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Abstract. We revisit certain one-parameter families of affine covers arising naturally from
Euler’s integral representation of hypergeometric functions. We introduce a partial compact-
ification of this family. We show that the zeta function of the fibers in the family can be
written as an explicit product of L-series attached to nondegenerate hypergeometric motives
and zeta functions of tori, twisted by Hecke Grossencharacters. This permits a combinatorial
algorithm for computing the Hodge numbers of the family.
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1. Introduction

1.1. Motivation. The world of hypergeometric functions invites a rich interplay between
complex analysis, algebraic geometry, number theory, and physics guided by the hypergeo-
metric differential equation. The simplest version of this is found in the Legendre family of
elliptic curves, defined by

y2 = x(x− 1)(x− t).
The period associated to this family can be computed to be hypergeometric, following Eu-
ler [Eul48]. Two centuries later, Igusa found an arithmetic analogue to Euler’s integral
formula: the point counts on the Legendre family of elliptic curves can be related to a
(truncated) hypergeometric equation [Igu58]. Starting in the 1980s, Katz gave a vast gen-
eralization [Kat96] in his theory of motives attached to rigid local systems. Since then, the
literature has proposed many families of varieties that exemplify hypergeometric motives
in varying generality: see Roberts–Rodriguez-Villegas [RRV22, §3] for an overview and the
recent monograph by Fuselier–Long–Ramakrishna–Swisher–Tu [FLRST22] for a history and
further references.
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We focus on a symmetrized version of a generalization of the Legendre family above. Let
n,m ≥ 1 and a1, . . . , an, b1, . . . , bn ∈ Z. Inspired by Euler’s formula, we start with the family
of affine cyclic covers over Z[1/m]

(1.1.1)

Y = Yaaa,bbb,m : ym = faaa,bbb(x) :=
n∏

i=1

(−xi)ai(1− xi)bi−ai

1 = tx1x2 · · · xn
0, 1 ̸= x1, x2, . . . , xn

in the parameter t for P1 ∖ {0, 1,∞}. We note that our generalization has introduced a new
sign. This choice of sign yields substantial streamlining; its absence already shows up as an
obtrusive quadratic character when counting points on the Legendre family.

The fibers Yt of this family are smooth of dimension n − 1. When ai − bj ̸∈ mZ for
all i, j = 1, . . . , n, Euler’s integral formula directly implies at least one period of Y is a
hypergeometric function in the parameter t, namely F (a1/m, . . . , an/m; b1/m, . . . , bn/m; t)
(Lemma 3.1.5), a feature not as apparent in other hypergeometric families. Other periods,
however, may be less transparent.

We turn to the arithmetic story for Y and computing #Yt(Fq). To do so, we first look
at defining an analogue of hypergeometric functions over finite fields. The literature con-
tains multiple definitions and normalizations [Gre87, McC12, Kat90, BCM15, FLRST22],
each having their own strengths and contexts. In particular, Fuselier–Long–Ramakrishna–
Swisher–Tu define a new finite field analogue of the hypergeometric function in a recursive
way to count the number of Fq-rational points in the affine variety defined by the first two
equations in (1.1.1) directly [FLRST22, Proposition 4.2]. The other definitions of hyperge-
ometric functions differ, but under a nondegeneracy condition (namely, gcd(m, bi − ai) = 1
for all i), the hypergeometric function in [FLRST22] coincides with that of, say [McC12].

However, the interpretation of this formula can run into problems when there are degen-
eracies. This happens more than one expects, as degenerate hypergeometric parameters arise
when ai− bi ∈ dZ for some d | m. In these cases, the formula in [FLRST22] uses their recur-
sive formulae with degenerate parameters. In this paper, we introduce a new model X that
is a partial compactification of Y (see §3.2) whose motive avoids degenerate hypergeometric
motives. Indeed, its L-series is an explicit product of L-series attached to nondegenerate
hypergeometric motives and zeta functions of tori twisted by a Hecke Grossencharacter. In
turn, the mixed Hodge numbers for X can be computed directly from this motivic perspec-
tive [CG11, Fed18, RV19].

1.2. Results. Let t ∈ P1(Q)∖{0, 1,∞} and write S for the set of primes dividingm together
with the primes dividing the numerator or denominator of t or t − 1. Write Yt := Yaaa,bbb,t for
the fiber over t in the family (1.1.1) over SpecZ[S−1] (inverting the primes in S). For p ̸∈ S,
write Yt,Fp for the base change to Fp and take

(1.2.1) Z(Yt,Fp , T ) := exp

(
∞∑
r=1

#Yt(Fpr)
T r

r

)
∈ (1 + TZ[[T ]]) ∩Q(T ).

Let

(1.2.2) ζS(Yt, s) :=
∏
p̸∈S

Z(Yt,Fp , p
−s)−1
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be the zeta function attached to Yt; then ζS(Yt, s) is convergent in a right half-plane for s ∈ C
(e.g. Serre [Ser12, §1.5]).

Roughly speaking, our main result will show that there is a partial compactification Xt ⊃
Yt whose zeta function, similarly defined, is an explicit product of L-series attached to
nondegenerate hypergeometric parameters and twists of zeta functions of tori by Hecke
Grossencharacters.

We proceed by making this precise by introducing our notation. Let ααα = (α1, . . . , αn) ∈
(Q/Z)n and βββ = (βj)j ∈ (Q/Z)n be hypergeometric parameters. We say that αi or βi is a
degenerate parameter if βi − αi ∈ Z. The hypergeometric parameters ααα,βββ are degenerate
if there exists a degenerate parameter, and nondegenerate otherwise. Finally, we say the
parameters are isotypically degenerate for γ if the set of degenerate parameters in Q/Z is
{γ}, and we let e(ααα,βββ) be its multiplicity in ααα. (See Example 4.4.9.)

Suppose that ααα,βββ are nondegenerate. Let m ∈ Z≥1 be minimal such that mααα,mβββ ⊂ Z.
In section 4.4, we recall the definition of the period-normalized hypergeometric L-series

(1.2.3) LS(H(ααα,βββ, t),Q(ζm), s),

defined by an Euler product and convergent in a right-half plane. We note that this L-series
depends on the ordering of the parameters, but compensates by being invariant under shifts
(Remark 4.4.6). Based on deep results of Katz, we explain that the period-normalized hyper-
geometric L-series for nondegenerate parameters has degree nϕ(m) over Q (Theorem 4.6.6).

The variety Yaaa,bbb,m is a branched cover of the affine variety U defined by 1 = tx1 · · ·xn
and 0, 1 ̸= x1, . . . , xn. We partially compactify to V ⊇ U defined by 1 = tx1 · · ·xn and
0 ̸= x1, . . . , xn to provide a smooth branched cover of a toric hypersurface, as follows.

Theorem 1.2.4. There exists a partial µm-equivariant compactification Xaaa,bbb,m ⊇ Yaaa,bbb,m over
V ⊇ U such that for all t ∈ P1(Q)∖ {0, 1,∞},

ζS(Xaaa,bbb,m,t, s) =
∏
d|m


LS(H(aaa/d, bbb/d, t),Q(ζd), s), if aaa/d, bbb/d is nondegenerate;

ζS((Gm)
e−1,Q(ζd), s, ψaaa,bbb,d,t)

(−1)n−e
,

if aaa/d, bbb/d is isotypically degen-
erate, where e = e(aaa/d, bbb/d);

1, else;

where ψaaa,bbb,d,t is an explicit Hecke Grossencharacter.

Theorem 1.2.4 describes the full (mixed) motive of the family of varieties whose periods
arise from Euler’s integral formula. The Hecke Grossencharacters arising in Theorem 1.2.4
are described in (5.4.2); we briefly recall in section 4.3 how Hecke Grossencharacters may be
obtained from Jacobi sums (after Weil and Anderson).

If one tries to extend the hypersurface defined by ym = faaa,bbb(x) across V without modifica-
tion, then the variety is badly singular. We require a more elaborate partial compactification
to obtain Theorem 1.2.4, see (3.2.4). In a nutshell, we organize the factors of f(x) accord-
ing to the greatest common divisor of their multiplicity with m, and show that these glue
together appropriately (Proposition 3.2.5).

As the Hodge numbers of nondegenerate hypergeometric motives and Hecke Grossenchar-
acters are known, as a corollary we conclude that the Hodge numbers of the family Xt are
effectively computable, in particular the degrees of the L-series appearing in ζ(Xt, s). Indeed,
for the nondegenerate case, one can find the Hodge numbers associated to the hypergeomet-
ric motive associated to a BCM hypergeometric function, following the zigzag procedure
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[RRV22]. In the isotypically degenerate case, we obtain a torus factor twisted by a Hecke
Grossencharacter, which can then be computed [Wat11].

Our method of proof uses character sums. In the nondegenerate case, we give a new
non-inductive proof (Proposition 4.5.1). But the heart of our work is to show a certain
Möbius-like cancellation: terms that show up above fibers where xi = 1 in the degenerate
case either line up when isotypically degenerate and cancel otherwise (Theorem 5.3.1).

1.3. Precise comparison to previous results. There is a rich literature of where hyper-
geometric functions over finite fields have been shown to relate to rational point counts (see,
e.g., the first paragraph of [OSS23] for a long list). We now focus on the history of the family
given in (1.1.1), where many authors have studied it in varying degrees of generality. As
stated above, the intuition that the point counts on the Legendre family of elliptic curves can
be related to a (truncated) hypergeometric equation corresponding to the family’s period
can be traced back to work of Igusa [Igu58]. Its relation to finite field hypergeometric func-
tions has been articulated in numerous ways (see [Koi95, §4], [Ono98, Theorem 1], [Rou06,
Theorem 2]), then proven for a new example [Goo18] by considering a quadruple cover.

More recently, Deines, Fusilier, Long, Swisher, and Tu analyzed the family

(1.3.1) yn = (x1 · · ·xn−1)
n−1(1− x1) · · · (1− xn−1)(x1 − λx2 · · · xn−1)

as a higher-dimensional version of the Legendre curves, and show in [DFLST16, Theorem
2] that its rational point count is the sum of a polynomial and finite-field hypergeometric
functions as defined by Greene [Gre87]. Fusilier, Long, Ramakrishna, Swisher, and Tu then
generalized this result [FLRST22] to the case

(1.3.2) ym = xa11 (1− x1)b1 · · ·xann−1(1− xn−1)
bn−1(1− tx1x2 · · ·xn−1)

bn .

(Compare also with Katz [Kat96, Theorem 8.4.1].)
Over Fq, when q is a prime power so that q ≡ 1 (mod m), they prove [FLRST22, Proposi-

tion 4.2] that the Fq-rational point counts correspond to a polynomial in q and a sum of finite
field hypergeometric functions. However, to do so, they created a new recursive definition
for finite field hypergeometric functions (see (4.4) of loc. cit.) to allow them to use character
theory to directly imply the result.

Their finite field hypergeometric function definition uses a period normalization, and there-
fore differs from those given in the literature by previous authors Greene [Gre87], McCarthy
[McC12], Katz [Kat90], and Beukers–Cohen–Mellit [BCM15]. The authors [FLRST22, §4.4]
provide a relation between their hypergeometric function and that given in Greene’s paper.
Also, they related theirs to that given by McCarthy, but only in the so-called primitive case
[FLRST22, Definition 4.3] when ai − bj ̸∈ mZ for all i, j = 1, . . . , n. (Note that primitive
implies nondegenerate, but not conversely.)

Given these differences, we found it less than straightforward to combine results from these
papers. We navigate around this obstacle by restricting ourselves to only allowing formulas
involving the nondegenerate hypergeometric functions, where there is more agreement and
the theorem of Katz allows us to recognize the associated L-series as motivic. Indeed, one
may interpret our main result as saying that the L-series of degenerate hypergeometric motive
arises from a Hecke Grossencharacter. We found that the period normalization (following
Fusilier–Long–Ramakrishna–Swisher–Tu) gives the simplest formulation in our main result
(Theorem 1.2.4); but the choice of signs is essential.
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Stepping back a bit further, there are other important families which realise hypergeomet-
ric motives. When the parameters are defined over Q—meaning that for all k ∈ (Z/mZ)× we
have kααα = α and kβββ = β as multisets—there is a particularly nice setup: see the toric descrip-
tion of source varieties described by Roberts–Rodriguez-Villegas [RRV22, §3] and related ex-
plicitly to the models defined by Beukers–Cohen–Mellit [BCM15]. However, these models are
not available when the parameters are not defined over Q, and so this hypothesis is substan-
tial (the Klein–Mukai pencil of K3 surfaces in P3 defined by x4+y3z+z3w+w3y−4txyzw = 0
[DKSSVW20] already sees hypergeometric motives not defined over Q).
Lastly, we remark the family (1.3.2) is affine, and therefore a singular compactification of

the starting family Yaaa,bbb,m (our equation has been symmetrized). It is unclear how to proceed
to understand the geometry of these families (for example, to understand the Hodge numbers)
without a partial desingularization and compatification. In sum, then, our contribution is
to define a nicer geometric realization of hypergeometric motives that is available for all
parameters and permits the computation of the zeta function over Q as a product of L-series
of nondegenerate hypergeometric motives and Hecke Grossencharacters.

1.4. Acknowledgements. The authors would like to thank Asem Abdelraouf, Giulia Gu-
giatti, Nalini Joshi, Daniel Kaplan, Albrecht Klemm, David Roberts, Fernando Rodriguez
Villegas, and Wadim Zudilin for discussions relating to this work. Certain calculations
used in this paper were done in Magma [BCP97]. Kelly acknowledges support from EP-
SRC Grant EP/S03062X/1, the UK Research and Innovation Future Leaders Fellowship
MR/T01783X/1, and the hospitality of Dartmouth College. Voight was supported by a
Simons Collaboration grant (550029) and would like to thank the hospitality of the Abdus
Salam International Centre for Theoretical Physics (ICTP), where some of this research was
undertaken as part of the Workshop on Number Theory and Physics in June 2024.

2. Hypergeometric functions and integral representations

For motivation, we begin with the classical, complex theory of (generalized) hypergeomet-
ric functions. We present this standard material in a symmetric way.

2.1. Differential equation. Let (x)k be the rising factorial defined for x ∈ C and k ∈ Z≥0

by (x)0 := 1 and

(x)k := x(x+ 1) · · · (x+ k − 1) =
Γ(x+ k)

Γ(x)

for k > 0, where Γ is the usual complex Γ-function.

Definition 2.1.1. Let n ∈ Z≥1, let ααα = (α1, . . . , αn) ∈ Qn and βββ = (β1, . . . , βn) ∈ (Q>0)
n;

we call ααα the numerator parameters and βββ the denominator parameters. The (generalized)
hypergeometric function is the formal series

(2.1.2) F (ααα,βββ, t) :=
∞∑
k=0

(α1)k · · · (αn)k
(β1)k · · · (βn)k

tk ∈ Q[[t]].

Consider the differential operator θ := t
d

dt
. We define the hypergeometric differential

operator for parameters ααα,βββ to be

(2.1.3) D(ααα,βββ, t) := (θ + β1 − 1) · · · (θ + βr − 1)− t(θ + α1) · · · (θ + αr).
5



When βj = 1 for some j, the hypergeometric function F (ααα,βββ, t) is annihilated by D(ααα,βββ, t).
In general, we have the following.

Lemma 2.1.4. For every j = 1, . . . , n, the operator D(ααα,βββ, t) annihilates the function

Fj(ααα,βββ, t) := t1−βjF (ααα + (1− βj),βββ + (1− βj), t),
where ααα + (1− βj) = (α1 + 1− βj, . . . , αr + 1− βj) and similarly for βββ + (1− βj).

Proof. Direct computation. □

Remark 2.1.5. When #βββ = n (i.e., the denominator parameters are all distinct), Lemma
2.1.4 gives a basis of solutions to the differential equation D(ααα,βββ, t)F = 0. Otherwise, one
may need solutions involving the logarithm.

2.2. Integral representation. Euler [Eul48] provided an integral representation for the
hypergeometric function with parameters ααα = {a, b} and βββ = {c, 1}, namely

(2.2.1) F (a, b; c, 1; t) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

xb−1(1− x)c−b−1(1− tx)−a dx

whenever c > b > 0 and for all t ∈ C with |t| < 1. This formula can be proven by expanding
(1 − tx)−a using the binomial theorem and integrating term-by-term to reduce to Euler’s
integral formula for the β-function. This integral formula then inductively generalizes as
follows. In light of Lemma 2.1.4, ordering the parameters we may suppose without loss of
generality that βd = 1.

Lemma 2.2.2. Suppose that αi − βj ̸∈ Z for all i, j and that βn = 1. Then we have the
equality

F (ααα,βββ, t) =
n−1∏
i=1

Γ(βi)

Γ(αi)Γ(βi − αi)

∫ 1

0

· · ·
∫ 1

0

(1− tx1 · · · xn−1)
−αn

n−1∏
i=1

xαi−1
i (1− xi)βi−αi−1 dxi

=
(−1)αnπ

sin(παn)
γααα,βββ

∫ 1

0

· · ·
∫ 1

0
tx1···xn=1

xn

n∏
i=1

xαi−1
i (1− xi)βi−αi−1 dx1 · · · dxn−1

in a domain of convergence (for example, |arg(1 − t)| < π and Re(βi) > Re(ai) > 0 for all
i = 1, . . . , n), where

(2.2.3) γααα,βββ :=
n∏

i=1

Γ(βi)

Γ(αi)Γ(βi − αi)

(and in the second integral, we mean the restriction of the differential).

Proof. The formula is proven by Slater [Sla66, (4.1.3)], including the domain of convergence;
the second equality comes from the relation Γ(z)Γ(1− z) = π/ sin(πz) and substitution. □

Remark 2.2.4. Although the hypergeometric function is visibly independent of permutation
of the parameters, the integral representation is not: at least in its symmetrized form, it
depends on a matching between numerator and denominator pairings.

In the below, we work with a version with a different choice of signs; this changes the
constant γααα,βββ by a root of unity, something which is already a bit complicated to analyze
precisely in the branched cover.
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3. Birational models for the integral representation

In this section, using the integral representation Lemma 2.2.2 we define a family of smooth
affine varieties with hypergeometric periods; we then give a partial compactification.

3.1. Starter model. We start by elaborating upon the family (1.1.1), starting with a more
complete definition. Our family is defined over the base T := P1 ∖ {0, 1,∞} (initially over
Z, then defined over a base ring depending on the parameters). We begin with the affine
variety U ⊆ T ×Z An

Z defined by

(3.1.1)
tx1x2 · · ·xn = 1

x1, x2, . . . , xn ̸= 0, 1

The fibers of the map U → T are contained in the torus (Gm)
n ⊂ An, in fact in the open

where the axes xi = 1 are removed.
We now define a family of branched covers of U . Let aaa = (a1, . . . , an) and bbb = (b1, . . . , bn)

with ai, bj ∈ Z. Define
(3.1.2)

faaa,bbb(x1, . . . , xn) :=
d∏

i=1

(−xi)ai(1− xi)bi−ai ∈ Z[x1, . . . , xn, (x1(1− x1) · · · xn(1− xn))−1].

Let m ∈ Z≥1. Define the branched cover Y → U by

(3.1.3) Y = Yaaa,bbb,m : ym = faaa,bbb(x1, . . . , xn)

Lemma 3.1.4. For any commutative ring R with 1 ̸= 0 and t ∈ R such that t, t− 1 ∈ R×,
the fiber Yt of the family (3.1.3) is smooth of dimension n− 1.

Proof. Immediate, as we have removed the branch locus. □

It is an important step in the theory of motives to recognize the corresponding period
integrals, as follows.

Lemma 3.1.5. Suppose that ai− bj ̸∈ mZ for all i, j = 1, . . . , n. Then for all k ∈ (Z/mZ)×,
and for all t ∈ C, there exists a cycle Zt on Y such that

(3.1.6)

∫
Zt

dx1 · · · dxn−1

y
= (−1)

∑
i ai/mtbn/mνγααα,βββF (ααα,βββ, t)

under an appropriate branch cut, where ν = (−1)(bn−an)/mπ(sin(π(bn−an)
m

))−1 and

(3.1.7)

ααα :=

(
1 +

bn − a1
m

, . . . , 1 +
bn − an−1

m
,
bn − an
m

)
;

βββ :=

(
2 +

bn − b1
m

, . . . , 2 +
bn − bn−1

m
, 1

)
.

Proof. We compute that (after an appropriate branch cut),

(3.1.8)

1

y
=

n∏
i=1

(−xi)−ai/m(1− xi)(bi−ai)(−1)/m

= (−1)−
∑n

i=1 ai/m

n∏
i=1

x
−ai/m
i (1− xi)−(bi−ai)/m
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We now apply Lemma 2.2.2 and match exponents. We are required to take βn = 1, so
βn − αn − 1 = −αn = −(bn − an)/m so αn = (bn − an)/m. But then

(3.1.9) x−an/m
n = x(bn−an)/m−bn/m

n = xαn
n x−bn/m

n = xαn
n (tx1 · · ·xn−1)

bn/m.

Expansion and substitution in (3.1.8) then gives

(3.1.10) (−1)
∑n

i=1 ai/mtbn/m

(
n−1∏
i=1

x
(bn−ai)/m
i (1− xi)−(bi−ai)/m

)
xαn
n (1− xn)−αn .

Now for i < n, we get αi − 1 = (bn − ai)/m and βi − αi − 1 = −(bi − ai)/m which yields

(3.1.11) βi = 2 +
bn − ai
m

− bi − ai
m

= 2 +
bn − bi
m

as in the statement. □

Remark 3.1.12. Using Lemma 2.1.4, one obtains from Lemma 3.1.5∫
Zt

dx1 · · · dxn−1

y
= (−1)

∑
i ai/mνγααα,βββFn(ααα

′,βββ′, t),

with

ααα′ :=
(
1 + −a1

m
, . . . , 1 + −an−1

m
, −an

m

)
; βββ′ :=

(
2 + −b1

m
, . . . , 2 + −bn−1

m
,− bn

m

)
.

These hypergeometric parameters, when viewed in Q/Z, are Galois conjugate to those in the
d = m case of Theorem 1.2.4.

3.2. Partial compactification. We now define a partial compactification (birational model)
for the family Y defined in (3.1.3). This model will admit an open immersion from Y , giving
a partial compactification at points (x1, . . . , xn, y) where some xi = 1.

First off: without loss of generality (considering modulo m), we may and do suppose that
a1, . . . , an, b1, . . . , bn ≥ 0 and bi ≥ ai for all i. (We avoided making this hypothesis before
now for uniformity in the description, but now we are trying to find a compactification so
we need to clear denominators. In principle, we only need to ask this for bi − ai ≥ 0.)
We first subdivide the product defining faaa,bbb according to a greatest common divisor with

m. For d | m a (positive) divisor, define

(3.2.1) faaa,bbb,d(x1, . . . , xn) :=
∏
i

gcd(m,ai)=d

(−xi)ai/d
∏
i

gcd(m,bi−ai)=d

(1− xi)(bi−ai)/d.

Then

(3.2.2) faaa,bbb(x1, . . . , xn) =
∏
d|m

faaa,bbb,d(x1, . . . , xn)
d

since all factors occur exactly once in the product, with the right exponent.
We work over V ⊇ U defined by

(3.2.3)
tx1x2 · · ·xn = 1

x1, x2, . . . , xn ̸= 0;

i.e., we close up the axes where a variable xi = 1. However, our branched cover now comes
with variables also indexed by divisors, i.e., we work in (Gm)

n × Aτ(m) with toric variables
x1, . . . , xn and affine variables yd for d | m, where τ(m) is the number of divisors of m. The
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branched cover X = Xaaa,bbb,m is defined to be the subvariety in V cut out by the system of
equations

(3.2.4) y
d/h
d = yh

∏
e|m
h|e
d∤e

faaa,bbb,e(x1, . . . , xn)
e/h,

with an equation for all h, d such that h | d | m, together with the equation y1 = 1.

Proposition 3.2.5. There is an open immersion

(3.2.6) Y ↪→ X

defined by the identity on x1, . . . , xn and

(3.2.7) yd =
ym/d∏

e:d|e|m faaa,bbb,e(x1, . . . , xn)
e/d

for each d | m. The birational inverse is defined by the identity on x1, . . . , xn and

(3.2.8) y = ymfaaa,bbb,m(x1, . . . , xn)
m.

Moreover, the action of µm by y 7→ ζmy extends to X equivariantly using (3.2.7).

Proof. One verifies that the map X 99K Y is an isomorphism (that is to say, defined) away
from the points (x1, . . . , xd, y) where xi = 1 for some i = 1, . . . , d. □

For I ⊆ [n] := {1, . . . , n}, let

(3.2.9)

aaaI := (ai)i∈I

bbbI := (bi)i∈I

mI := gcd({bi − ai : i ̸∈ I} ∪ {m}).

We define a ‘twist’ of YaaaI ,bbbI ,mI
by (−1)

∑
i ̸∈I ai as follows. Define the (quasi-)affine variety in

A#I with variables {xi}i∈I defined by the equations

(3.2.10) Y ′
aaa,bbb,m,I :

ymI = (−1)
∑

i/∈I ai
∏
i∈I

(−xi)ai(1− xi)bi−ai

1 = t
∏
i∈I

xi

xi ̸= 0, 1 for all i ∈ I.
Lemma 3.2.11. Let I ⊆ {x1, . . . , xn} be a subset. Then the intersection of Xaaa,bbb,m with the
affine subvariety of V defined to be the locus where xi ̸= 1 for i ∈ I and xi = 1 for i ̸∈ I is
isomorphic to Y ′

aaa,bbb,m,I .

Proof. We look back at the defining equations (3.2.4). First, we see that if k | d and yk = 0,
then yd = 0. Let d | m. Take k = 1 to get

(3.2.12)

ydd = y1
∏
e|m
d∤e

faaa,bbb,e(x1, . . . , xn)
e

=
∏
e|m
d∤e

∏
i

gcd(m,ai)=e

(−xi)ai
∏
i

gcd(m,bi−ai)=e

(1− xi)bi−ai .
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So yd = 0 if and only if (1 − xi) | faaa,bbb,e(x1, . . . , xn) for some i ̸∈ I and e | m with d ∤ e. By
definition, this happens if and only if there exists i ̸∈ I such that d ∤ e = gcd(bi− ai,m). By
the contrapositive, this says yd ̸= 0 if and only if d | gcd(bi − ai,m) for all i ̸∈ I, i.e., d | mI .
Let x′i = xi, 1 according as i ∈ I or not. Plugging in, this leaves

ymI
mI

=
∏
e|m
mI ∤e

∏
i

gcd(m,ai)=e

(−x′i)ai
∏
i

gcd(m,bi−ai)=e

(1− x′i)bi−ai .

(As confirmation, we see that if i ̸∈ I then mI | gcd(bi− ai,m), so the only terms 1−x′i that
appear have i ∈ I.) This simplifies to

ymI
mI

= (−1)
∑

i̸∈I ai
∏
i∈I

(−xi)ai
∏
i∈I

(1− xi)bi−ai .

(If mi | e then the twist by (−1)e can be absorbed into the isomorphism.) Replacing m by
mI , the birational maps in Proposition 3.2.5 then define an isomorphism to YaaaI ,bbbI ,mI

. □

4. Finite field hypergeometric functions

In this section, we recall and compare definitions of finite field analogues of complex
hypergeometric functions [Gre87, Kat90, McC12, FLRST22, BCM15].

4.1. Setup. Let q = pr be a prime power and let

(4.1.1) q× := q − 1.

We write ω1/q× : F×
q → C× for a generator of the character group on F×

q , so we can write ωµ

for µ ∈ Q such that q×µ ∈ Z. We extend ω : Fq → C× by setting ω(0) = 0 including for the
trivial character ε. Further, let Θ: Fq → C× be a nontrivial (additive) character.

Definition 4.1.2. For α ∈ (1/q×)Z, we define the Gauss sum

(4.1.3) g(α) :=
∑
x∈F×

q

ωα(x)Θ(x).

The Gauss sum takes values in Q(ζq−1) ⊆ C, is independent of the choice of Θ, and is
well-defined on k ∈

(
1
q×
Z
)
/Z.

Remark 4.1.4. The Gauss sum a priori depends on a choice of generator ω1/q× ; they are
obtained by post-conjugation by Gal(Q(ζq×) |Q). This means that our Jacobi sums and
hypergeometric sums will also carry this dependence, but in the end we will work with
Galois invariant expressions independent of the choice of generator.

Remark 4.1.5. Note the Gauss sum in this definition sums over the elements in F×
q rather

than Fq. The literature in finite field hypergeometric sums is not uniform; there can be
a discrepancy when one defines ε(0) to be nonzero or defines the set of summation in the
Gauss sum to include 0 (over Fq, instead of F×

q ) in the Gauss sum. First, some authors
impose that ε(0) = 0 [FLRST22, McC12] while others use the convention that ε(0) = 1
[IR90, BCM15, Coh2]. Second, some authors will alter the summation in the definition of a
Gauss sum to be over the elements in Fq rather than F×

q (e.g., [IR90, McC12] sum over Fq

but [FLRST22, BCM15] sum over F×
q ).
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With this definition for Gauss sum, we have the following standard properties:

Proposition 4.1.6. We have that g(0) = −1 and, for α ∈ (1/q×)Z ∖ Z,

(4.1.7) g(α)g(−α) = ωα(−1)q.

Proof. See Cohen [Coh2, Lemma 2.5.8 and Proposition 2.5.9]. □

4.2. Jacobi sums. We recall a definition for Jacobi sums.

Definition 4.2.1. Let α, β ∈ (1/q×)Z. We define the Jacobi sum

J(α, β) =
∑

x∈Fq\{0,1}

ωα(x)ωβ(1− x).

Remark 4.2.2. Again, there are different conventions for the set of summation of a Jacobi
sum, which can lead to discrepancies just as in the case of Gauss sums. We have adopted
the convention that ε(0) = 0, so the set of summation in Definition 4.2.1 can be extended to
x ∈ Fq, adding zero.

The rest of this subsection presents identities for Jacobi sums and Gauss sums that we
find useful to compute #X(Fq) in the next section.

Proposition 4.2.3. Let α, β ∈ (1/q×)Z. Then

(4.2.4) J(α,−β) = g(α)g(−β)
g(α− β)

+

{
ω−β(−1)q×, if α− β ∈ Z;
0, otherwise.

Proof. We give a proof that is a straightforward modification of Ireland–Rosen [IR90, §8.3,
Theorem 1] once we carefully track the consequences of taking ε(0) = 0 instead.
We have the following expansion of the product g(α)g(−β):

(4.2.5)

g(α)g(−β) =

∑
x∈F×

q

ωα(x)Θ(x)

∑
y∈F×

q

ω−β(y)Θ(y)



=
∑

x,y∈F×
q

ωα(x)ω−β(y)Θ(x+ y) =
∑
u∈Fq

 ∑
x,y∈F×

q
x+y=u

ωα(x)ω−β(y)

Θ(u)

Note that when u = 0 we can use the fact that y = −x to obtain the following

(4.2.6)

∑
x,y∈F×

q
x+y=0

ωα(x)ω−β(y) = ω−β(−1)
∑
x∈F×

q

ωα−β(x) =

{
ω−β(−1)q× if α− β ∈ Z
0 otherwise.

Next, if u ̸= 0 then we can rescale by a factor of u to get the following

(4.2.7)

∑
x,y∈F×

q
x+y=u

ωα(x)ω−β(y) =
∑

x′,y′∈F×
q

x′+y′=1

ωα(ux′)ω−β(uy′) = ωα−β(u)
∑

x′,y′∈F×
q

x′+y′=1

ωα(x′)ω−β(y′).
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So then, if α− β /∈ Z, we can simplify to get
(4.2.8)

g(α)g(−β) =
∑
u∈F×

q

ωα−β(u)

 ∑
x,y∈F×

q
x+y=1

ωα(x)ω−β(y)

Θ(u) = g(α− β)
∑

x,y∈F×
q

x+y=1

ωα(x)ω−β(y).

Changing the summation to be over one variable, dividing by g(α − β), and using the fact
that g(0) = −1, we obtain

(4.2.9)
g(α)g(−β)
g(α− β)

=
∑

x∈Fq\{0,1}

ω(x)αω(1− x)β −

{
ω−β(−1)q×, if α− β ∈ Z;
0, otherwise.

□

Corollary 4.2.10. We have

(4.2.11)
g(α)g(−β)
g(α− β)

=


J(α,−β) if α− β /∈ Z;
−1 if α ∈ Z or β ∈ Z;
−ωα(−1)q if α− β ∈ Z but α /∈ Z.

Proof. The first case is Proposition 4.2.3 and the latter two cases follow immediately from
Proposition 4.1.6. □

Corollary 4.2.12. Let α, β ∈ Q/Z and suppose that α− β ∈ Z, but α /∈ Z. Then

J(α,−β) = −ωα(−1) = q−1 g(α)g(−β)
g(α− β)

.

Proof. Since α − β ∈ Z, we have ωα(−1) = ω−β(−1). By combining Proposition 4.2.3 and
Corollary 4.2.10, we compute

J(α,−β) = −ωα(−1)q + ω−β(−1)q× = ωα(−1)(−q + q×) = −ωα(−1).

Applying Corollary 4.2.10 again proves the second identity. □

The following two lemmas are relations for Jacobi sums induced by using Möbius trans-
formations that we use in the next section.

Lemma 4.2.13. If q×α ∈ Z, then

J(α,−α) =

{
−ωα(−1), if α /∈ Z;
q× − 1, if α ∈ Z.

Proof. We apply the Möbius transformation M(x) = x/(1 − x). Note M({0, 1,∞}) =
{0,−1,∞} and M is an involution. Using the definition of the Jacobi sum and rearranging
the sum, we compute

J(α,−α) =
∑

x∈Fq\{0,1}

ωα(x)ω−α(1− x) =
∑

x∈Fq\{0,1}

ωα(x/(1− x)) =
∑

x∈Fq\{0,−1}

ωα(x)

which gives the result by simplifying using character theory. □
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Lemma 4.2.14. Let α, β ∈ (1/q×)Z. We have∑
x∈Fq\{0,1}

ωα(x)ωβ(1− x) =
∑

x∈Fq\{0,1}

ωα(−x)ω−β−α(1− x).

Proof. We apply the Möbius transformation M(x) = x/(x− 1) to the left hand side to rear-
range the sum. Note the summing indexation does not change as M({0, 1,∞}) = {0, 1,∞}.
After computing that 1−M(x) = (1− x)−1 under this transformation, we compute∑

x∈Fq\{0,1}

ωα(x)ωβ(1− x) =
∑

x∈Fq\{0,1}

ωα(x/(x− 1))ω−β(1− x)

=
∑

x∈Fq\{0,1}

ωα(−x)ω−β−α(1− x). □

4.3. Hecke Grossencharacters. In this section, we briefly review how Gauss sums and
Jacobi sums yield Hecke Grossencharacters (or Grössencharaktere) over cyclotomic fields.
This idea goes back to Weil [Wei52] and has been investigated by many authors; see Watkins
[Wat18] for an explicit version.

Although the theory is quite general, we focus on the case of interest. Let m ∈ Z≥1. We
work with K := Q(ζm) with ring of integers ZK = Z[ζm]. We consider Q(ζm) ⊂ C by taking
ζm = exp(2πi/m). Let p ⊆ ZK be a prime ideal that is coprime to m, and write q = Nm(p)
for its norm and let Fp := ZK/p for its residue field. Denote by

(4.3.1) χ
1/m
p : F×

p → ⟨ζm⟩

the character uniquely characterized by the condition that

χ
1/m
p (x) ≡ x(q−1)/m (mod p).

We extend by zero to Fp. The character χ
1/m
p has order m, so under a choice of isomorphism

ZK/p ≃ Fq it corresponds to ω1/m (see Remark 4.1.4). Θ is an additive character, so it is
independent of this choice of isomorphism.

We may therefore extend our notation to this setting as follows. Given α ∈ (1/m)Z, we
define the Gauss sum for p as

(4.3.2) gp(α) :=
∑

x∈ZK/p

χα
p (x)Θ(x).

And for ααα,βββ ⊂ (1/m)Z satisfying #ααα = #βββ = n, we define

(4.3.3) ψααα,βββ(p) :=
n∏

i=1

gp(αi)gp(−βi)
gp(αi − βi)

.

Theorem 4.3.4. The assignment p 7→ ψααα,βββ(p) defines a Hecke Grossencharacter ψααα,βββ for
Q(ζm) with the property that if σk(ζm) = ζkm for k ∈ (Z/mZ)×, then σk(ψα,β) = ψkα,kβ.

Proof. See Watkins [Wat18, §2.2]. Galois equivariance can also be proven directly from the
definitions using the fact that σk ◦ ω = ωk and σk ◦ Θ = Θ (analogously to [DKSSVW20,
Lemma 4.9.1(a)]). □
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4.4. A formula for (period-normalized) hypergeometric functions. With the anal-
ogy between Gauss sums and the Γ-function in mind, but thinking in terms of periods, we
make the following definition.

Definition 4.4.1. Let ααα,βββ ⊂ (1/q×)Z be hypergeometric parameters with #ααα = #βββ = n.
For t ∈ F×

q , we define the (period-normalized) hypergeometric sum by

(4.4.2) H(ααα,βββ, t) :=
1

q×

q×−1∑
µ=0

G(ααα + µ/q×,βββ + µ/q×)ω((−1)nt)µ/q× ,

where

(4.4.3) G(ααα,βββ) :=
n∏

i=1

g(αi)g(−βi)
g(αi − βi)

.

Remark 4.4.4. Definition 4.4.1 is called period-normalized because it takes into account the
factor γααα,βββ in Euler’s integral formula (Lemma 2.2.2), following the convention of Fuselier–
Long–Ramakrishna–Swisher–Tu [FLRST22]. It is a twist of the definition in Beukers–Cohen–
Mellit [BCM15],

H(ααα,βββ, t) = G(ααα,βββ)HBCM(ααα,βββ, t)

which can be identified with a Hecke Grossencharacter over Q(ζm) (Theorem 4.3.4). See also
Remark 4.4.6 below. For a complete comparison with the many other versions of finite field
hypergeometric functions given in the literature, we refer the reader to [FLRST22, §4.4].

In Definition 4.4.1, note that we do not require the standard assumption in complex
hypergeometric functions that βn = 1. However, one may reduce to this case by introducing
a twist, shifting all parameters by 1− βn as in the complex case, according to the following
lemma.

Lemma 4.4.5. If q×δ ∈ Z, then
Hq(ααα + δ,βββ − δ, t) = Hq(ααα,βββ, t).

Proof. Immediate from reordering the sum, replacing µ← µ+ q×δ. □

Remark 4.4.6. Note that Definition 4.4.2 depends on pairing up the numerator and denom-
inator parameters (they can be permuted simultaneously by Sn), whereas the definition
given by Beukers–Cohen–Mellit [BCM15] does not (can permute numerator and denomi-
nator parameters separately, by Sn × Sn). On the other hand, our definition is invariant
under the shift given in Lemma 4.4.5, whereas the normalization given in loc. cit. does not.
Both normalizations have their advantages and reflect the fact that one can always twist
hypergeometric motives.

Recall the canonical isomorphism Gal(Q(ζm) |Q) ∼= (Z/mZ)×. Let H be the subgroup of
k ∈ (Z/mZ)× such that kααα, kβββ is a permutation of ααα,βββ (simultaneous reordering), and let
Kααα,βββ = Q(ζm)

H ⊆ Q(ζm) ⊆ C× be the subfield fixed under H.

Lemma 4.4.7. We have Hq(ααα,βββ, t) ∈ Kααα,βββ and Hq(pααα, pβββ, t) = Hq(ααα,βββ, t
p).

Proof. Repeat the proof of [DKSSVW20, Lemma 3.2.10], observing that G(ααα,βββ) has the
same invariance so the conclusion holds as well for the period-normalized sum. □
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Definition 4.4.8. Let ααα,βββ be hypergeometric parameters with #ααα = #βββ. We say that αi

or βi is a degenerate parameter if βi− αi ∈ Z. We say the parameters are degenerate if there
exists a degenerate parameter, else they are nondegenerate. Finally, we say the parameters
are isotypically degenerate if there is exactly one degenerate parameter.

Example 4.4.9. The parameters ααα = (1/2, 3/4), βββ = (0, 1/4) are nondegenerate; ααα =
(1/2, 1/2, 1/4) and βββ = (1/2, 1/2, 3/4) are isotypically degenerate with the unique degen-
erate parameter 1/2 having multiplicity 2, and ααα = (1/2, 0, 1/4) and βββ = (1/2, 0, 3/4) are
degenerate but not isotypically degenerate.

Remark 4.4.10. The condition in Definition 4.4.8 has previously been known as primitive in
the literature [FLRST22]; however, the condition is not that a failure of coprimality of some
kind, but rather that the period-normalized hypergeometric sum decomposes nontrivially as
sums in the degenerate case when one considers the Gauss sums in light of Proposition 4.2.3.

4.5. Hypersurface point counts. We now prove an identity that allows us to use our
period-normalized hypergeometric sum to count points when the hypergeometric parameters
are nondegenerate. This is in analogy with the recursive definition given in [FLRST22], but
our proof does not require any recursive argument or definition.

For the remainder of this section, we suppress the dependence on q and write just H = Hq.

Proposition 4.5.1. Let ααα,βββ ⊂ (1/q×)Z be nondegenerate parameters such that #ααα = #βββ =
n. Let t ∈ Fq ∖ {0, 1}. Then

(4.5.2)
∑

(xi)∈(Fq\{0,1})n
tx1···xn=1

(
n∏

i=1

ωαi(−xi)ωβi−αi(1− xi)

)
= −H(ααα,βββ, t).

Remark 4.5.3. The summation in (4.5.2) does not change if we add in points where xi = 0
or 1 for any i since our convention in §4 imposes that χ(0) = 0 for all characters χ.

Proof. By Proposition 4.2.3 using the nondegeneracy hypothesis along with Definition 4.2.1,

(4.5.4)

G(ααα + µ/q×,βββ + µ/q×) =
n∏

i=1

g(αi)g(−βi)
g(αi − βi)

=
n∏

i=1

J(αi + µ/q×,−µ/q× − βi)

=
n∏

i=1

 ∑
xi∈Fq\{0,1}

ωµ/q×+αi(xi)ω
−µ/q×−βi(1− xi)


=

n∏
i=1

 ∑
xi∈Fq\{0,1}

ωµ/q×+αi(−xi)ωβi−αi(1− xi)

 ,

where the last line follows from applying Lemma 4.2.14.
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We then plug (4.5.4) into Definition 4.4.1 and cancel signs to obtain
(4.5.5)

H(ααα,βββ, t) = − 1

q×

q×−1∑
µ=0

 n∏
i=1

∑
xi∈Fq\{0,1}

ωαi(−xi)ωβi−αi(1− xi)ωµ/q×(−xi)

ω((−1)nt)µ/q×

= −
∑

(xi)∈(Fq\{0,1})n

n∏
i=1

ωαi(−xi)ωβi−αi(1− xi)

 1

q×

q×−1∑
µ=0

ω(tx1 · · ·xd)µ/q
×

 .

Finally, by character theory the latter term is 1 or 0 as tx1 · · ·xd = 1 or not; so the sum
becomes

H(ααα,βββ, t) = −
∑

(xi)∈(Fq\{0,1})n
tx1···xn=1

n∏
i=1

ωαi(−xi)ω(βi−αi)(1− xi). □

4.6. Hypergeometric L-series. To conclude, we globalize. Suppose that αi−βj ̸∈ Z for all
i, j = 1, . . . , n (a fundamental premise of our paper is to analyze degeneracies separately).
Let t ∈ Q ∖ {0, 1}, and let S(ααα,βββ, t) be the set of primes dividing m together with the
numerator or denominator of either t or t− 1; we call these primes bad.
Let p ̸∈ S(ααα,βββ) be a good prime, let q = pf = Nm(p) for any prime p in Z[ζm] above

p. Then in particular q×ααα, q×βββ ⊂ Z. We recall (Definition 4.4.1, Lemma 4.4.7) the period-
normalized hypergeometric sum Hq(ααα,βββ, t) ∈ Kααα,βββ ⊆ Q(ζm). We define its exponential
generating series

(4.6.1) Lq(H(ααα,βββ, t), T ) := exp

(
∞∑
r=1

Hqr(ααα,βββ, t)
T r

r

)
∈ 1 + TKααα,βββ[[T ]].

and the product

(4.6.2) Lp(H(ααα,βββ, t),Q(ζm), T ) :=
∏

k∈(Z/mZ)×/⟨p⟩

Lq(H(kααα, kβββ, t), T f ) ∈ 1 + TKααα,βββ[[T ]].

Lemma 4.6.3. We have

(4.6.4) Lp(H(ααα,βββ, t),Q(ζm), T ) ∈ 1 + TQ[[T ]]

and

(4.6.5) Lp(H(ααα,βββ, t),Q(ζm), T ) = Lp(H(kααα; kβββ, t),Q(ζm), T )

for all k ∈ Z coprime to p and m.

Proof. Repeat the argument in [DKSSVW20, Lemma 4.1.9] (our sum is period-normalized,
but the same argument applies). □

The following result due to Katz is foundational.

Theorem 4.6.6 (Katz). Lq(H(ααα,βββ, T ) ∈ 1 + TQ(ζm)[T ] is a polynomial of degree n.

Proof. See [Kat90, Theorem 8.4.2]. The finite field hypergeometric sum [Kat90, (8.2.7)] is
the trace on a sheaf of rank n obtained from convolution. (More generally, see also Katz’s
work on rigid local systems [Kat96, Chapter 8].) □
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5. Point counts in cyclic covers and for the family Yaaa,bbb,m

In this section, we count points on fibers of the family Xaaa,bbb,m defined in (3.2.4), obtained
as a partial compactification of the family defined in (3.1.3). We continue the notation from
the previous sections.

5.1. Character sums and primitive point counts. Throughout this section, let q be a
prime power with gcd(m, q) = 1, and let mq := gcd(m, q×). To count points over Fq, we
require the following basic proposition which relates them to character sums.

Proposition 5.1.1. For all x ∈ F×
q ,

#{y ∈ F×
q : ym = x} = #{y ∈ F×

q : ymq = x} =
mq∑
k=1

ωk/mq(x).

Proof. Straightforward character theory, e.g. generalizing Ireland–Rosen [IR90, Proposition
8.1.5]. □

In particular, Proposition 5.1.1 implies that our point counts below over Fq will only need
to consider characters of order dividing mq.

We organize the sum in Proposition 5.1.1 into pieces as follows. Suppose that t ∈ Fq ∖
{0, 1}. We define the primitive point count for Yaaa,bbb,mq ,t over Fq by

(5.1.2) Paaa,bbb,mq ,t(Fq) :=
∑

k∈(Z/mqZ)×

∑
x∈(Fq∖{0,1})n

tx1···xn=1

ωk/mq(faaa,bbb(x)).

Example 5.1.3. When mq = 1, we interpret the sum as over one index k = 0, and

Paaa,bbb,1,t(Fq) = #Un(Fq) = #{x ∈ (Fq ∖ {0, 1})n : tx1 · · ·xn = 1}.
We have

#Un(Fq) = (q − 2)n−1 −#Un−1(Fq)

and #U1(Fq) = 1 (since t ̸= 1), so

Paaa,bbb,1,t(Fq) =
n−1∑
i=0

(−1)i(q − 2)n−1−i =
(q − 2)n − (−1)n

q − 1
.

Lemma 5.1.4. We have

#Yaaa,bbb,m,t(Fq) = #Yaaa,bbb,mq ,t(Fq) =
∑
d|mq

Paaa,bbb,d,t(Fq).

Proof. Applying Proposition 5.1.1 and organizing according to d = gcd(k,mq), still with
mq = gcd(m, q×) we have

(5.1.5)

#Yaaa,bbb,m,t(Fq) =
∑

x∈(Fq∖{0,1})n
tx1···xn=1

mq∑
k=1

ωk/mq(faaa,bbb(x))

=
∑
d|mq

∑
k∈(Z/(mq/d)Z)×

∑
x∈(Fq∖{0,1})n

tx1···xn=1

ωdk/mq(faaa,bbb(x)) =
∑
d|mq

Paaa,bbb,mq/d,t(Fq)

which gives the result swapping d and mq/d. □
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Recall Y ′
aaa,bbb,m,I,t from (3.2.10). Since Y ′

aaa,bbb,m,I,t is a twist of YaaaI ,bbbI ,m,t, defining

(5.1.6) P ′
aaa,bbb,m,I,t(Fq) :=

∑
k∈(Z/mqZ)×

(−1)(kq×/m)(
∑

i ̸∈I ai)
∑

x∈(Fq∖{0,1})#I

t
∏

i∈I xi=1

ωk/mq(faaaI ,bbbI (x)),

in much the same way we conclude the following.

Corollary 5.1.7. We have

#Y ′
aaa,bbb,m,I,t(Fq) = #Y ′

aaa,bbb,mq ,I,t(Fq) =
∑
d|mq

P ′
aaa,bbb,d,I,t(Fq).

Proof. The proof is almost verbatim that of Lemma 5.1.4, after taking into consideration
the twist. □

Remark 5.1.8. We use the word primitive because we are motivated by thinking about these
point counts as arising from the action of Frobenius on compactly supported étale cohomol-
ogy; then the group scheme µm acts, and we think of the above pieces as corresponding to
those where this group acts by a primitive dth root of unity for d | mq. Unfortunately, we
are not able to make this analogy a method of proof, because we do not have the necessary
control over this cohomological action—so we must be indirect instead.

5.2. Setup. By definition, the scheme Xaaa,bbb,m is naturally stratified based on whether or not
xi = 1. We recall (3.2.10), that for I ⊆ {1, . . . , n}, the restriction of Xaaa,bbb,m to the subset
where xi ̸= 1 for i ∈ I and xi = 1 for i ̸∈ I is given by Y ′

aaa,bbb,m,I by Lemma 3.2.11. Hence

(5.2.1) #Xaaa,bbb,m,t(Fq) =
∑

I⊆{1,...,n}

#Y ′
aaa,bbb,m,I,t(Fq) =

∑
I⊆{1,...,n}

#Y ′
aaa,bbb,mq ,I,t(Fq).

We remark and emphasize that this is exactly possible due to the construction of the partial
compactification. In light of (5.2.1), without loss of generality we may suppose that m =
mq = gcd(m, q×).

Next, we decompose the point counts on the open sets into their primitive parts using
Corollary 5.1.7. Substituting into (5.2.1), recalling aaaI , bbbI ,mI , in (3.2.9), we may now inter-
changing the order of summation:

(5.2.2)

∑
I

#Y ′
aaa,bbb,m,I,t(Fq) =

∑
I

∑
d|mI

∑
k∈(Z/dZ)×

∑
(xi)∈(Fq\{0,1})I

t
∏

i∈I xi=1

ωk
∑

i/∈I ai/d(−1)ωk/d(faaaI ,bbbI ,mI
(x))

=
∑
d|m

∑
I

d|mI

∑
k∈(Z/dZ)×

∑
(xi)∈(Fq\{0,1})I

t
∏

i∈I xi=1

ωk
∑

i/∈I ai/d(−1)ωk/d(faaaI ,bbbI ,mI
(x))

=
∑
d|m

∑
I

d|mI

P ′
aaa,bbb,d,I,t(Fq).

To proceed, we need to study the fibers of the map I 7→ mI .

Lemma 5.2.3. The map

P({1, . . . , n})→ {d : d | m}
I 7→ mI = gcd({bi − ai : i ̸∈ I} ∪ {m})
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from the power set to the set of divisors of m is a map of posets: if I ⊆ I ′ then mI | mI′.

Proof. This is straightforward upon unravelling the partial orderings. □

To organize the subsets I as in (5.2.2), it is natural to look at the subset of indices i such
that d | (bi− ai); in terms of posets, by definition this set is the maximal I such that d | mI .
However, it is more convenient to work with the complement (so a minimal set). We define

(5.2.4) Id := {i : d ∤ (bi − ai)} ⊆ [n] := {1, . . . , n}.

We thus can write

(5.2.5)
∑
I

#Y ′
aaa,bbb,m,I,t(Fq) =

∑
d|m

∑
I⊇Id

P ′
aaa,bbb,d,I,t(Fq).

5.3. Explicit hypergeometric point count. We now observe a remarkable Möbius-like
cancellation; this theorem forms the technical heart of the paper.

Theorem 5.3.1. Let

Q′
d,t = Q′

aaa,bbb,d,t :=
∑
I⊇Id

P ′
aaa,bbb,d,I,t(Fq).

(a) If [n] = Id then

Q′
d,t = −

∑
k∈(Z/dZ)×

Hq(kaaa/d, kbbb/d, t).

(b) Suppose [n] ̸= Id and ai − aj ∈ dZ for all i, j ∈ [n] \ Id. Let j such that j /∈ [n] \ Id,
and let c = aj. Then

(5.3.2)

Q′
d,t = (−1)#Id

∑
k∈(Z/dZ)×

ω−kc/d(t)(q×)n−#Id−1

·

( ∏
i∈Id

c−bi /∈dZ

ψk(ai−c)
d

,
k(bi−ai)

d

)(
ωk

∑n
i=1 ai/d(−1)

∏
i∈Id

c−bi∈dZ

ωk(ai−c)/d(−1)

)
.

(c) If [n] ̸= Id and there exists i, j ∈ [n] \ Id so that ai − aj /∈ dZ, then Q′
d,t = 0.

Proof. For (a), we start with the definition (5.1.6) and use the hypothesis to simplify to

∑
I⊇Id

P ′
aaa,bbb,d,I,t =

∑
k∈(Z/dZ)×

∑
x∈(Fq∖{0,1})n

tx1···xn=1

n∏
i=1

ωkai/d(−xi)ωk(bi−ai)/d(1− xi).

Applying Proposition 4.5.1 obtains the result.
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For (b) and (c), choose some j ∈ [n] \ Id, i.e., bj − aj ∈ dZ and write Ij := I ∪ {j}. Then
(5.3.3)

Q′
d,t =

∑
I

Id⊆I⊆[n]\{j}

P ′
aaa,bbb,d,I,t.+ P ′

aaa,bbb,d,Ij ,t
.

=
∑
I

∑
k∈(Z/dZ)×

∏
i/∈I

ωkai/d(−1)

 ∑
(xi)∈(Fq\{0,1})I

t
∏

i∈I xi=1

∏
i∈I

ωkai/d(−xi)ωk(bi−ai)/d(1− xi)

+
∑

(xi)∈(Fq\{0,1})Ij
t
∏

i∈Ij
xi=1

ωkaj/d(xj)
∏
i∈I

ωkai/d(−xi)ωk(bi−ai)/d(1− xi)


=
∑
I

∑
k

ωk
∑

i/∈I ai/d(−1)
∑

(xi)∈(Fq\{0,1})I
xj∈Fq\{0}
t
∏

i∈Ij
xi=1

ωkaj/d(xj)
∏
i∈I

ωkai/d(−xi)ωk(bi−ai)/d(1− xi)

The first equality is from partitioning the summation over when I contains j or not, the
second is pulling out a common character, and the third is realizing one can combine the
sums into a summation over all xj ∈ Fq since the first sum is when xj = 1. We now substitute
xj = (t

∏
i∈I xi)

−1 and continue.
For each I ⊇ Id and k ∈ (Z/dZ)×, we have

(5.3.4)∏
i/∈I

ωkai/d(−1)
∑

(xi)∈(Fq\{0,1})I
ω−kaj/d(t

∏
i∈Ixi)

∏
i∈I ω

kai/d(−xi)ωk(bi−ai)/d(1− xi)

= ωk(
∑n

i=1 ai)/d(−1)ω−kaj/d(t)
∑

(xi)∈(Fq\{0,1})I

∏
i∈I

ωk(ai−aj)/d(−xi)ωk(bi−ai)/d(1− xi)

= ωk(
∑n

i=1 ai)/d(−1)ω−kaj/d(t)
∏
i∈I

∑
xi∈(Fq\{0,1})

ωk(ai−aj)/d(−xi)ωk(bi−ai)/d(1− xi)

= ωk(
∑n

i=1 ai)/d(−1)ω−kaj/d(t)
∏
i∈I

J(k(ai − aj)/d, k(bi − ai)/d).

We focus on the quantity J(k(ai−aj)/d, k(bi−ai)/d). This quantity can be made explicit.
If i ∈ Id, then we apply Corollary 4.2.10 when aj − bi /∈ dZ and Corollary 4.2.12 when
aj − bi ∈ dZ to obtain

(5.3.5) J(k(ai − aj)/d, k(bi − ai)/d) =

ψk(ai−aj)

d
,
k(bi−ai)

d

, if bi − aj /∈ dZ;

−ωk(ai−aj)/d(−1), if bi − aj ∈ dZ.
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If i /∈ Id then bi − ai ∈ dZ, so

(5.3.6) J(k(ai − aj)/d, k(bi − ai)/d) =
∑

x∈Fq\{0,1}

ωk(ai−aj)/d(x) =

{
−1 if ai − aj /∈ dZ;
q× − 1 if ai − aj ∈ dZ.

Substituting these into (5.3.4), summing over I and k, and substituting back into (5.3.3) we
obtain
(5.3.7)

Q′
d,t =

∑
I⊇Id

∑
k∈(Z/dZ)×

∑
(xi)∈(Fq\{0,1})I

t
∏

i∈I xi=1

ωk
∑

i/∈I ai/d(−1)ωk/d(faaaI ,bbbI ,mI
)

=
∑

k∈(Z/dZ)×
ωk

∑n
i=1 ai/d(−1)ω−kaj/d(t)

 ∏
i∈Id

aj−bi /∈dZ

ψk(ai−aj)

d
,
k(bi−ai)

d


 ∏

i∈Id
aj−bi∈dZ

−ωk(ai−aj)/d(−1)

 · ∑
I

Id⊆I⊆[n]\{j}

 ∏
i∈I\Id

ai−aj /∈dZ

−1


 ∏

i∈I\Id
ai−aj∈dZ

q× − 1


We focus on this second line. We can compute by rearranging the sum into a product of
binomials
(5.3.8)

∑
I

Id⊆I⊆[n]\{j}

 ∏
i∈I\Id

ai−aj /∈dZ

(−1)


 ∏

i∈I\Id
ai−aj∈dZ

(q× − 1)

 =

 ∏
i∈I\Id

ai−aj /∈dZ

((−1) + 1)


 ∏

i∈I\Id
ai−aj∈dZ

((q× − 1) + 1)

 .

So the entire quantity vanishes if there exists j, k ∈ [n] \ Id so that ak−aj /∈ dZ, proving (c).
Otherwise, if ak − aj ∈ dZ for all j, k ∈ [n] \ Id, we obtain

(5.3.9)

Q′
d,t =

∑
I⊇Id

∑
k∈(Z/dZ)×

∑
(xi)∈(Fq\{0,1})I

t
∏

i∈I xi=1

ωk
∑

i/∈I ai/d(−1)ωk/d(faaaI ,bbbI ,mI
)

=
∑

k∈(Z/dZ)×
ωk

∑n
i=1 ai/d(−1)ω−kaj/d(t)(q×)n−#Id−1

·

( ∏
i∈Id

aj−bi /∈dZ

ψk(ai−aj)

d
,
k(bi−ai)

d

)( ∏
i∈Id

aj−bi∈dZ

−ωk(ai−aj)/d(−1)

)

as claimed. □

Remark 5.3.10. We are led to think of the outcome of Theorem 5.3.1 as some indication that
in a degenerate setting, the hypergeometric motive becomes a Jacobi motive. The expression
in Theorem 5.3.1(b) is complicated because we work over the torus, leaving pieces in every
dimension. We leave the further pursuit of this notion of degeneration for future work.
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5.4. Proof of main result. We now are now staged to complete the proof of our main
result, taking the point counts over finite fields and assembling them into the zeta function.

Recalling §4.6, let S = S(ααα,βββ, t) be the set of bad primes. Then by definition

(5.4.1) ζS(Xaaa,bbb,m,t, s) =
∏
p ̸∈S

Zp(Xaaa,bbb,m,t, p
−s)

where Zp(Xaaa,bbb,m,t, T ) ∈ Q(T ) is the zeta function (exponential generating series) over Fp.
We recall (Theorem 4.3.4) that Gauss sums give rise to Hecke Grossencharacters for Q(ζm).

Anticipating (5.3.2) (in Theorem 5.3.1(b)), we will need a twist, defined as follows. Let d | m,
and suppose that aaa/d, bbb/d is isotypically degenerate for c/d. As before, we write e(aaa/d, bbb/d)
for the multiplicity of c/d in aaa/d. Then for p ⊆ Z[ζd] above a good prime p, we define

(5.4.2) ψaaa,bbb,d,t(p) = ω−c/d(t)

(
ω
∑n

i=1 ai/d(−1)
∏
i∈Id

c−bi∈dZ

ωk(ai−c)/d(−1)

)( ∏
i∈Id

c−bi /∈dZ

ψai−c
d

,
bi−ai

d

(p)

)

where we recall (5.2.4)

Id = {i : d ∤ (bi − ai)} ⊆ [n] := {1, . . . , n}.

Theorem 5.4.3. For p good, we have

Zp(Xaaa,bbb,m,t, T ) =
∏
d|m


Lp(H(aaa/d, bbb/d, t),Q(ζd), T ), if aaa/d, bbb/d is nondegenerate;

Zp((Gm)
e(aaa/d,bbb/d)−1,Q(ζd), T, ψaaa,bbb,d,t)

(−1)n−e(aaa/d,bbb/d)
,

if aaa/d, bbb/d is isotypically
degenerate;

1, else.

Proof. Let q = pr with r ≥ 1. We get organized by (5.2.1) and note that after that we need
to substitute mq = gcd(m, q×) for m. So and plug in (5.2.5) to get

(5.4.4) #Xaaa,bbb,m,t(Fq) =
∑
d|mq

∑
I⊇Id

P ′
aaa,bbb,d,I,t(Fq) =

∑
d|mq

Q′
d,t(Fq),

where the latter suppresses notation, staging for Theorem 5.3.1. Thus

(5.4.5)

logZp(X,T ) =
∞∑
r=1

#X(Fpr)
T r

r
=

∞∑
r=1

( ∑
d|gcd(m,pr−1)

Q′
d,t(Fpr)

)
T r

r

=
∑
d|m

∑
r

d|(pr−1)

Q′
d,t(Fpr)

T r

r
.

Now let fd be the order of p modulo d, and let qd := pfd ; then d | (pr−1) if and only if fd | r.
Exponentiating (5.4.5) and substituting then gives

(5.4.6) Zp(X,T ) =
∏
d|m

exp

( ∞∑
r=1

Q′
d,t(Fqrd

)
(T fd)r

r

)
.

To finish, we plug in Theorem 5.3.1 in three cases. In the first case, we recognize the sum
over Galois conjugates in part (a) from (4.6.2). In the second case, we apply part (b) having
defined the Hecke Grossencharacter in (5.4.2), again with its Galois conjugates. The third
case gives no contribution. □
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Proof of Theorem 1.2.4. For the partial compactification, see Proposition 3.2.5; then in each
term of the product in (5.4.1) apply Theorem 5.4.3. □

6. Examples

To conclude, we give a few examples. Our computations are performed inMagma [BCP97].

6.1. Curve. Consider the case m = 4 with aaa = (1, 0) and bbb = (3, 2). Then Y is defined by

y4 = (−x1)(1− x1)2(1− x2)2; tx1x2 = 1

where x1, x2 ̸= 0, 1. Our partial compactification X ⊆ (Gm)
2×A3 is defined by the equations

tx1x2 = y1 = 1, x1, x2 ̸= 0,

together with

y44 = (−x1)(1− x1)2(1− x2)2; y24 = y2(1− x1)(1− x2); y22 = (−x1).

Theorem 1.2.4 gives the zeta function of X as the product over d = 1, 2, 4. We compute that
I4 = {1, 2}, I2 = ∅, and I1 = ∅. The first case has nondegenerate parameters; the second
degenerate but not isotypic parameters (1/2, 0), (1/2, 0); the third degenerate and isotypic
parameters, and trivial Hecke Grossencharacter. Thus

(6.1.1) ζS(X, s) = L(H(1/4, 0; 1/2, 1/2),Q(i), s)ζS(Gm, s).

Running through the proof a bit, with notation as in Theorem 5.3.1, we have that

(6.1.2) #Xaaa,bbb,m,t(Fq) =
∑
d|m

Q′
aaa,bbb,d,I,t

where

Q′
4 = −H(1

4
, 0; 1

2
, 1
2
; t)−H(3

4
, 0; 1

2
, 1
2
; t)

and Q′
2 = 0 and Q′

1 = q×, using each case exactly once. We then obtain that

#Xaaa,bbb,m,t(Fq) =

{
q× −H(1

4
, 0; 1

2
, 1
2
; t)−H(3

4
, 0; 1

2
, 1
2
; t), if q ≡ 1 (mod 4);

q×, otherwise.

Through the zigzag procedure, one can see that the Hodge vectors for the two hypergeo-
metric series are (1, 1) + (1, 1) = (2, 2).

6.2. Surface. Consider the case m = 12 with aaa = (1, 3, 6) and bbb − aaa = (2, 4, 12) so bbb =
(3, 7, 18). Then Y is defined by

y12 = (−x1)(1− x1)2(−x2)3(1− x2)4(−x3)6(1− x3)12

= x1(1− x1)2x32(1− x2)4x63(1− x3)12

together with tx1 · · ·xd = 1 and x1, x2, . . . , xd ̸= 0, 1.
Our partial compactification X ⊆ (Gm)

3 × A6 is defined by the equations

tx1x2x3 = y1 = 1, x1, x2, x3 ̸= 0,
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together with
(6.2.1)

y1212 = (−x1)(1− x1)2(−x2)3(1− x2)4(−x3)6, y612 = y2(1− x1)(1− x2)2(−x3)3,
y412 = y3(−x2)(−x3)2, y312 = y4(1− x2),
y212 = y6(−x3), y66 = (−x1)(1− x1)2(−x2)3(1− x2)4,
y36 = y2(1− x1)(1− x2)2, y26 = y3(−x2),
y44 = (−x1)(1− x1)2(−x2)3(−x3)6, y24 = y2(1− x1)(−x3)3,
y33 = (−x1)(1− x1)2(1− x2)4, y22 = (−x1)(−x2)3

When x1 = 1, the equations (6.2.1) above reduce to

y22 = (−x2)3; y3 = y4 = y6 = y12 = 0.

When x2, x3 ̸= 1, this is Y(3,6),(7,18),2 ≃ Y(1,0),(1,0),2. When x2 = 1 and x3 ̸= 1, we get y22 = −1
in the variables y2, x3. In this case, we can see that the sign is twisted and see that this is
isomorphic to Y ′

(0),(0),2. If instead x3 = 1, we get Y(1),(1),2.

Next, examine the case where x2 = 1 and x1 ̸= 1. The equations (6.2.1) reduce to

y12 = y6 = y3 = 0, y44 = (−x1)(1− x1)2(−x3)6,
y24 = y2(1− x1)(−x3)3 y22 = (−x1)

Using that x3 ̸= 0, one can solve for and eliminate y2, hence we obtain that this stratum
is isomorphic to Y(1,6),(3,6);4 ≃ Y(1,2),(3,2);4 when x3 ̸= 1. If x3 = 1, then it is isomorphic to
Y(1),(3);4.
Lastly, when x3 = 1 and x1, x2 ̸= 1, we can solve for and eliminate y2, y3, y4, y6. Substitute

x3 = 1 into the first equation in (6.2.1), to see this stratum is isomorphic to Y(1,3),(3,7),12.
We compute that I12 = I6 = I3 = {1, 2}, I4 = {1}, and I2 = I1 = ∅. By Theorem 5.3.1,

we compute Q′
aaa,bbb,d,I,t for all d | 12 to be

Q′
aaa,bbb,12,I,t =

∑
k∈(Z/12Z)×

ω−k/2(t)ψ(5k/12,3k/4),(k/6,k/3); Q′
aaa,bbb,4,I,t = 0;

Q′
aaa,bbb,6,I,t =

∑
k∈(Z/6Z)×

ψ(k/6,k/2),(k/3,2k/3); Q′
aaa,bbb,2,I,t = 0;

Q′
aaa,bbb,3,I,t =

∑
k∈(Z/3Z)×

−ψ0,k/3ω
2k/3(−1) = −2; Q′

aaa,bbb,1,I,t = (q×)2.

In this case, there is no hypergeometric motive arising at all! For d = 12, we get the Hodge
numbers (1, 2, 1) over Q(ζ12) (so totalling (4, 8, 4)); for d = 6, we get (1, 0, 1) over Q(ζ6) (so
totalling (2, 0, 2)). Lastly, for d = 1, 3, we get a contribution in the second cohomology of
type (0, 2, 0). In sum, we get a middle Hodge structure of type (6, 10, 6).
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