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COUNTING ELLIPTIC CURVES WITH

AN ISOGENY OF DEGREE THREE

MAGGIE PIZZO, CARL POMERANCE, AND JOHN VOIGHT

Abstract. We count by height the number of elliptic curves over Q that

possess an isogeny of degree 3.

1. Introduction

Torsion subgroups of elliptic curves have long been an object of fascination for
mathematicians. By work of Duke [1], elliptic curves over Q with nontrivial torsion
are comparatively rare. Recently, Harron–Snowden [3] have refined this result by
counting elliptic curves over Q with prescribed torsion, as follows. Every elliptic
curve E over Q is defined uniquely up to isomorphism by an equation of the form

(1.1) E : y2 = f(x) = x3 +Ax+B

with A,B ∈ Z such that 4A3 + 27B2 6= 0 and there is no prime ` such that `4 | A
and `6 | B. We define the height of such E by

(1.2) ht(E) := max(|4A3|, |27B2|).

For G a possible torsion subgroup (allowed by Mazur’s theorem [5]), Harron–
Snowden [3, Theorem 1.5] prove that

#{E : ht(E) ≤ X and E(Q)tors ' G} � X1/d(G)

for d(G) ∈ Q explicitly given, and f(X) � g(X) means that there exist a1, a2 ∈ R>0

such that a1g(X) ≤ f(X) ≤ a2g(X) for X large. In the case G ' Z/2Z, i.e., the
case of 2-torsion, they show the count is cX1/2 +O(X1/3) for an explicit constant
c ≈ 3.1969 [3, Theorem 5.5]. (For weaker but related results, see also Duke [1,
Proof of Theorem 1] and Grant [2, Section 2].)

In this article, we count elliptic curves with a nontrivial cyclic isogeny defined
over Q. An elliptic curve has a 2-isogeny if and only if it has a 2-torsion point, so
the above result of Duke, Grant, and Harron–Snowden handles this case. The next
interesting case concerns isogenies of degree 3.

For X ∈ R≥1, let N3(X) count the number of elliptic curves E over Q in the
form (1.1) with ht(E) ≤ X that possess a 3-isogeny defined over Q. Our main
result is as follows.
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Theorem 1.3. There exist c1, c2 ∈ R such that for X ≥ 1,

N3(X) =
2

3
√

3ζ(6)
X1/2 + c1X

1/3 logX + c2X
1/3 +O(X7/24).

Moreover,

c1 =
c0

8π2ζ(4)
= 0.107437 . . .

where c0 is an explicitly given integral (4.9), and the constant c2 is effectively com-
putable.

We obtain the same asymptotic in Theorem 1.3 if we instead count elliptic curves
equipped with a 3-isogeny (that is, counting with multiplicity): see Proposition
2.9. Surprisingly, the main term of order X1/2 counts just those elliptic curves
with A = 0 (having j-invariant 0 and complex multiplication by the quadratic
order of discriminant −3). Theorem 1.3 matches computations performed out to
X = 1025—see section 6.

The difficulty in computing the constant c2 in the above theorem arises in apply-
ing a knotty batch of local conditions; our computations suggest that c2 ≈ 0.16. If
we count without these conditions, for the coefficient of the X1/3 term we find the
explicit constant c6 = 1.1204 . . . , given in (5.4)—it is already quite complicated.

Theorem 1.3 may be interpreted in alternative geometric language as follows. Let
X0(3) be the modular curve parametrizing (generalized) elliptic curves equipped
with an isogeny of degree 3. Then N3(X) counts rational points of bounded height
on X0(3) with respect to the height arising from the pullback of the natural height
on the j-line X(1). From this vantage point, the main term corresponds to a
single elliptic point of order 3 on X0(3)! The modular curves X0(N) are not fine
moduli spaces (owing to quadratic twists), so our proof of Theorem 1.3 is quite
different than the method used by Harron–Snowden: in particular, a logarithmic
term presents itself for the first time. We hope that our method and the lower-
order terms in our result will be useful in understanding counts of rational points
on stacky curves more generally.

Contents. The paper is organized as follows. We begin in section 2 with a setup
and exhibiting the main term, then in section 3 as a warmup we prove the right
order of magnitude for the secondary term. In section 4, we refine this approach to
prove an asymptotic for the secondary term, and then we exhibit a tertiary term
in section 5. We conclude in section 6 with our computations.

Acknowledgments. The authors thank John Cullinan for useful conversations
and Ed Schaefer for helpful corrections. Pizzo was supported by the Jack Byrne
Scholars program at Dartmouth College. Voight was supported by a Simons Col-
laboration grant (550029).

2. Setup

In this section, we set up the problem in a manner suitable for direct investiga-
tion. We continue the notation from the introduction.

Let E denote the set of elliptic curves E over Q in the form (1.1) (minimal, with
nonzero discriminant). For X ∈ R≥1, let

(2.1) E≤X := {E ∈ E : ht(E) ≤ X}
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be the set of elliptic curves E over Q with height at most X. We are interested in
asymptotics for the functions

(2.2)
N3(X) :=#{E ∈ E≤X : E has a 3-isogeny defined over Q},
N ′3(X) :=#{(E,±φ) : E ∈ E≤X , φ : E → E′ is a 3-isogeny defined over Q}.

In defining N ′3(X), we note that we may always post-compose (or pre-compose)
a 3-isogeny by the automorphism −1, giving a different isogeny (negating the y-
coordinate) but with same kernel; to avoid this overcounting, we count unsigned
isogenies (counting an isogeny and its negative just once).

To that end, let E = EA,B ∈ E , with A,B ∈ Z. The 3-division polynomial of E
[7, Exercise 3.7] is equal to

(2.3) ψ(x) = ψA,B(x) := 3x4 + 6Ax2 + 12Bx−A2;

the roots of ψ(x) are the x-coordinates of nontrivial 3-torsion points on E.

Lemma 2.4. The elliptic curve E has a 3-isogeny defined over Q if and only if
ψ(x) has a root a ∈ Q.

Proof. For (⇒), let ϕ : E → E′ be a 3-isogeny defined over Q. Then kerϕ =
{∞,±P} is stable under the absolute Galois group GalQ, so σ(P ) = ±P . Thus,
σ(x(P )) = x(P ) for all σ ∈ GalQ and hence a = x(P ) ∈ Q is a root of ψ(x) by

definition. For (⇐), if ψ(a) = 0 with a ∈ Q, then letting ±P := (a,±
√
f(a)) we

obtain C := {∞,±P} a Galois stable subgroup of order 3 and accordingly the map
ϕ : E → E/C = E′ is a 3-isogeny defined over Q. �

Lemma 2.5. If a ∈ Q is a root of ψ(x), then a ∈ Z.

Proof. By the rational root test, a0 = 3a ∈ Z, and so

(2.6) 0 = 27ψ(a) = a40 + 18Aa20 + 108Ba0 − 27A2

whence 3 | a0 and a ∈ Z. �

Although the polynomial ψ(x) is irreducible in Z[A,B][x], the special case where
A = 0 gives ψ0,B(x) = 3x(x3 + 4B) and so a = 0 is automatically a root. We count
these easily.

Lemma 2.7. Let N3(X)A=0 and N ′3(X)A=0 be defined as in (2.2) but restricted to
E ∈ E≤X with A = 0. Then

N3(X)A=0 =
2

3
√

3ζ(6)
X1/2 +O(X1/12) and N ′3(X)A=0 = N3(X)A=0 +O(X1/6).

Proof. In light of the above, we have

N3(X)A=0 = #{B ∈ Z : |27B2| ≤ X and `6 - B for any prime `};

a standard sieve gives this count as
2

3
√

3ζ(6)
X1/2 + O(X1/12), see Pappalardi [6].

If such an elliptic curve had another unsigned 3-isogeny over Q (i.e., a 3-isogeny
other than ±φ), it would correspond to a root of ψ(x)/x = x3 + 4B, in which case
−4B is a cube; the count of such is O(X1/6). �

With these lemmas in hand, we define our explicit counting function. For X > 0,
let N(X) denote the number of ordered triples (A,B, a) ∈ Z3 satisfying:

(N1) A 6= 0 and ψA,B(a) = 0;
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(N2) |4A3| ≤ X and |27B2| ≤ X;
(N3) 4A3 + 27B2 6= 0; and
(N4) there is no prime ` with `4 | A and `6 | B.

That is to say, we define

(2.8) N(X) := #{(A,B, a) ∈ Z3 : all conditions (N1)–(N4) hold}.

We have excluded from N(X) the count for A = 0 from the function N(X);
we have handled this in Lemma 2.7. To conclude this section, we summarize and
compare N3(X) and N ′3(X).

Proposition 2.9. We have

N3(X) = N ′3(X) +O(X1/6 logX) =
2

3
√

3ζ(6)
X1/2 +N(X) +O(X1/6 logX).

Proof. For the first equality, the difference N ′3(X) − N3(X) counts elliptic curves
with more than one unsigned 3-isogeny. Let E be an elliptic curve with 3-isogenies
ϕi : E → E′i such that ϕ1 6= ±ϕ2 and let kerϕi = 〈Pi〉 for i = 1, 2. Then 〈P1, P2〉 =
E[3], and so the image of GalQ acting on E[3] is a subgroup of the group of diagonal
matrices in GL2(F3). This property is preserved by any twist of E, so such elliptic
curves are characterized by the form of their j-invariant, explicitly [8, Table 1,
3D0-3a]

(2.10) j(t) =

(
t(t+ 6)(t2 − 6t+ 36)

(t− 3)(t2 + 3t+ 9)

)3

for t ∈ Q \ {3}. Computing an elliptic surface for this j-invariant, we conclude that
every such E is of the form y2 = x3 + u2A(t)x+ u3B(t) for some t, u ∈ Q, where

A(t) = −3t(t+ 6)(t2 − 6t+ 36) = −3t4 − 648t,

B(t) = 2(t2 − 6t− 18)(t4 + 6t3 + 54t2 − 108t+ 324) = 2t6 − 1080t3 − 11664 .

Then by Harron–Snowden [3, Proposition 4.1] (with (r, s) = (4, 6) so m = 1 and
n = 2), the number of such elliptic curves is bounded above (and below) by a
constant times X1/6 logX, as claimed.

The second equality is immediate from Lemmas 2.4, 2.5, and 2.7. �

In light of the above, our main result will follow from an asymptotic for the
easier function N(X) defined in (2.8), and so we proceed to study this function.

3. Order of magnitude

In this section, we introduce new variables u, v, w that will be useful in the sequel,
and provide an argument that shows the right order of magnitude. This argument
explains the provenance of the logarithmic term in a natural way and motivates
our approach. We recall (2.8), the definition of N(X).

Theorem 3.1. We have N(X) � X1/3 logX.

Before proving Theorem 3.1, we begin with a few observations and lemmas. If
A,B, a ∈ Z with A 6= 0, and ψA,B(a) = 0, then a 6= 0 and

(3.2) 12B =
A2

a
− 6Aa− 3a3.
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Lemma 3.3. Let A, a ∈ Z with a 6= 0. Then (A2/a)−6Aa−3a3 ∈ 12Z if and only
if all of the following conditions hold:

(B1) a | A2 and 3 | (A2/a);
(B2) A, a have the same parity; and
(B3) If A, a are both even, then 4 | (A2/a).

Proof. The verification is straightforward. �

Lemma 3.4. Let A,B, a ∈ Z satisfy conditions (N1)–(N2). Then

(3.5) |a| � X1/6 and A2/|a| � X1/2.

Proof. Let α := a/X1/6. Since |A| < 4−1/3X1/3, we have

A2/|a| < 4−2/3|α|−1X1/2, |Aa| < 4−1/3|α|X1/2.

The inequality for B and (3.2) imply that

3|a|3 ≤ 4

31/2
X1/2 + 6|Aa|+ A2

|a|
,

so that

(3.6) 3|α|3 ≤ 4

31/2
+

6|α|
41/3

+
1

42/3|α|
.

The inequality (3.6) fails for |α| large—in fact, we have |α| < 11/8—which proves
the first part of (3.5). To get the second part, note that the first part and condition
(N2) imply that |Aa| � X1/2. And since (3.2) implies that

A2/|a| ≤ 12|B|+ 6|Aa|+ 3|a|3,

we have A2/|a| � X1/2. �

Proof of Theorem 3.1. We first prove the upper bound. Every nonzero a ∈ Z can
be written uniquely as a = uv2, where u ∈ Z is squarefree and v ∈ Z>0. Replacing
a = uv2, we see that a | A2 if and only if uv | A. Therefore A = uvw with w ∈ Z
arbitrary. The inequalities in (3.5) imply that there exist c3, c4 > 0 such that

(3.7) 0 < |u|v2 ≤ c3X1/6 and 0 < |u|w2 ≤ c4X1/2.

Thus,

N(X) ≤ #{(u, v, w) ∈ Z3 : u squarefree, v > 0, and the inequalities (3.7) hold}.
For X ≥ 2, we have

(3.8)

N(X) ≤
∑

|u|v2≤c3X1/6

∑
|u|w2≤c4X1/2

1�
∑

|u|v2≤c3X1/6

X1/4

|u|1/2

≤ X1/4
∑

0<v≤c1/23 X1/12

∑
|u|≤c3X1/6/v2

1

|u|1/2

� X1/3
∑

0<v≤c1/23 X1/12

1

v
� X1/3 logX.

For the lower bound, we let u, v, w range over positive, odd, squarefree numbers
with 3 | w and let a = uv2 and A = uvw as in the previous paragraph; these ensure
that conditions (B1)–(B3) hold, so by Lemma 3.3 we have B ∈ Z. Conditions (N1)
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and (N4) are also satisfied, and condition (N3) is negligible. To ensure (N2), we
choose

(3.9) v ≤ X1/24, uv2 <
1

2
X1/6, w < uv3.

Then A = uvw < u2v4 < 1
4X

1/3 so |4A3| ≤ X. Moreover,

(3.10)

−12B = 3u3v6 + 6u2v3w − uw2 = 3u3v6
(

1 + 2
w

uv3
− 1

3

( w

uv3

)2)
< 3

(
1

2
X1/6

)3
8

3
= X1/2

since 0 < w/uv3 ≤ 1 and the polynomial 1 + 2t− 1
3 t

2 on [0, 1] is positive and takes

the maximum value 8
3 . Thus, all conditions are satisfied.

We now count the choices for u, v, w with the above conditions: we have

(3.11)
N(X) ≥

∑
v≤X1/24

∑
uv2< 1

4X
1/6

∑
w<uv3

1 �
∑

v≤X1/24

∑
u< 1

4X
1/6/v2

uv3.

The inner sum on u is � X1/3/v, so that N(X) � X1/3 logX, which completes
the proof of the lower bound. �

4. An asymptotic

In this section, we prove an asymptotic for N(X). We recall some notation
introduced in the proof of Theorem 3.1. Let (A,B, a) ∈ Z3 satisfy (N1), so a 6= 0
and B is determined by A, a as in Lemma 3.3. Write

(4.1)
a = uv2

A = uvw

with u ∈ Z squarefree, v ∈ Z>0, and w ∈ Z6=0. Then

(4.2) 12B = uw2 − 6u2v3w − 3u3v6.

We rewrite condition (N4) and the conditions in Lemma 3.3 in terms of the quan-
tities u, v, w as follows.

Lemma 4.3. Conditions (B1)–(B3) and (N4) hold if and only if all of the following
conditions hold:

(W1) uv ≡ w (mod 2);
(W2) Not both 22 | v and 24 | w occur;
(W3) Not all of 2 - u, 2 ‖ v, and 23 ‖w occur;
(W4) Not all of 2 | u, 2 ‖ v, and 24 | w occur;
(W5) 3 | uw;
(W6) Not both 3 | v and 34 | uw occur; and
(W7) For each prime ` > 3, not both ` | v and `3 | w occur.

Proof. This lemma can be proven by a tedious case-by-case analysis. Alternatively,
the conditions (B1)–(B3) are determined by congruence conditions modulo 16 and
81, so we may also just loop over the possibilities by computer. �

Lemma 4.4. The proportion among (u, v, w) (with u squarefree) satisfying the
conditions (W1)–(W7) is (4ζ(4))−1.
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Proof. For the conditions (W1)–(W6), we just count residue classes (as in Lemma
4.3): we find proportions 15/32 for conditions (W1)–(W4) and 40/81 for (W5)–
(W6). For condition (W7), the proportion of cases where ` | v and `3 | w is 1/`4,
so the correction factor is∏

`>3

(
1− 1

`4

)
=

16

15
· 81

80
· 1

ζ(4)
=

27

25ζ(4)
.

Thus, the total proportion is

15

32
· 40

81
· 27

25ζ(4)
=

1

4ζ(4)
. �

Let X > 0, and suppose (A,B, a) is counted by N(X). Define α, β ∈ R>0 by

(4.5)
a = uv2 = αX1/6,

w = βuv3.

(The quantity α arose in the proof of Lemma 3.4.) Moreover, define the functions

(4.6)

f(β) :=
1

21/3|β|1/2
,

g(β) :=
41/3

31/2|1 + 2β − 1
3β

2|1/3
,

h(β) := min{f(β), g(β)}.

The function h(β) is plotted in Figure 4.7.

h(β)

β
β4
p
β3
p
β2
p

β1
p

Figure 4.7: Graph of the function h(β), defined in (4.6)

The transition points for the piecewise function h(β) occur at

(4.8) β1 := 32.37198796 . . . , β2 := 1.71119188 . . . , β3 := −1

3
, β4 := −3;
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the transition points β1, β2 are algebraic numbers. Then h(β) = g(β) on the in-
tervals (−∞, β4), (β3, β2), and (β1,∞) and h(β) = f(β) on the complementary
intervals (β4, β3) and (β2, β1).

We compute numerically that

(4.9) c0 :=

∫ ∞
−∞

h(β)2 dβ = 9.1812458638 . . . .

The relevance of these quantities (as well as their weighting) is made plain by
the following lemma.

Lemma 4.10. The triple (u, v, w) satisfies (N2) if and only if

|α| ≤ h(β).

Proof. Since A = uvw = βu2v4 = α2βX1/3, the first inequality in (N2) is equivalent
to

(4.11) |α2β| ≤ 4−1/3.

In addition, we have

−12B = 3u3v6
(

1 + 2w/uv3 − 1

3

( w

uv3

)2)
= 3α3X1/2

(
1 + 2β − 1

3
β2

)
,

so that the second inequality in (N2) is equivalent to

(4.12)
∣∣α3
(
1 + 2β − 1

3
β2
)∣∣ ≤ 4

33/2
.

The result then follows from (4.11) and (4.12). �

We then have the following first version of our main result.

Theorem 4.13. We have

N(X) ∼ c1X1/3 logX

where

c1 :=
c0

8π2ζ(4)
= 0.10743725502 . . .

and c0 is defined in (4.9).

Proof. Via (4.1)–(4.2), N(X) counts (u, v, w) ∈ Z3 with u squarefree, v positive,
w 6= 0, such that conditions (N2)–(N3) hold as well as the local conditions (W1)–
(W7) (which implies (N4)). We may ignore condition (N3) as negligible: for each
choice of u, v there are O(1) choices of w where (N3) fails, subtracting at most
O(X1/6) from the count.

We first show how to count triples u, v, w satisfying (N2), not necessarily the
local conditions, and define

(4.14) N0(X) := #{(u, v, w) ∈ Z3 : u squarefree, v > 0, and (N2) holds}.
We suppress the reminder that u is taken to be squarefree. The number of triples
with w = 0 is negligible, so we ignore this condition.

Let X > 0. For (u, v, w) counted by N0(X), we organize by the value of β =
w/uv3 ∈ Q. Taking β in an interval I that does not contain a transition point in
its interior, the integers u, v are constrained by

|a| = |u|v2 < |α|X1/6 < h(β)X1/6
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(with h(β) minimal on I, taking left or right endpoint) by Lemma 4.10. Given
u, v, we have w = βuv3 ∈ uv3I giving approximately uv3 |I| possible values of w.
Repeating this argument with Riemann sum estimates, we obtain

(4.15) N0(X) ∼
∫ ∞
−∞

∑
|u|v2<h(β)X1/6

v>0

|u|v3 dβ

as X →∞. (For a more refined approach with an error term, see (5.7) below.)
We now evaluate this integral. Recall that∑

|u|≤t

|u| ∼ 6

π2
t2;

inputting this into (4.15) and letting X →∞, we obtain

(4.16)

∫ ∞
−∞

∑
v2<h(β)X1/6

v>0

v3
∑

|u|<h(β)X1/6/v2

|u|dβ

∼ 6

π2

∫ ∞
−∞

∑
v<h(β)1/2X1/12

v3
h(β)2X1/3

v4
dβ

∼ 6X1/3

π2

∫ ∞
−∞

h(β)2
∫ h(β)1/2X1/12

1

1

v
dv dβ

=
6X1/3

π2

∫ ∞
−∞

h(β)2 log(h(β)1/2X1/12) dβ

∼ 1

2π2
X1/3 logX

∫ ∞
−∞

h(β)2 dβ =
c0

2π2
X1/3 logX.

Finally, we impose the local constraints (W1)–(W7). The first 6 of these are
clear. To impose (W7) note that

27

25ζ(4)
=
∏
`>3

(
1− 1

`4

)
=

∑
gcd(d,6)=1

µ(d)

d4
.

The sum converges rapidly, in fact, for Z > 1,∣∣∣∣∣ 27

25ζ(4)
−

∑
gcd(d,6)=1

d≤Z

µ(d)

d4

∣∣∣∣∣� 1

Z3
.

Further, the proportion of triples u, v, w with d | v and d3 | w for some d > Z tends
to 0 as Z →∞. So, imposing (W7) introduces the factor 27/(25ζ(4)) as in Lemma
4.4. We conclude that

N(X) ∼ 1

4ζ(4)
N0(X) ∼ c1X1/3 logX

as X →∞, as claimed. �
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5. Secondary term

In this section, we work on a secondary term for N(X) (giving a tertiary term
for N3(X)).

We start by explaining how this works for the function N0(X) defined in (4.14),
namely, the triples (u, v, w) ∈ Z3 such that u is squarefree, v > 0, and |α| ≤ h(β)
where α, β are defined by (4.5). We discuss the modifications to this approach for
N(X) below.

We begin by working out an analog of Euler’s constant for the squarefree har-
monic series.

Lemma 5.1. For real numbers x ≥ 1 we have∑
0<u≤x

u squarefree

1

u
=

1

ζ(2)
log x+ γ0 +O(x−1/2 log x),

where

(5.2) γ0 :=
γζ(2)− 2ζ ′(2)

ζ(2)2
= 1.0438945157 . . .

and γ is Euler’s constant.

Proof. The integer variables u, v, d in this proof are positive. We have∑
u≤x

u squarefree

1

u
=
∑
u≤x

∑
d2 |u

µ(d)

u
=

∑
d≤x1/2

µ(d)

d2

∑
v≤x/d2

1

v

=
∑

d≤x1/2

µ(d)

d2

(
log
( x
d2

)
+ γ +O

(d2
x

))
.

The O-terms add up to O(x−1/2). Since∑
d≤x1/2

µ(d)

d2
=
∑
d

µ(d)

d2
−
∑

d>x1/2

µ(d)

d2
=

1

ζ(2)
+O(x−1/2)

and∑
d≤x1/2

2µ(d) log d

d2
=
∑
d

2µ(d) log d

d2
−
∑

d>x1/2

2µ(d) log d

d2
=

2ζ ′(2)

ζ(2)2
+O

(
x−1/2 log x

)
,

the result follows. �

Theorem 5.3. There exists c6 ∈ R>0 such that

N0(X) =
c0

2π2
X1/3 logX + c6X

1/3 +O(X7/24)

where c0 is defined in (4.9). More precisely, we have

(5.4) c6 :=

(
γ0
2

+
6γ

π2
− 3

2π2

)
c0 +

3

π2

∫ ∞
−∞

h(β)2 log h(β) dβ = 1.1204281987 . . . ,

where γ0 is defined in (5.2) and γ is Euler’s constant.
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Proof. We return to the derivation of the integral expression (4.15) and consider
the contribution of a single term a = uv2. With α = a/X1/6, the contribution of a
to the integral is

(5.5)

∫
h(β)≥|α|

|u|v3 dβ = |u|v3
∫
h(β)≥|α|

dβ.

Note that h is continuous. Let h1 := h|(−∞,−1/3] and h2 := h|[−1/3,∞). Then h1
is strictly increasing and h2 is strictly decreasing. Letting j1, j2 be the inverses of
h1, h2, respectively, we have for any t ∈ (0, h(−1/3)] that

(5.6) {β ∈ R : h(β) ≥ t} = [j2(t), j1(t)].

Plugging (5.6) into the integral (5.5), we obtain j1(|α|)− j2(|α|).
For a choice of a = uv2, we count the number of nonzero integers w with

w/(|u|v3) ∈ [j2(|α|), j1(|α|)]: this is equal to

|u|v3(j1(|α|)− j2(|α|)) +O(1).

So, the error when considering the integral in (4.15) is O(X1/6), i.e.,

(5.7) N0(X) =

∫ ∞
−∞

∑
|u|v2≤h(β)X1/6

v>0

|u|v3 dβ +O(X1/6).

We next consider the evaluation of the integrand

(5.8) S :=
∑

|u|v2<h(β)X1/6

v>0

|u|v3

(with the continued understanding that u is squarefree). LetH(β) := h(β)1/4X1/24,
so that if |u|v2 ≤ h(β)X1/6, then either |u| ≤ H2 or v ≤ H. Let S1 be the
contribution to the integrand when |u| ≤ H2, let S2 be the contribution when
v ≤ H, and let S3 be the contribution when both |u| ≤ H2 and v ≤ H. Then

S = S1 + S2 − S3.

Using that
∑

0<v≤t v
3 = 1

4 t
4 +O(t3), for a given value of u with |u| ≤ H2,∑

v≤h(β)1/2X1/12/|u|1/2
|u|v3 =

1

4
|u|
(
h(β)2X1/3

|u|2
+O

(h(β)3/2X1/4

|u|3/2
))

.

Summing this over squarefree numbers u with |u| ≤ H2 and using Lemma 5.1, we
get

(5.9)

S1 =
1

4
h(β)2X1/3 · 2

(
6

π2
logH2 + γ0

)
+O

(
h(β)2X1/3H−2 logH + h(β)3/2X1/4H

)
=

1

4π2
h(β)2X1/3 logX + h(β)2

(
1

2
γ0 +

3

2π2
log h(β)

)
X1/3

+O
(
h(β)3/2X1/4 logX

)
+O

(
h(β)7/4X7/24

)
.

Next we consider S2. For a given value of v ≤ H, we have

(5.10)
∑

|u|≤h(β)X1/6/v2

|u|v3 = 2 · 1

2
· 6

π2
h(β)2X1/3v−1 +O

(
h(β)3/2X1/4

)
,
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using that the number of squarefree numbers up to a bound x is (6/π2)x+O(x1/2)
and partial summation. Summing for v ≤ H we get

(5.11)

S2 =
6

π2
h(β)2X1/3

( 1

24
logX + γ +

1

4
log h(β) +O(1/H)

)
+O(h(β)3/2X1/4H)

=
1

4π2
h(β)2X1/3 logX +

6

π2
h(β)2

(
γ +

1

4
log h(β)

)
X1/3

+O(h(β)7/4X7/24).

Finally, for S3 we have

(5.12)
S3 =

(
6

π2
H4 +O(H3)

)(
1

4
H4 +O(H3)

)
=

3

2π2
H8 +O(H7)

=
3

2π2
h(β)2X1/3 +O(h(β)7/4X7/24).

Since S = S1 + S2 − S3, combining (5.9), (5.11), and (5.12) we obtain

(5.13)
S =

h(β)2

2π2
X1/3 logX + h(β)2

(γ0
2

+
6γ

π2
+

3

π2
log h(β)− 3

2π2

)
X1/3

+O
(
h(β)3/2X1/4 logX

)
+O

(
h(β)7/4X7/24

)
.

The expression (5.13) is then to be integrated over all β to obtain N0(X) as in
(5.7). In this integral we may suppose that |β| � X1/4, since h(β) � |β|−2/3 and
we may suppose that h(β)X1/6 ≥ 1. Thus, integrating the first error term gives
O(X1/4(logX)2) and integrating the second gives O(X7/24). We conclude that
(5.14)∫ ∞

−∞

∑
|u|v2≤h(β)X1/6

v>0

|u|v3 dβ =
c0

2π2
X1/3 logX +

(γ0
2

+
6γ

π2
− 3

2π2

)
c0X

1/3

+
3

π2
X1/3

∫ ∞
−∞

h(β)2 log h(β) dβ +O
(
X7/24

)
.

We compute numerically that

(5.15)

∫ ∞
−∞

h(β)2 log h(β) dβ = −18.0878968694 . . .

and so the coefficient of the secondary term of N0(X) is c6 = 1.12042819875 . . . . �

Before proving our main theorem, we prove one lemma, generalizing Lemma 5.1.
For i | 6 with i > 0, let

(5.16) Hi(x) :=
∑

0<u≤x
u squarefree
gcd(u,6)=i

1

u
.

Lemma 5.17. We have

H1(x) =
1

2ζ(2)
log x+ γ1 +O

( log x

x1/2

)
where

γ1 =
log 432

24ζ(2)
+

γ

2ζ(2)
− ζ ′(2)

ζ(2)2
,
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and γ is Euler’s constant. Moreover, Hi(x) = 1
iH1(xi ) for i | 6.

Proof. The proof follows the same lines as Lemma 5.1. �

We now prove our main result.

Proof of Theorem 1.3. The asymptotic for N(X) was proven in Theorem 4.13 and
a secondary term with power-saving error term for N0(X) was proven in Theorem
5.3. To finish, we claim that the local conditions (W1)–(W7) that move us from
N0(X) to N(X) can be applied in the course of the argument for Theorem 5.3 to
obtain an (effectively computable) constant.

Let i, j, k, d ∈ Z>0 satisfy: i | 6, d squarefree and coprime to 6, j | 12, and
k | 64. Let Ni,j,k,d(X) denote the number of triples u, v, w counted by N0(X) with
gcd(u, 6) = i, jd | v, and kd3 | w. Then with i, j, k running over triples consistent
with conditions (W1)–(W6), a signed sum of the counts Ni,j,k,d(X) gives N(X).
For example, take the case of uvw coprime to 6, which satisfies (W1)–(W6). The
contribution of these triples to N(X) is∑

j|6

∑
k|6

∑
gcd(d,6)=1

µ(j)µ(k)µ(d)N1,j,k,d(X).

We have similar expressions for other portions of the u, v, w-domain of triples.
We now estimate Ni,j,k,d and control the contribution to N(X) from large d. For

the latter, since |vw| ≤ A� X1/3, we have d� X1/12; so we may suppose that d
is so bounded. Getting a good estimate for Ni,j,k,d follows in exactly the same way
as with N0. In particular, we have the analogue of (5.7):

(5.18) Ni,j,k,d(X) =

∫ ∞
−∞

∑
|u|v2≤h(β)X1/6

gcd(u,6)=i
jd | v

|u|v3

kd3
dβ +O(X1/6),

where it is understood that u is squarefree and v > 0. The sum here is estimated
in the same way, by first considering the contribution when |u| ≤ H2, where H =
h(β)1/4X1/24, then the contribution when v ≤ H, and finally the contribution when
both |u| ≤ H2 and v ≤ H. To accomplish this, we use the following estimates:

(5.19)

∑
0<v≤x
jd | v

v3 =
1

4

x4

jd
+O(x3),

∑
0<v≤x
jd | v

1

v
=

1

jd
log x+

γ − log(jd)

jd
+O

( 1

x1/2d1/2

)
,

∑
|u| squarefree
|u|≤x

gcd(u,6)=i

|u| = 1

iζ(2)
x2 +O(x3/2).

We also need the sum of 1/|u|, accomplished in Lemma 5.17.
Putting these ingredients together, we get that

(5.20) Ni,j,k,d(X) =
ci,j,k
d4

X1/3 logX +
c′i,j,k
d4

X1/3 +O
(X7/24

d3

)
,
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where ci,j,k, c
′
i,j,k = O(1) uniformly, and summing these contribution gives the

result. �

6. Computations

We conclude with some computations in Magma [4] that give numerical verifica-
tion of our asymptotic expression.

We computed the functions N0(X) and N(X) as follows. First, we restrict to
u > 0 (still squarefree), since this gives exactly half the count. Second, we loop over
u up to b 118 X

1/6c (valid as in the proof of Lemma 3.4) and keep only squarefree

u. Then we loop over v from 0 up to b
√

11
8 X

1/6/uc. This gives us the value of

a = uv2. Then plugging into h gives

(6.1) βmax ≤ max

({
X1/3

41/3a2
, 3 +

√
12 +

4√
3

X1/2

a3

})
.

Then we loop over w from −βmaxuv
3 to βmaxuv

3, ignoring w = 0, and we take
A = uvw. We then check that |4A3| ≤ X; and letting

B =
1

12

(
A2

a
− 6Aa− 3a3

)
we check that |27B2| ≤ X, and if so add to the count for N0(X). For N(X),
we further check the local conditions (B1)–(B3) and (N4) (or, equivalently, (W1)–
(W7)).

In this manner, we thereby compute the data in Table 6.2 for X = 10m with
m ≤ 25. We compute an approximate value for the constant c2 ≈ 0.16 as indicated
in the fourth column.

m N0(X)
c0

2π2
X1/3 logX + c6X

1/3 N(X)
N(X)− c1X1/3 logX

X1/3

3 40 43 2 -0.54215

4 106 116 16 -0.24688

5 292 301 54 -0.07352

6 728 755 144 -0.04430
...

...
...

...
...

18 20396372 20398344 4615666 0.16276

19 46250606 46254289 10476028 0.16226

20 104614810 104622964 23720904 0.16285

21 236105316 236113295 53583854 0.16333

22 531764374 531764568 120772894 0.16335

23 1195334414 1195363230 271694240 0.16366

24 2682372754 2682431541 610085848 0.16366

25 6009687100 6009862508 1367646478 0.16347

Table 6.2: Data before and after applying local conditions
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