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Abstract. We consider the transcendental motive of three K3 surfaces X conjectured to
have complex multiplication (CM). Under this assumption, we match these to explicit alge-
braic Hecke quasi-characters ψX , and CM abelian threefolds A. This provides substantial
evidence that a power of A corresponds to X under the Kuga–Satake correspondence.

1. Introduction

K3 surfaces provide a rich class of objects to study in number theory and the Lang-
lands program, testing conjectures that connect arithmetic geometry and automorphic forms
through Galois representations and L-functions.

The case where the Picard number ρ achieves its maximum ρ = 20 (so-called singular) has
been well-studied. Potential modularity was established through their association with alge-
braic Hecke quasi-characters by Shioda–Inose [SI77, §6, Theorem 6] (see also Livné [Liv95]):
the transcendental cohomology has complex multiplication (CM) by an imaginary quadratic
field. The general theory of K3 surfaces with complex multiplication and their fields of defi-
nition is worked out in [Riz05] and [Val23]. Over Q, an explicit correspondence was worked
out by Elkies–Schütt [ES13], rephrased in terms of classical modular forms of weight 3.

Recent efforts towards incorporating K3 surfaces into the L-functions and Modular Forms
Database (LMFDB) [LMFDB] has renewed questions of explicit modularity for K3 surfaces,
but less is known about modularity for K3 surfaces of lower Picard number. In general, a
complex K3 surface X with ρ(X) ≤ 16 does not admit a Shioda–Inose structure. Livné–
Schütt–Yui [LSY10] established modularity for the finitely many K3 Delsarte surfaces (up to
twist): they are quotients of Fermat surfaces (hence CM) and the matching algebraic Hecke
quasi-characters arise from Jacobi sums.

This paper advances these efforts in a new direction, through computation—we hope to
illustrate a mix of algorithmic methods that can be employed more generally. We remain
focused on explicit examples of K3 surfaces with apparent CM of large degree (but not
generated by automorphisms). Indeed, there has been recently renewed interest [BGS24] in
moduli of K3 surfaces with extra Hodge endomorphisms.

Our main result matches the transcendental cohomology of certain K3 surfaces with al-
gebraic Hecke quasi-characters, as follows. For a nice surface X over Q, we let T(X)Q ⊆
H2(X,Q) be the transcendental subspace (see Section 2). For ℓ prime, we have via the com-
parison theorem T(X) ⊗ Qℓ ↪→ H2

ét(X,Qℓ) and we let ρT(X),ℓ : GalQ ⟳ (T(X) ⊗ Qℓ) be the
associated Galois representation.
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Let X = Xi for i = 1, 2, 3 be one of the following three K3 surfaces:

(1.1)

X1 : w
2 = xyz(x3 − 3xy2 + y3 − 3x2z − 3xyz + 9y2z + 6yz2 + z3)

X2 : w
2 = xyz(7x3 − 7x2y + y3 + 49x2z − 21xyz − 7y2z + 98xz2 + 49z3)

X3 : w
2 = xyz

(
49x3 − 304x2y + 361xy2 + 361y3 + 570x2z − 2793xyz

+2888y2z + 2033xz2 − 5415yz2 + 2299z3

)
.

Then dimQℓ
T(Xi) = 6, and there is substantial numerical evidence (via 100 digit approxi-

mations to the period lattices Elsenhans–Jahnel [EJ16, §5]) that in each case, T(Xi)Q has
CM by Ki, where Ki is the cyclic sextic field defined in Table 1. In fact, this CM is by the
maximal order ZKi

in each case.

Theorem 1.2. For i = 1, 2, 3 and X = Xi, the following statements hold.

(a) Suppose T(X)Q has CM by K. Then for all primes ℓ,

(1.3) ρT(X),ℓ ≃ Ind
GalQ
GalK

ψX

where ψX is of ∞-type {(0, 2), (1, 1), (1, 1)} defined in Table 2. In particular, we have

(1.4) L(T(X), s) = L(s, ψX).

(b) Let A = Ai = Jac(Ci) be the Jacobian (abelian threefold) defined in Table 1. Then

(1.5) ρH1(A),ℓ ≃ Ind
GalQ
GalK

ψA

where ψA is of ∞-type {(0, 1), (0, 1), (0, 1)} defined in Table 3, and

(1.6) L(H1(A), s) = L(s, ψA).

(c) We have

(1.7)
ρH2(A),ℓ ≃ Ind

GalQ
GalF

Qℓ(1)⊕ ρT(X),ℓ ⊕ Ind
GalQ
GalK

ψ′

L(H2(A), s) = ζF (s+ 1)L(T(X), s)L(s, ψ′),

where Qℓ(1) is the Tate twist, F ⊆ K is the unique cubic subfield, and ψ′ is of ∞-type
{(0, 2), (0, 2), (1, 1)} defined in Table 4.

This provides substantial evidence that a power of A corresponds to X under the Kuga–
Satake correspondence.

Table 1 comes from Weng [Wen01, §6] and is certified correct [CMSV19]. For the fourth
row (i = 4), we were not able to find a matching K3 surface (among double covers of P2

branched along 6 lines, possibly due to the nontrivial class group), but part (b) still holds;
it would be interesting to produce a K3 surface in this case (not necessarily a double plane).

There is a natural Galois action on algebraic Hecke quasi-characters by ψσ = ψ ◦ σ for
σ ∈ Gal(K |Q), with L(s, ψσ) = L(s, ψ). Up to this natural Galois action, the characters
ψX , ψA, and ψ

′ in Theorem 1.2 are unique.
Our computations are performed inMagma [BCP97]; the code is available online at https:

//github.com/edgarcosta/K3withCM/.
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ported by grants from the Simons Foundation.
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i LMFDB label of Ki Defining equation for Ci

1 6.0.419904.1 y2 = x7 + 6x5 + 9x3 + x

2 6.0.153664.1 y2 = x7 + 7x5 + 14x3 + 7x

3 6.0.8340544.1 y2 = x7 + 1786x5 + 44441x3 + 278179x

4 6.0.59105344.1 y2 = x7 + 961x5 − 3694084x3 + 1832265664x

Table 1. Polynomials defining the CM numberfield and the genus 3 curve.

i cond(ψXi
) Lp(ψXi

, T )

1 64.1 1− 6 · T + 15 · 17 + 12 · 172T 3 + 15 · 173T 4 − 6 · 174T 5 + 176T 6

2 3136.1 1− 2 · T + 19 · 13 + 4 · 132T 3 + 19 · 133T 4 − 2 · 134T 5 + 136T 6

3 23104.1 1 + 14 · T − 5 · 37− 28 · 372T 3 − 5 · 373T 4 + 14 · 374T 5 + 376T 6

4 61504.13 1− 38 · T − 9 · 29 + 52 · 292T 3 − 9 · 293T 4 − 38 · 294T 5 + 296T 6

Table 2. Uniquely defining properties of ψX , up to Gal(K |Q).

i cond(ψAi
) Lp(ψAi

, T )

1 4096.1 1− 6 · T + 15 · T 2 − 52 · T 3 + 15 · 17− 6 · 172T 5 + 173T 6

2 25088.1 1 + 4 · T + 7 · T 2 + 40 · T 3 + 7 · 13 + 4 · 132T 5 + 133T 6

3 184832.1 1 + 4 · T + 15 · T 2 − 152 · T 3 + 15 · 37 + 4 · 372T 5 + 373T 6

4 3936256.41 1 + 4 · T + 51 · T 2 + 216 · T 3 + 51 · 29 + 4 · 292T 5 + 293T 6

Table 3. Uniquely defining properties of ψA, up to Gal(K |Q).

i cond(ψ′
i) Lp(ψ

′
i, T )

1 1.1 1 + 42 · T + 1023 · T 2 + 1132 · 17 + 1023 · 172T 4 + 42 · 174T 5 + 176T 6

2 1.1 1 + 34 · T + 631 · T 2 + 652 · 13 + 631 · 132T 4 + 34 · 134T 5 + 136T 6

3 1.1 1 + 82 · T + 4423 · T 2 + 5452 · 37 + 4423 · 372T 4 + 82 · 374T 5 + 376T 6

4 1.1 1 + 74 · T + 3067 · T 2 + 3268 · 29 + 3067 · 292T 4 + 74 · 294T 5 + 296T 6

Table 4. Uniquely defining properties of ψ′, up to Gal(K |Q).

2. Setup

Let X be a polarized K3 surface over a number field F . We denote by Xal its base change
to F al an algebraic closure of F . We are interested in studying the Galois representations
that arise from H2

ét(X
al,Qℓ), for a prime ℓ. We denote the Néron–Severi group of X by

NS(X). Under the isomorphism NS(X) ≃ Pic(X), we may identify NS(Xal) = H2(XC,Z) ∩
H1,1(X,C) ⊊ H2(XC,Z), where ρ(X) := rkNS(X) is the Picard number. Let T(X) be the
transcendental lattice of X, the orthogonal complement of NS(XC) in H2(X,Z). The space
T(X) is a sub-Hodge structure of H2(XC,Z) with Hodge numbers (1, 20 − ρ(X), 1). Let
E(X) be the algebra of endomorphisms of T(X) that respect the Hodge structure. Zarhin
[Zar83, Theorems 1.5.1, 1.6] has shown that E(X) is either a totally real field or a CM field.

Since NS(Xal) and H2
ét(X

al,Qℓ) come equipped with a Galois action, we also have a Galois
action on T(X)⊗Qℓ, and the Galois representation ρH2,ℓ : Gal(F al |F ) → GO(H2(XC,Z)⊗
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Qℓ) decomposes as ρH2,ℓ = ρNS,ℓ ⊕ ρT,ℓ, where

ρNS,ℓ : Gal(F al |F ) → GO(NS(X)⊗Qℓ) and ρT,ℓ : Gal(F al |F ) → GO(T(X)⊗Qℓ).

Here we focus our attention on the Galois representation ρT,ℓ. We define L-functions associ-
ated to the three representations [Ser70] and

L(H2(X), s) = L(NS(X), s)L(T(X), s).

In the case that dimE(X) T(X) = 1, E(X) is necessarily a CM field, and by class field theory
we have L(T(x), s) = L(ψ, x) for some algebraic Hecke quasi-character ψ over E(X).
We consider K3 surfaces X → P2 as (resolutions of) branched over 6 lines in general (and

in particular in good) position. In this case, ρ(X) = 16.

3. Proof of main result

Under the assumption that the L-function matches an algebraic Hecke quasi-character, to
find the correct one we need to bound its conductor. It seems difficult in general to obtain
such a bound by computing the conductor of the L-function of the K3 surface (though we
expect it to be bounded by the discriminant of the model, defined appropriately). We can
however produce a finite list of possibilities as follows. We start with the list of bad primes
of the K3 surface and the primes above them in K. To bound the exponents of these primes,
recall that (by the p-adic logarithm) the unit groups (ZK,p/p

e)× as e → ∞ have a bounded
number of invariant factors. So to show that the exponent is bounded, we just need to show
that the order of the finite part of the Hecke quasi-character is bounded. For that purpose,
we note the following simple lemma.

Lemma 3.1. Let ψ be an algebraic Hecke quasi-character over K of modulus N and let
M ⊂ C be the field generated by the values of ψ. Let χ : (ZK/N)× → C× be the Dirichlet
character defined by χ(a) = ψ(aZK)ψ∞(a). Then Q(χ) ⊆M .

Proof. By definition, an algebraic Hecke quasi-character takes values in a number field. From
the idelic formulation, we conclude that the subfield generated by the restriction of ψ to the
infinite places is contained in M , hence also Q(χ). □

Proof of Theorem 1.2. We first prove (a). We compute the bad primes for X by checking
if the reduction no longer leads to 15 distinct intersection points of the 6 lines. For the
examples above, we obtained the sets of primes {2, 3}, {2, 7}, and {2, 7, 11, 19}. We bound
the exponents of the primes using Lemma 3.1, and compute the full list of algebraic Hecke
quasi-characters using Magma (see work of Watkins [Wat11] for an algorithmic description)
with the required ∞-type. In the style of Sherlock Holmes, we eliminate all but one (up
the action of Gal(K |Q)) by finding primes p uniquely identifying Lp(T(X), T ) = Lp(ψ, T ).
Part (b) is proven in the same way as part (a).

For part (c), we note that H2(A) ≃
∧

2H1(A), so applying (b) and identifying characters

we find that H2(A) ≃ V1 ⊕V2 ⊕V3 as representations of GalQ, where V1 ≃ Ind
GalQ
GalF

Qℓ(1) and
dimK V2 = dimK V3 = 1. The relationship between the two characters ψA and ψX can be
further encoded by the equality

(3.2) ψX(p) = ψA(σ1(p))ψA(σ2(p))

for all unramified primes p of degree 1 and where σ1, σ2 ∈ Gal(K |Q) are the two elements
of order 3. We then finish as in (a). □
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