an abelian group. We claim that Fℓ(a
2) = Fℓ(a). Indeed, if

ℓ = 2 then Fℓ(a
2) = Fℓ(a) (as squaring is a Galois automorphism). If instead ℓ is odd,

then ⟨a2⟩ ≤ Fℓ(a
2), so #Fℓ(a

2) ≥ (#k − 1)/2 > #k/ℓ ≥ #k0 for all subfields k0 ⊊ k.
Using the claim, any g ∈ G with tr g = a will suffice, since then u(g) = (tr g)2 = a2.

This completes the proof because the conditions in Proposition 2.2.1 are all satisfied. □

Remark 2.2.3. Proposition 2.2.2 is false for #k = 2, 3, 5 by the counterexamples C3 ≤
SL2(F2), Q8 ≤ SL2(F3), and SL2(F3) ↪→ SL2(F5). However, we can consider an upgraded
statement asking for subgroups of GL2(Fp) such the set of characteristic polynomials of
elements of G coincides with that of GL2(Fp). Unfortunately, there is again a counterexample
for p = 3, namely Q8 ⋊ C2 ↪→ GL2(F3); but the result now holds for GL2(F5) again by a
direct calculation.

2.3. Descent. Now let F ⊇ F0 be a finite Galois extension of number fields inside an
algebraic closure Qal, with absolute Galois group GalF := Gal(Qal |F ). Let k be a finite field
and let

ρ : GalF → GLn(k) (2.3.1)
be a semisimple Galois representation. Then ker ρ cuts out a Galois extension L := F (ρ) ⊇ F
with Galois group Gal(L |F ) = G := img ρ ≤ GLn(k). Let S(ρ) be the set of (nonzero)
primes p of the ring of integers ZF ⊆ F above any prime number p that ramifies in L.

Of course, the group Aut(k) acts on GLn(k) entrywise, so for τ ∈ Aut(k) we obtain another
Galois representation

τ(ρ) : GalF → GLn(k)

τ(ρ)(ξ) = τ(ρ(ξ)).
(2.3.2)

There is a second Galois action coming from Gal(F |F0), defined as follows. Let σ ∈
Gal(F |F0). Choose a lift σ̃ ∈ GalF0 . We then obtain a new Galois representation defined
by

ρσ : GalF → GLn(k)

ρσ(ξ) = ρ(σ̃−1ξσ̃)
(2.3.3)

which is well-defined up to isomorphism independent of the choice of lift. In particular, if
p ̸∈ S(ρ) is a prime of ZF and Frobp ∈ GalF a Frobenius automorphism at p, then

det(1− ρσ(Frobp)T ) = det(1− ρ(Frobσ(p))T ) ∈ k[T ], (2.3.4)
6



well-defined up to conjugacy. Let Lσ := ker ρσ.
Let N be the compositum of all Lσ for σ ∈ Gal(F |F0). We define the wreath product

Gal(L |F ) ≀Gal(F |F0) :=

( ∏
σ∈Gal(F |F0)

Gal(Lσ |F )
)
⋊Gal(F |F0) (2.3.5)

where Gal(F |F0) acts on the product by permuting factors. By the Kaloujnine–Krasner
universal embedding theorem (see e.g. [BSCM23, Theorem 1.1]), we have an embedding

Gal(N |F ) ↪→ Gal(L |F ) ≀Gal(F |F0). (2.3.6)

Proposition 2.3.7 (Galois descent law). Suppose that there exists a group homomorphism

τ : Gal(F |F0) → Aut(k)

σ 7→ τσ
(2.3.8)

such that there exists an isomorphism ρσ ≃ τσ(ρ) of representations for all σ ∈ Gal(F |F0).
Then the extension L = F (ρ) ⊇ F0 is Galois with Gal(L |F0) ↪→ G ⋊ Gal(F |F0), where
Gal(F |F0) acts on G ≤ GLn(k) entrywise via the map τ .

If moreover τ is injective, then the map Gal(L |F0) ≃ G⋊Gal(F |F0) is an isomorphism.

Proof. For all σ ∈ Gal(F |F0), the given isomorphism ρσ ≃ τσ(ρ) in particular implies that
ker ρσ = ker τσ(ρ) = ker ρ, i.e., Lσ = L. But ker ρσ = σ̃(ker ρ)σ̃−1, so we conclude that L = N
is normal over F0. Thus in the embedding (2.3.6), the image maps to the subgroup of the
wreath product isomorphic to Gal(L |F ) ⋊ Gal(F |F0) via τ . This map is an isomorphism
when τ is injective. □

Remark 2.3.9. The converse of Proposition 2.3.7 may not be true, since the condition of
being Galois concerns only abstract Galois groups, which may or may not be equivalent as
linear representations.

Corollary 2.3.10. If τ : Gal(F |F0) → Aut(k) is an injective group homomorphism such
that

det(1− ρ(Frobσ(p))T ) = det(1− τσ(ρ)(Frobp)T ) ∈ k[T ] (2.3.11)
for all primes p ̸∈ S(ρ), then the extension L = F (ρ) ⊇ F0 is Galois with Galois group
Gal(L |F0) ≃ G⋊Gal(F |F0).

Proof. Recalling that ρ is assumed to be semisimple, combine Proposition 2.3.7 with the
Brauer–Nesbitt theorem [CR06, Theorem 30.16] and the Chebotarev density theorem. □

2.4. Hilbert descent. We now apply the Galois descent law (Proposition 2.3.7) to the
situation of a Galois representation attached to a Hilbert modular form, our case of interest.
(The results could also just as easily specialize to any setting where we can attach Galois
representations to modular forms.)

Let F be a Galois totally real field of degree n = [F : Q], and let f be a Hilbert newform
over F with level N and paritious weight (ki)i with ki ≥ 2 for all i = 1, . . . , n and Nebentypus
character χ. Let k0 := max(k1, . . . , kn). For p ∤ N, let ap(f) be the Hecke eigenvalue of f
at p, and let Kf := Q({ap(f)}p) be the number field generated by its Hecke eigenvalues
(which are themselves algebraic integers in Kf ). Let l be a prime of ZKf

with residue field
Fl and characteristic charFl = ℓ.
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Theorem 2.4.1. There exists an irreducible Galois reprentation

ρf,l∞ : GalF → GL2(Kf,l)

and a semisimple Galois representation

ρf,l : GalF → GL2(Fl)

such that

tr(ρf,l(Frobp)) ≡ ap(f) (mod l)

det(ρf,l(Frobp)) ≡ χ(p)Nm(p)k0−1 (mod l)

for all (nonzero) prime ideals p of ZF with p ∤ ℓN.

Proof. Combine work of Carayol [Car86], Taylor [Tay89], and Blasius–Rogawski [BR89]. □

In particular, the image of ρf,l lies in the subgroup GL2(Fl)A (defined in (2.1.1)) where
A ≤ F×

l is the subgroup generated by F×
ℓ and the values of χ modulo l.

Let Dl := {σ ∈ Aut(Kf ) : σ(l) = l} and Il := {σ ∈ Dl : σ(a) ≡ a (mod l) for all a ∈ Kf}.
(If Kf is Galois, these are the decomposition and inertia groups.)

Theorem 2.4.2. Suppose there is an injective group homomorphism

τ : Gal(F |Q) ↪→ Dl/Il

such that for every prime p ∤ ℓN and for every σ ∈ Gal(F |Q), we have both
τσ(ap(f)) ≡ aσ(p)(f) (mod l),

τσ(χ(p)) ≡ χ(σ(p)) (mod l).
(2.4.3)

Then the field L = F (ρf,l) is Galois over Q, and there is an injective group homomorphism

Gal(L |Q) ↪→ GL2(Fl)⋊ Aut(Fl) (2.4.4)
where Aut(Fl) acts on GL2(Fl) coefficientwise; the image is isomorphic to G ⋊ Gal(F |Q),
where G = img ρf,l and Gal(F |Q) is considered as a subgroup of Gal(Fl |Fℓ) via τ .

Proof. We apply the form of the Galois descent law (Proposition 2.3.7) given in Corol-
lary 2.3.10. □

Remark 2.4.5. Since the group Dl/Il ↪→ Gal(Fl |Fℓ) is cyclic, Theorem 2.4.2 applies only
when F is cyclic over Q. It of course also admits a generalization to the situation where
F ⊇ F0 is a cyclic extension of totally real fields, giving a descent to F0 instead of Q.

As a corollary, we also descend the projective representation.

Corollary 2.4.6. Under the hypotheses of Theorem 2.4.2, the field F (Pρf,l) cut out by the
projective representation Pρf,l is Galois over Q with Galois group PG⋊Gal(F |Q).

Proof. The projection is well-defined on the semidirect product as in (2.1.5). □

Remark 2.4.7. The transitive groups 17T6 and 17T8 are closely related to 17T7: 17T6 is
isomorphic to PSL2(F16) and 17T8 is isomorphic to

ΣL2(F16) = PSL2(F16)⋊Gal(F16 |F2) ≃ PSL2(F16)⋊ C4 .

As explicit polynomials for 17T6- [Bos11] and 17T8-extensions [JR07] were already known,
one might wonder why the case of 17T7 remained open.
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The construction used by Bosman in [Bos11] is in fact similar to our construction for
17T7, except that it uses classical modular forms instead of Hilbert modular forms. In the
classical case, one can use modular symbols to reconstruct the abelian variety instead of
Oda’s conjecture.

Jones–Roberts [JR07, § 13] exhibit two infinite families of 17T8-extensions, both arising
from Belyi maps defined over Q. Each of these families produces a tower of extensions
L ⊇ K ⊇ Q(t) such that

Gal(L |K) ≃ PSL2(F16) and Gal(K |Q(t)) ≃ C4 .

However, as they remark, for each of these families there is a constant field extension con-
tained in K (containing Q(

√
5) in each case). This prevents us from obtaining a 17T7-

extension by specialization of either of these 17T8 families.

Remark 2.4.8. In work of Dembélé [Dem09] and Dembélé–Greenberg–Voight [DGV11], non-
solvable Galois extensions of Q unramified outside p = 2, 3, 5 were found using Hilbert
modular forms over abelian extensions of Q, as above. Gross explained why in many cases
the Galois groups over Q were semidirect products [DGV11, §1]; this observation is encoded
in the descent law above.

See also work of Cunningham–Dembélé [CD17] and Booker–Sijsling–Sutherland–Voight–
Yasaki [BSSVY24], who also study the same situation and relate this to abelian varieties of
potential GL2-type.

2.5. Application to the IGP. We may now put the pieces from the previous subsections
together to obtain our application to the Inverse Galois Problem (IGP): we look for Hilbert
modular forms f where the mod l image is large (using §2.2) and f satisfies the descent
condition (2.4.3).

We first focus on the proof of the (ineffective) version of Theorem 1.1.2, realizing 17T7,
given as in Example 2.1.7. Looking at (2.4.4):

• We need a base field F such that Gal(F |Q) = ⟨σ⟩ ≃ C2, so we take F a real quadratic
field.

• We need the image of the determinant to be trivial, so we take trivial Nebentypus
character χ.

• The prime l has residue field F16, so for simplicity we take coefficient field Kf of
degree 4 with 2 inert. (There are also fields Kf of degree > 4 with a prime of
residue field F16, but using such f would make it even harder to compute an explicit
polynomial.)

• We must check that (2.4.3) holds; in our case this condition reads

aσ(p)(f) ≡ ap(f)
4 (mod 2).

• Finally, the eigenvalues ap(f) modulo 2 should hit every element of F16.
To find such forms, we search the database of Hilbert modular forms [DoV21] available at

the L-functions and Modular Forms Database (LMFDB) [LMFDB]. We restrict to Galois-
stable level N.

In principle the congruence modulo 2, could be proved with a finite computation using
Hecke–Sturm bounds [GP17]; however, the relevant bound here would be quite large. When
the congruence lifts to an equality τ(f) = fσ of eigenforms, with τ ∈ Gal(Kf |F ) the
nontrivial involution and σ ∈ Gal(F |Q) the nontrivial element, this can be proved almost
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instantly from the list of eigenforms by using just the first few Hecke eigenvalues. In general,
we can show this by working with forms on a definite quaternion order O, using the Jacquet–
Langlands correspondence (indeed, this is one way they can be computed; see Dembélé–
Voight [DeV09]). If the Hilbert modular form f corresponds to the Jacquet–Langlands
transfer g ∈ S2(O,ZKf

) (i.e., a map ClsO → ZKf
up to scalar, where ClsO is the class set

of the order O [Voi21, Chapter 17]), then we confirm that

τ(g) ≡ gσ ̸≡ 0 (mod 2ZKf
),

whence τ(ap(g))− aσ(p)(g) ∈ 2ZKf
for all good primes p, as desired.

Remark 2.5.1. Since τ is nontrivial, we cannot have f arising as a base change from Q. We
also cannot manufacture such forms from twisted base change. To see this, suppose the form
comes from twisted base change, say f = f0 ⊗ ψ with f0 from Q and f non-CM. Then for p
a split prime, we have ap(f) = ap(f)ψ(p), so the congruence

τ(ap(f)) ≡ aσ(p)(f) (mod 2)

becomes
τ(ψ(p))τ(ap(f)) ≡ ψ(σ(p))ap(f) (mod 2).

Of course if ψ is quadratic, then τ(ap(f)) ≡ ap(f) (mod 2) so in particular we do not have
surjective trace modulo 2. Thus ψ must have order at least 3, so Kf (ψ) = Kf is a CM field.
But then we cannot have trivial Nebentypus character, since then the Hecke field is totally
real.

In a first run, we found 18 Hilbert newforms in the LMFDB with these properties.
We group them according to quadratic twist—since these yield the same mod 2 Galois
representation—and order by (absolute) conductor. In all cases, it turns out that the de-
sired congruence is in fact an equality; but we still implemented the more general check
(using the definite method).

Field Field label Forms

Q(
√
3) 2.2.12.1 578.1-c, 578.1-d

Q(
√
3) 2.2.12.1 722.1-i, 722.1-j, 722.1-k, 722.1-l

Q(
√
2) 2.2.8.1 2601.1-j, 2601.1-k

Q(
√
2) 2.2.8.1 2738.1-e, 2738.1-f

Q(
√
3) 2.2.12.1 1587.1-i, 1587.1-l, 1587.1-m, 1587.1-n

Q(
√
6) 2.2.24.1 726.1-i, 726.1-j, 726.1-k, 726.1-l

Theorem 2.5.2. The group G = 17T7 is a Galois group over Q.

Proof. Applying Proposition 2.2.2 and Theorem 2.4.2 to the Hilbert modular forms above,
we find at least 6 different number fields. □

Remark 2.5.3. We later also found the Hilbert modular form 2.2.77.1-99.1-j as an example
of fσ ≡ τ(f) (mod 2) but fσ ̸= τ(f).

3. (Re)constructive approach

3.1. Notation. In the remainder of the paper, we discuss a constructive method to realize
the Galois groups obtained from Hilbert modular forms as in the previous section, and in
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particular those in Theorem 2.5.2 realizing 17T7. To accomplish this task, we proceed as
outlined in § 1.2: we (conjecturally) compute periods via twists and construct a moduli
point from ratios of these periods, and repeat for the Galois conjugates. We could then try
to reconstruct an abelian variety as a (quotient of a) Jacobian; here, we instead evaluate
modular functions to obtain the 2-isogeny polynomial.

As before, let f be a Hilbert newform of parallel weight 2 and level N over the totally
real field F , and let n = [F : Q]. Let Kf := Q({ap(f)}p) be the field generated by its
Hecke eigenvalues, and let g = [Kf : Q]. Fix orderings of the embeddings σi : F ↪→ R where
i = 1, . . . , n, and τj : Kf ↪→ C where j = 1, . . . , g.

3.2. Eichler–Shimura construction. We begin with the following fundamental conjec-
ture.

Conjecture 3.2.1 (Eichler–Shimura conjecture). Let f be a Hilbert newform over F of
parallel weight 2 and level N and Hecke field Kf . Then there exists an abelian variety Af

over F such that

L(Af , s) =

g∏
j=1

L(τj(f), s).

More precisely, for every prime p ∤ N, we have

Lp(Af , T ) =
∏
j

Lp(τj(f), T ) =
∏
j

(
1− τj(ap(f))T +Nm(p)T 2

)
where ap(f) ∈ Kf is the p-Hecke eigenvalue of f .

Theorem 3.2.2. Suppose that either there exists a prime q ∥ N or that [F : Q] is odd. Then
Conjecture 3.2.1 holds.

Proof. Under the given hypothesis, the Eichler–Shimizu–Jacquet–Langlands correspondence
holds, and Af is realized up to isogeny as a quotient of the Jacobian of a Shimura curve [Z01,
Theorem B]. For further references, discussion, and examples, see Dembélé–Voight [DeV09,
Theorem 3.9]. □

We note that the abelian variety Af is only well-defined up to isogeny over F . The cases
of Conjecture 3.2.1 missing from Theorem 3.2.2 are still open, for example when F is a real
quadratic field and N is a square.

When F = Q, we can take the Shimura curve to be a modular curve, in which case we can
integrate the modular form against a basis of modular symbols to get an analytic realization,
giving a big period matrix for Af (over C). By contrast, the construction via Shimura curves
is a bit oblique: although effective methods are available [GV11, VW14], it is still desirable
to find an effective way to go more directly from the Hecke eigenvalues (equivalently, the
q-expansions) of a Hilbert newform to an analytic realization.

3.3. Period lattice. In this section, we define a conjectural period lattice attached to a
normalized Hilbert newform of parallel weight 2, following Oda [Oda82, Oda90], Darmon–
Logan [DL03], Bertolini–Darmon–Green [BDG04, §7], and others, which was made effective
for elliptic curves over real quadratic fields by Dembélé [Dem08].
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Recall that F is a totally real field of degree n and let ZF be its ring of integers. Moreover,
let F×

>0 < F× be the subgroup of totally positive elements, let

F̂ :=
∏′

p

Fp (3.3.1)

be the finite adeles of F , and ẐF :=
∏

p ZF,p ⊂ F̂ the profinite completion of ZF inside F̂ .
Let Γ̂ ≤ GL2(ẐF ) be a finite index subgroup, let H± := (C∖ R)n, and let

Y (Γ̂) := GL2(F )\GL2(F̂ )×H±/Γ̂ (3.3.2)

where GL2(F ) acts on the first factor by left multiplication and by linear fractional trans-
formations on H±, with the action on the i-th component of H± induced by the embedding
σi, and where Γ̂ acts by right multiplication on GL2(F̂ ). Then

Y (Γ̂) =
⊔
[b]

Γb\H (3.3.3)

where H ⊆ H± is the connected component of (i, . . . , i) (the product of n upper half-planes),
the set [b] ranges over the class group F×

>0\F̂×/ det(Γ̂), and Γb is idelically conjugate to
Γ := Γ̂ ∩ GL2(F )>0, a discrete group acting properly on H [Voi21, 38.7.15]. Finally, let
X(Γ̂) → Y (Γ̂) be a smooth (toroidal) compactification of Y (Γ̂). Then X(Γ̂) is a disjoint
union of smooth complex projective varieties of dimension n.

Example 3.3.4. In our case, we are interested in particular in the following special case:
Γ̂ = Γ̂1(N), the standard congruence subgroup such that in the components with pe ∥ N,

the matrix is congruent to
(
1 ∗
0 ∗

)
modulo pe. Then det(Γ̂) = Ẑ×

F , so the components are

indexed by elements [b] ∈ Cl+ ZF in the narrow class group of F .

We now define Frobenius elements at infinity as follows. Let W∞ := {±1}n. Write
si = (1, . . . , 1,−1, 1, . . . , 1) ∈ W∞ with −1 in the ith place. Define

εsi(z1, . . . , zn) = (z1, . . . , zi−1, zi, zi+1, . . . , zn)

for z = (z1, . . . , zn) ∈ H±, and extend to s ∈ W∞. Then the action of W∞ descends to Y (Γ̂)

and then to extends X(Γ̂) [Oda90, (1.3)].

Example 3.3.5. If there exists η ∈ Z×
F such that sgn(η) = s, then we may take εs((zi)i) =

(siηizi)i—this is the star involution in the case of modular curves (z 7→ −z, the unit being
−1).

Then W∞ acts on Hn(X,Q) by pullback, and we get ε∗s-eigenspaces. The operators ε∗s also
commute with the action of the Hecke operators Tn for ideals n coprime to N.

Suppose now that Γ̂ is a standard congruence subgroup and f is a Hilbert newform on
X(Γ̂) with parallel weight 2. The eigenspace for the Hecke operators Tn acting on Hn(X,Q)
matching f is a Q-subspace Vf ⊆ Hn(X,Q) with an action of Kf such that dimKf

Vf = 2n,
for example containing

ωτj(f) := (2πi)nτj(f)(z1, . . . , zn) dz1 . . . dzn ∈ Hn
dR(X(Γ̂),C) , (3.3.6)

for any embedding τj : Kf ↪→ C [Oda90, (2.1)]. Moreover, Vf inherits an action by W∞.
12



Theorem 3.3.7. The Kf -vector space Vf can be equipped with a polarized Kf -Hodge struc-
ture, with

Vf ⊗Q C ≃
⊕
j

Vf ⊗τj C (3.3.8)

such that for all 1 ≤ j ≤ g and all 0 ̸= p ≤ n,

(Vf ⊗τj C)p,n−p =
⊕
s

Cε∗s(ωτj(f)) (3.3.9)

where we sum over s ∈ W∞ with p plus signs.

Proof. See Oda [Oda90, Construction (3.23) (iii)]. □

Let γs ∈ Hn(X,Q) be a dual basis to ε∗sωτ1(f) where s ranges over W∞. Define

Ωs
j :=

∫
γs

ωτj(f) ∈ C. (3.3.10)

for j = 1, . . . , g. We map
Kf ↪→ Mg(C)

by diagonal matrices taking the embeddings τ1, . . . , τg. For s ∈ {s1, . . . , sn}, let

Vf,s := Kf

Ωs
1
...
Ωs

g

⊕Kf

Ω+
1
...

Ω+
g

 ⊊ Cg (3.3.11)

where we abbreviate + = (+1, . . . ,+1). In similar fashion we define,

zf,s :=

(
Ωs

1

Ω+
1

, . . . ,
Ωs

g

Ω+
g

)
∈ H. (3.3.12)

Conjecture 3.3.13 ([Oda82, Main Conjecture Asplit, p. xii]). For any choice of lattice Λ ⊂
Vf,s, we have

Cg/Λ ∼ Af (C)
for Af as in Conjecture 3.2.1, under the corresponding embedding σ : F ↪→ C, i.e., if s = si,
then σ = σi.

The choice of lattice is rather unclear at this point: we may start with

Λs(a, b) = a

Ωs
1
...
Ωs

g

⊕ b

Ω+
1
...

Ω+
g

 (3.3.14)

with a, b fractional ideals ofKf . On the lattice a⊕b and c ∈ (Kf )
×
>0, we define the alternating

Z-linear pairing
Ec : (a⊕ b)× (a⊕ b) → Q

(a1, b1), (a2, b2) 7→ TrKf |Q(c(a1b2 − a2b1)).
(3.3.15)

The pairing can also be considered as a pairing on Λs(a, b). For this pairing to induce a
principal polarization, we require

cab = Z♯
Kf
, (3.3.16)
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where Z♯
Kf

:= {a ∈ Kf : TrH|Q(aZKf
) ⊆ Z} is the trace dual (i.e., the codifferent) of ZKf

.
(Cf. [Gor02, Corollary 2.10].) When Cl+(ZKf

) is trivial, we take just Λs(ZKf
,ZKf

) with c a
totally positive generator of the codifferent.

3.4. Periods and L-values. From now on, to simplify notation we abbreviate K = Kf .
Recall that each embedding τj gives rise to an L-function

L(τj(f), s) =
∏
p|N

(
1− τj(ap)Nm(p)−s

)−1
∏
p∤N

(
1− τj(ap)Nm(p)−s +Nm(p)1−2s

)−1

Let c ⊆ ZF be a nonzero ideal. Let Fc∞ be the Hilbert class field of F of conductor c∞,
and let

χ : Gal(Fc∞ |F ) → C× (3.4.1)
be a (narrow ray class) character. By class field theory, χ corresponds also to a (finite order)
Hecke character of modulus c. Associated to χ is its Dirichlet restriction

χ0 : (ZF/c)
× → C× (3.4.2)

and sign
χ∞ : {±1}n → {±1}, (3.4.3)

satisfying the compatibility
χ(aZF ) = χ0(a)χ∞(sgn(a)) (3.4.4)

for all a ∈ ZF coprime to c, where sgn: F× → {±1}n records the signs under the real
embeddings of F . In the notation above, we have χ∞ ∈ W∞.

Denote by L(τj(f), s, χ) the twist of this L-function by the Hecke character χ. The Euler
factors of this twisted L-function at the primes p not dividing c+N are

1− τj(apχ(p))Nm(p)−s + τj(χ(p))
2Nm(p)1−2s. (3.4.5)

Moreover, it has an analytic continuation to the whole complex plane, and its completed
L-function satisfies a functional equation.

The following theorem, originally stated by Oda in [Oda82, Prop. 16.3] for F of narrow
class number one, relates the twisted periods with the special values of certain twisted
L-functions associated to the Hilbert modular form.

Theorem 3.4.6 ([G88, Theorem VI.7.5]). Let χ : (ZF/c)
× → C× be a quadratic character

of sign s ∈ W∞. There exists αχ ∈ K such that for all j = 1, . . . , g

τj(αχ)Ω
s
j = −4π2

√
disc(F )G(χ)L(τj(f), 1, χ),

where G(χ) is the Gauss sum of χ.

Based on the Birch and Swinnerton-Dyer conjecture, it is conjectured that αχ actually lies
in ZK for cond(χ) ≫ 0; see [BDG04, § 7] or [Dem08, Conjecture 3.3] (when F has narrow
class number 1).

While all the terms on the right hand side of the equality can be computed, the same is
not immediately true for αχ. In comparison with the Birch and Swinnerton-Dyer conjecture,
the αχ correspond to some of the invariants like the Tamagawa numbers that can vary for
different characters χ with the same sign s. One can use multiple characters χ for each
sign s and use a lattice based method to determine a likely value for αχ. This trick, also
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called Cremona’s trick, is described in [Dem08, Remark 5.2] and has its origin in [Cre97,
Section 2.11].

3.5. ℓ-isogeny polynomial. From the lattice Λs(ZK ,ZK) with the pairing Ec (3.3.15), we
construct a big period matrix Πs ∈ Mg,2g(C) by choosing a symplectic Z-basis of the lattice.
We then make a small period matrix Z ∈ Hg(C) (so Z ∈ Mg(C)sym is a g × g symmetric
matrix with totally positive imaginary part) by writing Πs ∼ (Z 1). We now compute a
polynomial generating the ℓ-isogeny field of the corresponding abelian variety by forming
suitable polynomials in the theta constants (with characteristic) evaluated at Πs.

Recall that, for a, b ∈ 1
2
Zg/Zg, the Riemann theta function with characteristics a, b is

defined as
ϑ
[
a
b

]
: Cg × Hg → C

(z, Z) 7→
∑
n∈Zg

exp
(
πi(n+ a)tZ(n+ a) + 2πi(n+ a)t(z + b)

)
. (3.5.1)

Given a principally polarized abelian variety A of dimension g over C with small period
matrix Z ∈ Hg, the theta constants of A are the 2g−1(2g + 1) numbers ϑ

[
a
b

]
(0, Z) with

a, b ranging over all even characteristics, i.e., pairs of representatives of 1
2
Zg/Zg satisfying

4atb ≡ 0 (mod 2). One can express the Siegel Eisenstein series of weight 4 as the sum of the
eighth powers of the theta constants

E4(Z) :=
∑
a,b

ϑ
[
a
b

]
(0, Z)8 (3.5.2)

(see [Igu64, p. 405]). Even though E4(Z) is likely to be transcendental, the normalized
quotient by E4(Z

′) (as in (3.5.5) below) is algebraic if Z ′ is the period matrix of an abelian
variety isogenous to A. (All we use about the Siegel E4 is that its restriction to Hg(C) is a
Hilbert modular form that we can compute quickly to high precision.) We consider a set of
such algebraic numbers forming a Galois orbit, as follows.

Let l ⊆ ZK be a (nonzero) prime ideal; for simplicity suppose that l = ℓZK is narrowly
principal, with ℓ ∈ ZK totally positive. We enumerate the Nm(l)+1 possible abelian varieties
A′ arising from an isogeny A→ A′ with kernel ZK/l — this is the Hecke orbit on the Hilbert
modular variety. More precisely, we decompose the double coset

GL2(ZK)

(
ℓ 0
0 1

)
GL2(ZK) =

Nm(l)+1⊔
i=1

GL2(ZK)αi (3.5.3)

into left cosets. With the identification above, we have ιZK ,ZK
= ι : GL2(K) ↪→ Sp2g(Q) and

therefore take
(Z 1)ι(αi)

T ∼ (Z ′
i 1). (3.5.4)

The resulting set of Nm(l) + 1 algebraic numbers{
d(Z ′) · E4(Z

′)

E4(Z)

}
Z′

(3.5.5)

is closed under GalF , where

d(Z ′) := Nm(l)4 · j(ι(αi), Z)
−4 (3.5.6)
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(as the Eisenstein series E4 has weight 4) and j(α,Z) = det(CZ +D) if α =

(
∗ ∗
C D

)
.

For each s, we form the polynomial associated to Λs(ZK ,ZK) (and l)

Ts(x) =
∏
Z′

(
x− d(Z ′)

E4(Z
′)

E4(Z)

)
∈ C[x]. (3.5.7)

According to Conjecture 3.3.13, there exists a polynomial T (x) ∈ F [x] such that Tsi(x) =
σi(T )(x) for all i = 1, . . . , n.

Using the LLL lattice reduction algorithm, we can recognize the coefficients of these poly-
nomials putatively as elements of F ; alternatively, we may use all of the conjugates to
recognize their minimal polynomials with rational coefficients using continued fractions. In
§4 below, we show how to do this in practice for our main example.

4. The inverse Galois problem for 17T7

In this section, we explain in detail the calculation that gives the 17T7 polynomial in
Theorem 2.4.2. The code used to perform these computations is available at [vBCEKSV24a]
and [vBCEKSV24b].

4.1. Computing the small period matrix. Let F := Q(
√
3) and let ZF = Z[

√
3] be its

ring of integers (of discriminant 12). Then ZF has class number 1 but narrow class number 2,
with the narrow class group Cl+ ZF generated by the unique prime (1 +

√
3) above 2. The

narrow Hilbert class field is F (
√
−1) = Q(ζ12).

Let f be the Hilbert modular form over f with LMFDB label 2.2.12.1-578.1-c: then f has
level N = 17(1 +

√
3), trivial Nebentypus character, and Hecke eigenvalue field H := Q(ν)

with LMFDB label 4.4.725.1 and defining polynomial

x4 − x3 − 3x2 + x+ 1 . (4.1.1)

Nearby is the form 2.2.12.1-578.1-d, which is the quadratic twist of 2.2.12.1-578.1-c by the
nontrivial character of the narrow class group.

Using Magma (see Dembélé–Voight [DeV09] for a description of the algorithms), we com-
pute Hecke eigenvalues ap of f for all prime ideals p of F with Nm(p) < 80 000. We form the
truncation of the L-function using these ap and compute twisted periods as described in §3.4,
using Hecke characters χ with conductors up to 25. In fact, to get more precision for our
computation with the ap’s that we computed, we use the fact that Ω++

j Ω−−
j +Ω+−

j Ω−+
j = 0,

which follows from [Oda82, Theorem 4.4]. This yields RM moduli points with 80 decimal
digits of precision

z+− ≈ (2.7829i, 0.75416i, 1.4277i, 5.0448i)

z−+ ≈ (0.75416i, 2.7829i, 5.0448i, 1.4277i)

as in Equation (3.3.12). Note that z+− and z−+ are, up to precision, related by the double
transposition (1 2)(3 4). This is because we actually have the equality ap(f

σ) = aσ(p)(f),
rather than just a congruence mod 2. Thus the corresponding abelian varieties are isomor-
phic, whence it suffices to simply consider the first moduli point z := z+−.

We compute that the different ideal DK of H is narrowly principal with generator

d := −2ν3 + 4ν2 + 3ν + 2 .
16

https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-c
https://www.lmfdb.org/NumberField/4.4.725.1
https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-d
https://www.lmfdb.org/ModularForm/GL2/TotallyReal/2.2.12.1/holomorphic/2.2.12.1-578.1-c


Since the different is narrowly principal, the abelian fourfold Cg /Λ with Λ := Λ+−(ZK ,ZK)
as in Equation (3.3.14) is principally polarizable; see §3.3. We note that Λ is equipped with
the pairing

Ed−1 : (ZK ⊕ ZK)× (ZK ⊕ ZK) → Q
(a1, b1), (a2, b2) 7→ TrK/Q(d

−1(a1b2 − a2b1)) ,

as in Equation (3.3.15).
The periods Ωs

j obtained from Theorem 3.4.6 are purely imaginary or purely real; thus
the same holds for zs. Consequently, the complex torus constructed above may be off by a
2-isogeny. Thus we search over all 2g +1 = 17 abelian varieties that are 2-isogenous to A/Λ
and have RM by ZK , which amounts to considering

z′ ∈
{
z + b

2
: b ∈ R

}
∪ {2z}, (4.1.2)

where R ⊆ ZK is a set of representatives for ZK/(2).
For this particular example, the knowledge that our desired abelian 4-fold is a Jacobian

(see §4.3 below) simplifies this step of the calculation. Rather than attempting to recognize
the 2-isogeny polynomials of each of these abelian varieties, we can simply compute the value
of the Schottky modular form

16
∑
a,b

ϑ
[
a
b

]
(0, Z)16 −

(∑
a,b

ϑ
[
a
b

]
(0, Z)8

)2
evaluated at the small period matrix. We find a unique z′ as in (4.1.2) such that the value
of the Schottky modular form at the period matrix corresponding to z′ has absolute value
< 10−56. Thus this is the only likely Jacobian among the 2-neighbors of z.

4.2. Finding the 2-isogeny polynomial. We compute the 2-isogeny polynomial for Z as
in §3.5, evaluating theta functions using the fast code of Elkies–Kieffer [EK] available in
FLINT [Flint, acb_theta]. We find the polynomial

T (x) := x17 − 581020.41645 . . . x16 − 54729032212.54644 . . . x15

− 2958404450460894.75024 . . . x14 + · · ·
We note that number of correct digits appears to decrease as we consider later coefficients:

the imaginary part of the coefficient of x16 is < 10−58, while that of the constant term is
only < 10−3.

We are able to recognize the coefficients of x16 and x15 (which are known to the highest
precision) as rational numbers with denominators D := 267075169 and D2, respectively.
Replacing T (x) by TD := D17T (x/D) in order to clear this denominator, we are then able
to recognize the coefficients of x16, x15, x14, and x13 as integers a1, a2, a3, and a4. In order to
obtain higher precision approximations for the rest of the coefficients of TD, we use Newton’s
method as follows. Consider the function

φ : h4 → C4

w 7→ (b1, b2, b3, b4) ,

where b1, . . . , b4 are the first four coefficients (not including the monic leading term) of the
rescaled 2-isogeny polynomial TD associated to w. Then Newton’s method can numerically
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solve the equation φ(w) = (a1, . . . , a4) using w = z′ as our initial approximation. We
compute numerical approximations to the Jacobian matrix J(φ) of φ as

(J(φ)(w))ij ≈
(
φ(w + ϵi)− φ(w)

ε

)
j

,

where ϵi is the element of C4 with ε a small number in the ith entry and zeroes elsewhere.
It only takes four iterations of Newton’s method to obtain an improved approximation of z
whose corresponding 2-isogeny polynomial T has coefficients that are easily recognized as
integers:

T (x) = x17 − 155176125916688x16 − 3903775123456327337126372744x15 − . . .

− 15370284691667761315579594335774216542251094826 · · · 14304
(4.2.1)

where the constant term has 204 decimal digits.
Applying the PARI/GP [Pari] command polredabs [CDD91], we find the simplified polyno-

mial given in (1.1.3) that defines an isomorphic number field. We verify that this polynomial
has Galois group 17T7 using the Magma commands GaloisGroup and GaloisProof; this
uses the method of relative invariants due to Stauduhar [Sta73], and the implementation
is elaborated upon in Fieker–Klüners [FK14]. The ring of integers of the number field L
defined by this polynomial has discriminant 244 · 36 · 178 and has now been included in the
LMFDB with label 17.1.89462021750334834736103424.1.

The total CPU time was dominated by the computation of the eigenvalues of the Hilbert
modular form—we did not keep a precise count of this time (we computed more than we
needed), but it was on the order of a few CPU years.

Remark 4.2.2. In general, the polynomial T (x) will have coefficients in F and not necessarily
in Q. In that case, we can recognize its coefficients by considering all embeddings of T into C
simultaneously. Then the extension as in Theorem 2.4.2 can be found by taking the splitting
field of T over F , and then taking its normal closure over Q.

Remark 4.2.3. Our number field L has class number 3, a fact which may seem quite remark-
able. Using Magma, we can explicitly construct this Hilbert class field. In fact, there is some
structure behind this unramified extension, as follows.

Let S be the stabilizer of an element in P1(F16) under the action of 17T7 by linear fractional
transformations, and let L be the fixed field of S. (Its commutator subgroup S ′ ⊴ S in fact
has index 6.) There is an index 3 subgroup coming from the natural further scaling action
on the fixed vector: it is the subgroup F×

4 ≤ F×
16 stabilized by the order 2 subgroup of

Gal(F16 |F2). In this way, we obtain a cyclic extension L′ ⊇ L of degree 3 for all 17T7
extensions. In our case, the abelian variety is semistable, so the inertia groups at 2 and 17
act through a unipotent subgroup and hence the extension L′ ⊇ L is unramified. (See also
the proof of Proposition 4.3.4 below.)

4.3. Relation to Shimura curves. Although it is not necessary for our method, it is
natural to wonder why the abelian fourfold we have constructed numerically seems to be
(isogenous to) a Jacobian. Indeed, in this special case, we have a very exceptional situation
and can prove that this is the case.

First, we set up the notation and do some preliminary calculations. Let p2 := (1+
√
3) be

the unique prime above 2 in ZF . Then p2 generates the narrow class group Cl+ ZF ≃ Z/2Z.
18
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Let B be the quaternion algebra over F = Q(
√
3) ramified at p and at one of the two real

places.
Let O be an Eichler order of prime level (17). We claim that O is unique up to conjugation

in B× (i.e., the type set of O is trivial). Indeed, O is hereditary [Voi21, §23.3] so its idelic
normalizer has [Voi21, Corollary 23.3.14]

NB̂×(Ô)/(F̂×Ô×) = ⟨ϖ2, ϖ17⟩ ≃ Z/2Z× Z/2Z,
generated by elements ϖ2 supported at Fp2 and ϖ17 supported at F17 and whose reduced
norms are uniformizers (so nrd(ϖ2) = 1 +

√
3 and nrd(ϖ17) = 17). Then, as a consequence

of strong approximation [Voi21, Corollary 28.5.10] we compute that the type set of O is the
quotient of Cl+ ZF by the ideals p2 and (17), so is indeed trivial.

Now since B is split at the other real place, it yields an embedding ι∞ : B ↪→ M2(R)
unique up to conjugation by GL2(R). Let O×

>0 be the group of units of O whose reduced
norm is positive at both real places (they are automatically positive at the ramified real
place). Then under ι∞, the group PO×

>0 = O×
>0/Z×

F is a discrete group acting properly on
the upper half-plane H, and the quotient X+(p; 17) := Pι∞(O×

>0)\H is a Shimura curve of
genus 11 with signature (11; 2, 2, 3, 3, 12, 12; 0) (compact with six elliptic points of the given
orders) [Voi09, Ric22]. Finally, since (17) is narrowly principal there is an Atkin–Lehner
involution w17 ∈ NB×(O)>0, and the further quotient X+(p; 17)/⟨w17⟩ has genus 4 (more
precisely, signature (4; 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 12; 0)).

Proposition 4.3.1. There exists a smooth, projective, geometrically integral curve X defined
over Q with the property that X(C) ≃ X+(p; 17)/⟨w17⟩ and JacXF is isogenous to Af ′ where
f ′ is the Hilbert modular form 2.2.12.1-578.1-d.

Proof. The idelic Shimura curve [Voi21, §38.7] attached to Ô×, namely

B×
>0 \ (B̂× ×H) / Ô×

has two components, indexed by Cl+ ZF [Voi21, (38.7.14)]. Its canonical model (due to
Shimura [Shi67] and Deligne [Del71]) is defined over the reflex field, which is F ; and the
components are defined over the narrow class field of F , namely F (

√
−1). The Atkin–Lehner

involution w17 (preserving components) is defined over F .
This matches the associated calculation of Hilbert modular forms of parallel weight 2:

the full set of Hilbert modular forms of level N which are new at p consists precisely of
those newforms of level norm 578 (as there are no forms at level p) and has total dimension
1 + 1 + 4+ 4+ 6+ 6 = 22 = 2 · 11. Moreover, the forms with Atkin–Lehner eigenvalue 1 for
(17) form a space of dimension 4+4 = 8 = 2 ·4, so the Jacobian of the quotient of the above
idelic Shimura curve by the Atkin–Lehner involution w17 is isogenous (over F ) to the product
of the abelian varieties attached to f ′, the quadratic twist of f (given by 2.2.12.1-578.1-c
and computed in the previous section) by the nontrivial narrow class character.

By a theorem of Doi–Naganuma [DN67, Corollary, p. 449], since the type number of
O is 1 (their “narrow sense”, see 1.4 in loc. cit.), the field of moduli of either component
is Q. Finally, the elliptic point of order 12 is unique, so the provided isomorphisms among
the conjugates over F (

√
−1) must be pointed. We claim moreover that the Atkin–Lehner

involution w17 also has field of moduli Q: indeed, the subgroup of geometric automorphisms
of a curve of genus ≥ 2 fixing a point is a finite cyclic group (in characteristic 0), so an
involution is uniquely determined by its set of fixed points when nonempty. We confirm
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from the signature that the involution w17 has fixed (CM) points (or more simply, a fixed-
point free involution of a curve of genus 11 has quotient of genus 6 by Riemann–Hurwitz).
It follows then by pointed descent [SV16, Theorem A] that the curve, the point, and the
quotient map descend canonically to Q!

This applies to both components, so we obtain two curves of genus 4 over Q. Upon
extension to F , their Jacobians give the two abelian fourfolds under consideration, so one
corresponds to Af over F . We can isolate this component directly: there is still an Atkin–
Lehner involution attached to p2 defined over F defined on the idelic Shimura curve: it has
degree 1 (since p2 is ramified) and interchanges the two components. The quotient by this
automorphism picks out a component according to its eigenvalue for this involution, opposite
to that of the Hilbert modular form. □

Remark 4.3.2. A moduli-theoretic proof of the descent in Proposition 4.3.1 should also be
possible: the data that defines the moduli problem is defined over F ; in particular the
Atkin–Lehner involutions are defined over F , and we find that there is an isomorphism to
the moduli problem which is conjugate under the nontrivial element of Gal(F |Q). This is
another way to view the aforementioned result of Doi–Naganuma. This ensures that the
field of moduli is Q, and pointed descent then gives field of definition Q.

Applying the methods of Hanselman–Pieper–Schiavone [HPS24] and Bouchet [Bou23,
Bou24], we were able to numerically reconstruct a genus 4 curve X ′ from its invariants,
defined by

0 = −8x2 + 8xy + 17y2 − 34xz − 2yz − 28z2 − 10xw − 9yw − 18zw + 2w2,

0 = 4x3 − 6x2y − 6xy2 + 12x2z + 6xyz + 24y2z − 12xz2 − 24z3 + 2x2w + 7xyw

+ 4y2w + 4xzw − 13yzw − 8z2w − 20xw2 − 3zw2 − 12w3

(4.3.3)

inside the projective space P3 with coordinates x, y, z, w, from the period matrix associated
to z′ as in (4.1.2). A computation with discriminants shows that this model has good
reduction away from the primes 2, 3, 7, and 17. Projection from the point (−12 : 2 : 4 :
3) ∈ X ′(Q) and a change of variables to minimize yields the singular affine plane model as
in (1.2.2).

Proposition 4.3.4. Let A′ := Jac(X ′) be the Jacobian of X. Then A′
F is isogenous to Af ′

over F .

Our computations are performed in Magma.

Proof. To get going, we certify using the methods of Costa–Mascot–Sijsling–Voight [CMSV19]
that indeed EndA′ ≃ Z[(1 +

√
5)/2] (over Q) and End(A′)al is isomorphic with the ring of

integers ZH of the quartic field H, and the endomorphisms are defined over Q(
√
3). (A

divisor representing a generator of the endomorphisms took about 8 CPU days to compute
and takes up over 32 MB!)

Next, the naive projective closure of the model (1.2.2) has points (1 : 1 : 4) and (1 : 0 : 0),
and we verify that the difference D := (1 : 1 : 4)− (1 : 0 : 0) gives [D] ∈ A′(Q) with order 29:
using an algorithmic version of the Riemann–Roch theorem, there exists a rational function
h whose divisor is 29D.
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The prime 29 factors as 29ZH = p2p′ where Nm p = 29. Over F , since A′
F has RM the

natural 29-adic representation factors as
ρA′

F ,p∞ : GalF → GL2(ZH,p).

Let ρA′
F ,p be the reduction modulo p and let ρss

A′
F ,p be its semisimplification. We just saw

there is a torsion point of order 29, so the semisimplification is reducible ρss
A′

F ,p ≃ χ1 ⊕ χ2

where χ2 is the trivial character and χ1 = ε29,F : GalF → F×
29 is the mod 29 cyclotomic

character over F .
We use this to immediately conclude that A′

F has semistable reduction at all primes
q ̸= p. Indeed, ρA′

F ,p over F (ζ29) is unipotent, so Grothendieck’s inertial semistable reduction
criterion applies.

We are now staged to apply a modularity result of Skinner–Wiles [SW98, Theorem A]
in this reducible case. By Theorem 2.4.1, the representation ρ := ρA′

F ,p∞ is unramified
away from the primes of bad reduction of X and is irreducible (or for the latter, observe
that det(1 − ρA′

F ,p∞(Frobq)T ) is irreducible over Hp for any prime q of norm 59). There
is a unique place v in F above 29. We have F (χ1/χ2) = F (ζ29) is indeed abelian over Q,
totally imaginary, and χ1/χ2 is ramified at v. Moreover, A′ has good ordinary reduction at
p = 29—we have L(XF29 , T ) = 1 + 45T 2 + 2187T 4 + 45 · 292T 6 + 294T 8 and 2187 ≡ 12 ̸≡ 0
(mod 29). Therefore, the local Galois representations ρ|GalFv

are crystalline and ordinary for

all v | 29. Thus restricting to the decomposition group, we get ρ|Dv ≃

(
ψ

(v)
1 ∗

ψ
(v)
2

)
where

ψ
(v)
1 |Iv has finite order (corresponding to the unit root subgroup of the Tate module, inertia

acts through a finite quotient) and ψ(v)
2 factors through a pro p-group (the nontrivial part of

the Dieudonné module corresponds to a subgroup on which inertia acts via a pro-p quotient).
For further detail see Brinon–Conrad [BC09, §8.3, Proposition 8.3.4, Theorem 8.3.6].

After noting that det ρ = ε29∞,F is the 29-adic cyclotomic character restricted to F , we
conclude that ρ is associated to a Hilbert modular form g. This form must have parallel
weight 2 (by the determinant), and its level is squarefree by semistability and must be
supported within the primes of bad reduction of F . This shows that the level of the form
must be N. Finally, the dimension of the newforms at this level is 22, and already either
prime above 11 distinguishes these newforms so only g = f ′ is a possible match. □

Remark 4.3.5. It follows from Proposition 4.3.1 and Proposition 4.3.4 that the Shimura curve
X and the exhibited curve X ′ have isogenous Jacobians over F , but it unfortunately does
not prove that they are isomorphic as curves.

In theory, it is now possible to separately compute the 2-isogeny representation of Jac(X)
and see that it agrees with the one computed numerically from the Hilbert modular form f .
With significant effort, we can also carry this out in practice.

Proposition 4.3.6. The field Q(A′[2]) of 2-torsion of A′ is the splitting field for (1.1.3).

Proof. We consider the scheme of tritangent planes to X ′ in P3 (those planes that intersect
the degree 6 curve X ′ in three points, each tangent, equivalently effective odd theta charac-
teristics); it is a classical fact that the difference between two tritangent divisors yields all
2-torsion points of the Jacobian. In julia, we compute using homotopy continuation methods
[BT18] numerical approximations to the nonsingular points of the tritangent scheme [Bre18].
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We then refine these using Newton’s method to 3000 decimal digits of precision (which was
overkill, but fast). We recover polynomials with real coefficients which vanish on these points
and using continued fractions recognize their coefficients as rational numbers.

With further significant effort factoring these polynomials, we find an exact representation
of the 120 tritangent planes over a field of degree 120. We then verify using exact methods
(a posteriori) that these planes are indeed tritangents. We conclude that the 2-division field
is equal to the splitting field of a (gigantic) degree 120 polynomial g(x).

Finally, we assert that the splitting fields of f(x) of degree 17 in (1.1.3) and g(x) are
isomorphic. Of course computing the splitting fields separately and checking for isomorphism
would be far too expensive. We start with K = Q(α) where f(α) = 0. We compute using
invariants the degree 3 extension K ′ ⊇ K inside the splitting field of f ; let K ′ = Q(α′)
with f ′(x) the minimal polynomial of α′. We are then able to factor g(x) over K ′ into
3 irreducible factors of degree 40; let h(x) ∈ K ′[x] be one of these factors. Then there
exists H(x, y) ∈ Q[x, y] such that H(α, y) = h(y) (just “unsubstituting” x for α) with
degxH(x, y) < 51 and degyH(x, y) = 40.

Now we make a bipartite graph Γ:
• the vertices are the roots {α′

i}i of f ′(x) and {βj}j of g(x), respectively, in a splitting
field; and

• there is an (undirected) edge between α′
i and βj if and only if H(α′

i, βj) = 0.
It is immediate that Gal(f ′(x)g(x)) acts on Γ via its natural permutation action on the roots,
giving an inclusion into Aut(Γ).

The graph Γ measures the relationship between the splitting fields that comes about from
the factor h(x). (Two extremes: if h(x) was a linear factor, then the graph would be a simple
matching between the roots of g(x) and a subset of roots of f ′(x); if at the other extreme
h(x) = g(x) and the factor was trivial, then the graph would be a complete bipartite graph
giving no new information.)

The natural projection maps onto permutations of either subset of roots give (surjective)
homomorphisms

pf ′ : Aut(Γ) → Gal(f ′(x)) and pg : Aut(Γ) → Gal(g(x)). (4.3.7)

We compute in this case, working with roots modulo a prime where both polynomials
split completely, that in fact each projection pf ′ and pg is injective! Therefore we have
injective homomorphism Gal(f ′(x)g(x)) ↪→ Aut(Γ)

∼−→ Gal(f ′(x)) so that a splitting field of
g is contained in that of f ′; and vice versa, whence they are equal. □

Remark 4.3.8. The division polynomial algorithm of Mascot [Mas20] takes as input a smooth,
projective curve X of genus g with Jacobian A := Jac(X), a prime ℓ, and a prime p ̸= ℓ
of good reduction for X; it returns as output a rational function α ∈ Q(A), a p-adic ap-
proximation of the corresponding division polynomial Fα(x) =

∏
0 ̸=P∈A[ℓ](x−α(P )), and the

matrix [Frobp] ∈ GL2g(Fℓ) of the Frobenius automorphism at p acting on A[ℓ]. Running this
algorithm in our case with ℓ = 2 and p = 5 gives a polynomial of degree 28−1 = 255 = 17·15;
with significant computational effort, we verify that it defines a number field that contains
the field K defined in (1.1.3).

The method of Mascot can be adapted to carve out certain Galois submodules, and these
ideas extend to get the degree 17 polynomial directly, as follows. We choose a prime p such
that the factorization of Fα(x) modulo p consisting of 15 irreducible factors of degree 17.
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Then in some basis, ρ(Frobp) has the form
(
ϵ 0
0 ϵ−1

)
∈ SL2(F16) ≤ 17T7, where F×

16 = ⟨ϵ⟩ ≃

C15. The smallest such prime is p = 61. Since the scalar matrix
(
ϵ 0
0 ϵ

)
centralizes the

semisimple element ρ(Frobp) in GL2(F16), it can be computed explicitly as E ∈ F2[Frobp],
a polynomial in Frobp, by linear algebra. Then from the matrix of Frobp, we compute the
orbits Ω1, . . . ,Ω17 of E on A[2]∖ {0} and instead form

17∏
i=1

(
x−

∑
P∈Ωi

α(P )

)
∈ Qp[x];

good rational approximations yield a polynomial of degree 17 in Q[x], which we quickly
confirm yields our field K.

This does not give a rigorous result, but in principle it could be made rigorous (working
with elements in A(K) using their p-adic approximations, and certifying that they are ℓ-
torsion).

We are grateful to Nicolas Mascot for sharing these calculations and ideas, which given
the curve (!) takes only about a CPU hour!

Remark 4.3.9. The methods of Voight–Willis [VW14] give another technique for computing
equations of Shimura curves (of arbitrary genus). Since we already had the period lattice,
we found numerical reconstruction to be easier here; but we hope to use this technique in
future work, as it would for example also provide us (numerically) the images of CM points.
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