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Explicit modularity of K3 surfaces
with complex multiplication of large degree

Edgar Costa, Andreas-Stephan Elsenhans, Jörg Jahnel, and John Voight

Abstract. We consider the transcendental motives of three K3 surfaces X

conjectured to have complex multiplication (CM). Under this assumption, we

match these to explicit algebraic Hecke quasi-characters ψX , and CM abelian
threefolds A. This provides substantial evidence that a power of A corresponds

to X under the Kuga–Satake correspondence.

1. Introduction

K3 surfaces provide a rich class of objects to study in number theory and
the Langlands program, testing conjectures that connect arithmetic geometry and
automorphic forms through Galois representations and L-functions.

The case where the Picard number ρ achieves its maximum ρ = 20 has been
well-studied. Potential modularity was established through their association with
algebraic Hecke quasi-characters (also called Hecke Grossencharacters or just Hecke
characters) by Shioda–Inose [SI77, §6, Theorem 6] (see also Livné [Liv95]): the tran-
scendental cohomology has complex multiplication (CM) by an imaginary quadratic
field. Over Q, an explicit correspondence with classical modular forms of weight 3
was worked out by Elkies–Schütt [ES13].

Recent efforts towards incorporating K3 surfaces into the L-functions and Mod-
ular Forms Database (LMFDB) [LMFDB] has renewed questions of explicit modu-
larity for K3 surfaces, but less is known about modularity for K3 surfaces of lower
Picard number. In general, a complex K3 surface X with ρ(X) ≤ 16 does not
admit a Shioda–Inose structure. Piatetski-Shapiro–Shafarevich [PŠ73] expressed
the L-function of a K3 surfaces with complex multiplication as a product of Hecke
L-functions over some finite extension via the Kuga–Satake correspondence and
applying the corresponding statement for abelian varieties. The theory of complex
multiplication for K3 surfaces was further developed by Rizov [Riz05]. Building on
this work, Valloni [Val23] considers K3 surfaces with CM by the full ring of integers
and studied their fields of definition; and more recently, Ito [Ito25] is more explicit
about the properties of the Hecke quasi-characters that appear in the equality of
L-series. Livné–Schütt–Yui [LSY10] established modularity for the finitely many
K3 Delsarte surfaces (up to twist): they are (CM) quotients of Fermat surfaces.

This paper advances these efforts in a new direction, through computation.
We remain focused on explicit examples of K3 surfaces with apparent CM of large
degree. Indeed, there has been recently renewed interest [BGS24] in moduli of K3
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surfaces with extra Hodge endomorphisms. Our main result matches the transcen-
dental cohomology of certain K3 surfaces with algebraic Hecke quasi-characters, as
follows. For a complex surface X, we let T(X)Q ⊆ H2(X,Q) be the transcendental
subspace (see section 2). If moreover X is defined over a number field F ⊂ C,
then for ℓ prime, we have via comparison T(X) ⊗ Qℓ ↪→ H2

ét(X,Qℓ) and we let
ρT(X),ℓ : GalF ⟳ (T(X)⊗Qℓ) be the associated Galois representation.

Let X = Xi for i = 1, 2, 3 be one of the three K3 surfaces obtained from the
following affine models:

(1.1)

X1 : w
2 = xyz(x3 − 3xy2 + y3 − 3x2z − 3xyz + 9y2z + 6yz2 + z3)

X2 : w
2 = xyz(7x3 − 7x2y + y3 + 49x2z − 21xyz − 7y2z + 98xz2 + 49z3)

X3 : w
2 = xyz

(
49x3 − 304x2y + 361xy2 + 361y3 + 570x2z − 2793xyz

+2888y2z + 2033xz2 − 5415yz2 + 2299z3

)
.

More precisely, we take Xi to be the smooth projective surface obtained from the
taking branched double cover of P2 defined by (1.1) and blowing up the 15 =

(
6
2

)
double points in the branch locus of 6 lines. Then dimQℓ

T(Xi) = 22− 16 = 6, and
there is substantial numerical evidence that in each case, T(Xi)Q has CM by Ki,
where Ki = Fi(

√
−1) is the cyclic sextic field defined in Table 1 by their LMFDB

label. For this evidence, see Elsenhans–Jahnel [EJ16, §5] and the end of section 2.

Theorem 1.2. For i = 1, 2, 3 and X = Xi, the following statements hold.

(a) Suppose T(X)Q has CM by K. Then for all primes ℓ,

(1.3) ρT(X),ℓ ≃ Ind
GalQ
GalK

ψX

where ψX is of ∞-type {(0, 2), (1, 1), (1, 1)} defined in Table 2. In partic-
ular, we have

(1.4) L(T(X), s) = L(s, ψX).

(b) Let A = Ai = Jac(Ci) be the Jacobian defined in Table 1. Then

(1.5)
ρH1(A),ℓ ≃ Ind

GalQ
GalK

ψA

L(H1(A), s) = L(s, ψA)

where ψA is of ∞-type {(0, 1), (0, 1), (0, 1)} defined in Table 3.
(c) We have

(1.6)
ρH2(A),ℓ ≃ Ind

GalQ
GalF

Qℓ(1)⊕ Ind
GalQ
GalK

(ψX ⊕ ψ′)

L(H2(A), s) = ζF (s+ 1)L(s, ψX)L(s, ψ′),

where Qℓ(1) is the Tate twist, F ⊆ K is the unique cubic subfield, and ψ′

is of ∞-type {(0, 2), (0, 2), (1, 1)} defined in Table 4.

This provides substantial evidence that a power of A corresponds to X under
the Kuga–Satake correspondence [KS67]: for more, see Remark 3.2. Our computa-
tions are performed in Magma [BCP97]; the code is available at https://github.
com/edgarcosta/K3withCM/. There is a natural Galois action on algebraic Hecke
quasi-characters by ψσ = ψ ◦ σ for σ ∈ Gal(K |Q), with L(s, ψσ) = L(s, ψ). Up to
this Galois action, the characters ψX , ψA, and ψ

′ in Theorem 1.2 are unique.

https://github.com/edgarcosta/K3withCM/
https://github.com/edgarcosta/K3withCM/
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i Ki Fi Defining equation for Ci

1 6.0.419904.1 3.3.81.1 y2 = x7 + 6x5 + 9x3 + x

2 6.0.153664.1 3.3.49.1 y2 = x7 + 7x5 + 14x3 + 7x

3 6.0.8340544.1 3.3.361.1 y2 = x7 + 1786x5 + 44441x3 + 278179x

4 6.0.59105344.1 3.3.961.1 y2 = x7 + 961x5 − 3694084x3 + 1832265664x

Table 1. Polynomials defining CM fields and genus 3 curves.

i cond(ψXi
) p Lp(ψXi

, T )

1 64.1 17 1− 6T + 15pT 2 + 12p2T 3 + 15p3T 4 − 6p4T 5 + p6T 6

2 3136.1 13 1− 2T + 19pT 2 + 4p2T 3 + 19p3T 4 − 2p4T 5 + p6T 6

3 23104.1 37 1 + 14T − 5pT 2 − 28p2T 3 − 5p3T 4 + 14p4T 5 + p6T 6

4 61504.13 29 1− 38T − 9pT 2 + 52p2T 3 − 9p3T 4 − 38p4T 5 + p6T 6

Table 2. Uniquely defining properties of ψX , up to Gal(K |Q).

i cond(ψAi
) p Lp(ψAi

, T )

1 4096.1 17 1− 6T + 15T 2 − 52T 3 + 15pT 4 − 6p2T 5 + p3T 6

2 25088.1 13 1 + 4T + 7T 2 + 40T 3 + 7pT 4 + 4p2T 5 + p3T 6

3 184832.1 37 1 + 4T + 15T 2 − 152T 3 + 15pT 4 + 4p2T 5 + p3T 6

4 3936256.41 29 1 + 4T + 51T 2 + 216T 3 + 51pT 4 + 4p2T 5 + p3T 6

Table 3. Uniquely defining properties of ψA, up to Gal(K |Q).

Remark 1.7. To each Hecke quasi-character ψ for a CM extension K ⊇ F , by re-
striction of the automorphic representation we can also associate a Hilbert modular
form f over F with matching Galois representation and L-function. As such forms
f have nontrivial character (and in parts (a) and (c), weights (3, 3, 1) and (3, 1, 1),
respectively), they currently fall outside the database of Hilbert modular forms in
the LMFDB. We hope to see them in a future expansion of the database.

Table 1 comes from Weng [Wen01, §6] and is certified correct [CMSV19]. For
the fourth row (i = 4), we were not able to find a matching K3 surface (among
double covers of P2 branched along 6 lines, possibly due to the nontrivial class
group), but part (b) still holds; it would be interesting to produce a K3 surface in
this case (not necessarily a degree 2 model).

Acknowledgements. We thank Eran Assaf and David Roe for helpful con-
versations and Eva Bayer-Fluckiger and the anonymous referees for corrections and
suggestions. Costa (SFI-MPS-Infrastructure-00008651, AS) and Voight (SFI-MPS-
Infrastructure-00008650, JV) were supported by Simons Foundation grants.

2. Setup

Let X be a polarized K3 surface over a number field F . We denote by Xal

its base change to F al, an algebraic closure of F . We are interested in studying
the Galois representations that arise from H2

ét(X
al,Qℓ), for a prime ℓ. Let NS(X)

denote the Néron–Severi group of X. Under the canonical isomorphism NS(X) ∼=
Pic(X), we may identify NS(Xal) ∼= H2(XC,Z) ∩ H1,1(X,C) ⊊ H2(XC,Z). Let
ρ(X) := rkNS(X) be the Picard number.

https://www.lmfdb.org/NumberField/6.0.419904.1
https://www.lmfdb.org/NumberField/3.3.81.1
https://www.lmfdb.org/NumberField/6.0.153664.1
https://www.lmfdb.org/NumberField/3.3.49.1
https://www.lmfdb.org/NumberField/6.0.8340544.1
https://www.lmfdb.org/NumberField/3.3.361.1
http://www.lmfdb.org/NumberField/6.0.59105344.1
http://www.lmfdb.org/NumberField/3.3.961.1
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i cond(ψ′
i) p Lp(ψ

′
i, T )

1 1.1 17 1 + 42T + 1023T 2 + 1132pT 3 + 1023p2T 4 + 42p4T 5 + p6T 6

2 1.1 13 1 + 34T + 631T 2 + 652pT 3 + 631p2T 4 + 34p4T 5 + p6T 6

3 1.1 37 1 + 82T + 4423T 2 + 5452pT 3 + 4423p2T 4 + 82p4T 5 + p6T 6

4 1.1 29 1 + 74T + 3067T 2 + 3268pT 3 + 3067p2T 4 + 74p4T 5 + p6T 6

Table 4. Uniquely defining properties of ψ′, up to Gal(K |Q).

Let T(X) be the transcendental lattice of X, the orthogonal complement of
NS(XC) in H2(X,Z). The space T(X) is a sub-Hodge structure of H2(XC,Z) with
Hodge numbers (1, 20− ρ(X), 1). Let E = E(X) be the algebra of endomorphisms
of T(X) that respect the Hodge structure. Zarhin [Zar83, Theorems 1.5.1, 1.6] has
shown that E is either a totally real field or a CM field.

The Galois representation ρH2,ℓ : Gal(F al |F ) → GO(H2(XC,Z)⊗Qℓ) decom-
poses as ρH2,ℓ = ρNS,ℓ ⊕ ρT,ℓ, and we focus on

ρT,ℓ : Gal(F al |F ) → GO(T(X)⊗Qℓ).

and its associated [Ser70] L-function L(T(X), s). In the case that dimE T(X) = 1,
in fact E is necessarily a CM field, and by class field theory we have L(T(X), s) =
L(s, ψ) for some algebraic Hecke quasi-character ψ over E.

We consider K3 surfaces X → P2 as (resolutions of) branched over 6 lines in
general (and in particular in good) position. In this case, ρ(X) ≥ 16, with equality
when the lines are in very general position. We restrict to the K3 surfaces identified
in (1.1). As mentioned in the introduction, there is strong numerical evidence [EJ16,
§5] that these K3 surfaces have complex multiplication (CM). We further computed
100 digit approximations to the period lattices using the method of Elsenhans–
Jahnel [EJ24, §6]. In fact, this CM is apparently by the maximal order ZKi in
each case. More precisely, for each surface we found numerical approximations of
six period integrals τ1, . . . , τ6 that form a basis of the period lattice such that the
ratios τi/τ1 for i = 1, . . . , 6 coincide with a Z-basis of the maximal order of the
conjectural endomorphism field. For the surface X1 and for chosen cycles,

(τ1, . . . , τ6) ≈ (2.6402, 11.6474, 7.60232,−7.6023i,−4.96206i,−6.68537i);

with respect to the eigenvalues 0.467911 and i, the period vector is an eigenvector of
2 −1 1
−1 2 −2
0 −1 2

2 −1 −1
−1 2 0
−2 1 2

 ,


−1 1 0
0 −1 −1
−1 0 0

0 0 1
−1 0 1
1 1 −1

 and the cup form is


−1 0 1
0 0 1
1 1 −1

0 1 1
1 −1 0
1 0 0

.

The data for the other examples are very similar. Computing periods to a precision
of 100 decimal places took about half an hour on a standard desktop.

3. Proof of main result

Under the assumption that the L-function matches an algebraic Hecke quasi-
character, to find the correct one we need to bound its conductor. It seems difficult
in general to obtain such a bound by computing the conductor of the L-function of
the K3 surface. We can however produce a finite list of possibilities as follows. We
start with the list of bad primes of the K3 surface and the primes above them in
K. To bound the exponents of these primes, recall that (by the p-adic logarithm)
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the unit groups (ZK,p/p
e)× as e→ ∞ have a bounded number of invariant factors.

So to show that the exponent is bounded, we just need to show that the order of
the finite part of the Hecke quasi-character is bounded, using the following lemma.

Lemma 3.1. Let ψ be an algebraic Hecke quasi-character over K of modulus N
and let M ⊂ C be the field generated by the values of ψ. Let χ : (ZK/N)× → C×

be the Dirichlet character defined by χ(a) = ψ(aZK)ψ∞(a). Then Q(χ) ⊆M .

Proof. By definition, an algebraic Hecke quasi-character takes values in a
number field. From the idelic formulation, we conclude that the subfield generated
by the restriction of ψ to the infinite places is contained inM , hence also Q(χ). □

Proof of Theorem 1.2. We first prove (a). We compute the bad primes for
X by checking if the reduction no longer leads to 15 distinct intersection points of
the 6 lines. We bound the exponents of the primes using Lemma 3.1. Following
Watkins [Wat11, § 5.2], using Magma we compute the full list of algebraic Hecke
quasi-characters ψ with the required ∞-type, conductor bounded as above, and
Q(ψ) ⊆ Ki. More precisely, we start with the principal character ψ0 of the chosen
∞-type and its associated Dirichlet character χ0 (see Lemma 3.1). Next, we enu-
merate the Dirichlet characters χ whose lifts to Hecke characters twist ψ0 to give
a primitive character ψ with Q(ψ) ⊆ Ki. Concretely, we require that χ′ := χ/χ0

be primitive, trivial on units, and satisfy Q(χ) ⊆ Ki. Because all these conditions
can be phrased on the abstract character group, we apply the filters there rather
than iterating over every element, a task that would be impractical for large levels.
For example, for X3 we consider characters of conductor N = p72 · 7 · 11 · p19, where
Nm(pp) = p. The Dirichlet character group modulo N is isomorphic to

(Z/4Z)5 ⊕ (Z/8Z)2 ⊕ (Z/24Z)2 ⊕ Z/48Z⊕ (Z/240Z)3 ⊕ Z/5040Z
which contains over 1020 elements; of these, only 279 936 satisfy our requirements.

We then compute Lp, (T(X), T ) using a method of Elsenhans–Jahnel [EJ16]
based on a trace formula involving a matrix expansion. In the style of Sherlock
Holmes, we eliminate all but one (up to the action of Gal(K |Q)) by finding primes
p uniquely identifying Lp(T(X), T ) = Lp(ψ, T ). It was enough to consider good
primes p < 250 totally split in Ki to obtain a unique match for each example in a
single pass. After a match was found, we identified a prime p which, together with
the conductor, uniquely identifies the character (up to the Galois action).

Part (b) is proven in the same way as part (a). For part (c), we note that
H2(A) ≃

∧
2 H1(A), so applying (b) and identifying characters we find that H2(A) ≃

V1 ⊕ V2 ⊕ V3 as representations of GalQ, where V1 ≃ Ind
GalQ
GalF

Qℓ(1) and dimK V2 =
dimK V3 = 1. The relationship between the two characters ψA and ψX can be
further encoded by the equality ψX(p) = ψA(σ1(p))ψA(σ2(p)) for all unramified
primes p of degree 1 and where σ1, σ2 ∈ Gal(K |Q) are the two elements of order
3. We finish as in (a), checking on distinguishing primes. □

Remark 3.2. The Kuga–Satake construction [KS67] (see also van Geemen [Gee08,
§5]) attaches to a complex polarized K3 surface X a complex abelian variety such
that there is an embedding T(X)(1) ↪→ H1(A) ⊗ H1(A) of Hodge structures. In
our case, this relationship is made explicit in Theorem 1.2(c) via comparison, in
the sense that X and A have associated to Hecke characters ψX and ψA, with ψX

appearing as a symmetric product of ψA. This strongly suggests that X and A are
connected via the Kuga–Satake construction, at least up to isogeny and powers.
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[PŠ73] I. I. Pjateckĭı-Šapiro and I. R. Šafarevič. “The arithmetic of surfaces
of type K3”. In: Trudy Mat. Inst. Steklov. 132 (1973), pp. 44–54, 264
(↑ 1).

[Riz05] Jordan Rizov. “Complex Multiplication for K3 Surfaces”. 2005. arXiv:
math/0508018 [math.AG] (↑ 1).

[Ser70] Jean-Pierre Serre. “Facteurs locaux des fonctions zêta des varietés
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Publ. Math. Besançon Algèbre Théorie Nr. Presses Univ. Franche-
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