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Abstract. We construct infinitely many abelian surfaces A defined over the rational
numbers such that, for a prime ℓ ⩽ 7, the ℓ-torsion subgroup of A is not isomorphic as
a Galois module to the ℓ-torsion subgroup of its dual A∨. We do this by explicitly analyzing
the action of the Galois group on the ℓ-adic Tate module and its reduction modulo ℓ.

1. Introduction

1.1. Setup. Let K be a number field with algebraic closure Kal. Let A be an abelian
variety over K of dimension g := dimA ≥ 1. For n ≥ 1, we obtain a representation of
GalK := Gal(Kal |K)

(1.1.1) ρA,n : GalK → Aut(A[n](Kal)) ≃ GL2g(Z/nZ).

Here we compare the representation ρA,n to the representation ρA∨,n associated with the dual

abelian variety A∨ := Pic0A. The Weil pairing yields a canonical isomorphism

(1.1.2) ρA∨,n
∼= ρ∗A,n ⊗ εn

of Galois representations, where ∗ denotes the contragredient representation and εn is the
cyclotomic character.

In general, these two linear representations are quite challenging to distinguish. For most
abelian varieties one encounters, there is an isomorphism ρA,n ≃ ρA∨,n. Indeed, if A has a
polarization λ : A → A∨ over K whose degree is coprime to n—such as if A is principally
polarized over K—then the polarization induces such an isomorphism. In general, the
number fields K(A[n]) and K(A∨[n]) are always equal, taken inside Kal (Lemma 3.2.2);
so ρA,n and ρA∨,n arise from representations of the same finite Galois group. Of course, since
A and A∨ are isogenous over K, they have isomorphic ℓ-adic representations for all primes
ℓ and hence the characteristic polynomials of ρA,n(σ) and ρA∨,n(σ) agree for all σ ∈ GalK .
In particular, for n = ℓ prime, the semi-simplifications of ρA,ℓ and ρA∨,ℓ are also isomorphic
(Lemma 3.2.1).

1.2. Results. Our main result shows that these representations need not be isomorphic in
general.

Theorem 1.2.1. Let n ∈ Z>0 be divisible by a prime ℓ ⩽ 7. Then there exist infinitely many
pairwise geometrically non-isogenous abelian surfaces A over Q such that ρA,n ̸≃ ρA∨,n.
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Equivalently by (1.1.2), for a surface A in Theorem 1.2.1, the representation ρA,n is not
self-dual up to twist by its similitude character, the cyclotomic character.

It is enough to prove the theorem for n = ℓ ⩽ 7 prime. We construct the abelian surfaces in
Theorem 1.2.1 by choosing elliptic curves E1, E2 with nontrivial P ∈ E1[ℓ](Q), Q ∈ E2[ℓ](Q)
and gluing E1, E2 along the diagonal subgroup ⟨(P,Q)⟩. The resulting abelian surfaces
have a (1, ℓ)-polarization but not a principal polarization over Q. In fact, infinitely many
of these surfaces do not have a principal polarization over Qal. We are able to prove the
above theorem for odd values of ℓ by observing that although these abelian surfaces have a
Q-torsion point, their duals do not. In the ℓ = 2 case, the dual abelian surface will have a
Q-torsion point, but the Galois actions are, nevertheless, not isomorphic.
The underlying parameter space for our construction is essentially the product Y1(ℓ)×Y1(ℓ)

of modular curves (with a slight reinterpretation required for ℓ = 2); for ℓ ⩽ 7, this space
is birational to A2. We may therefore adjust the setup or ask for additional properties to
be satisfied in Theorem 1.2.1. For example, our results can be extended over any number
field K with K ∩Q(ζℓ) = Q, see section 2.5. On the other hand, for ℓ > 7, Y1(ℓ) has genus
greater than zero and fails to have infinitely many points over Q; thus our construction
cannot guarantee a distinction in A[ℓ] and A∨[ℓ] over Q.

Finally, we also go a bit further: forgetting the group structure, the linear representation
ρA,n yields a permutation representation πA,n : GalK → Sym(A[n]) ≃ Sn2g . If ρA,n ≃ ρA∨,n

then of course πA,n ≃ πA∨,n, but not necessarily conversely. In fact, the abelian surfaces
we exhibit to prove Theorem 1.2.1 satisfy the stronger property that πA,n ̸≃ πA∨,n for ℓ ∈
{3, 5, 7}.

Corollary 1.2.2. Let ℓ ∈ {3, 5, 7}. Then there exist infinitely many geometrically nonisoge-
nous abelian surfaces A over Q such that πA,ℓ ̸≃ πA∨,ℓ. Moreover, the linear representations
GalK → GLℓ2g(k) induced by the permutation representations πA,ℓ and πA∨,ℓ over any field k
with char k = 0 are not isomorphic.

One could further consider subgroups G ⩽ GL2g(Z/nZ) preserving a degenerate (but
nonzero) alternating pairing up to scaling with the property that G is not isomorphic to
its contragredient twisted by the similitude character. We classify these groups in the case
g = n = 2 in Proposition 3.2.5. Attached to each G would be an associated moduli space of
polarized abelian varieties of dimension g, and the rational points of this moduli space which
do not lift to the moduli space attached to any proper subgroup G′ < G would similarly
give candidate examples. Theorem 1.2.1 can then be understood as exhibiting an explicit
two-dimensional rational subspace for several such groups G.

1.3. Application. The linear representation induced by the permutation representation
associated to the 3-torsion of an abelian surface A over K is contained in the ℓ-adic étale co-
homology of the generalized Kummer fourfold K2(A) [FH23, Theorem 1.1] (see also Hassett–
Tschinkel [HT13, Proposition 4.1]). As a result [FH23, Corollary 1.2], the fourfolds K2(A)
andK2(A

∨) are not derived equivalent over K if the induced linear representations associated
to A[3] and A∨[3] are not isomorphic. Using the ideas of Huybrechts [Huy19, §2.1] on twisted
derived equivalence and cohomology, this result extends immediately to prove that under this
condition, K2(A) and K2(A

∨) cannot be twisted derived equivalent, either. In particular,
Corollary 1.2.2 (Proposition 3.1.1) implies that there are infinitely many abelian surfaces
A defined over Q where K2(A) and K2(A

∨) are not (twisted) derived equivalent over Q; it
would be interesting to determine if they have such a relationship over K(A∨[3]) = K(A[3]).
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Also in the direction of derived equivalence, recall that, as seen in the proof of Theo-
rem 1.2.1, the abelian surfaces are such that A[3](Q) is nontrivial but A∨[3](Q) is trivial.
Since A and A∨ are derived equivalent [Muk81], this shows that the Mordell–Weil group
is not a derived invariant. Note that the first dimension in which this could happen is for
surfaces, since derived equivalent elliptic curves are isomorphic [AKW17, Theorem 1.1].

1.4. Contents. In section 2 we exhibit our family of abelian surfaces, describe its basic
properties, and complete the proof of Theorem 1.2.1. In section 3, we give some further
analysis, including a proof of Corollary 1.2.2, and conclude with some final remarks about
related questions and future work.
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2. Constructions and computations

We begin with the construction of the abelian surfaces A used in Theorem 1.2.1. We then
compute the Galois action on A[ℓ] and on A∨[ℓ] by comparing TℓA and TℓA

∨ inside VℓA0,
where A0 is a product of two elliptic curves and A is isogenous to A0. Finally, we give the
proof of our main theorem.

2.1. Construction of the abelian surfaces. Let k be a field with absolute Galois group
Galk := Gal(ksep | k) and let ℓ ̸= char k be prime. Recalling the introduction, a necessary but
not sufficient condition for A[ℓ] ̸≃ A∨[ℓ] is that every polarization on A has degree divisible
by ℓ. We produce abelian surfaces satisfying this condition by gluing together two (non-
isogenous) elliptic curves along a subgroup of order ℓ. There are many references for this
construction. For example it is described on MathOverflow [CP10], implicitly suggested as
an exercise [Gor02, Exercise 6.35], and recently exhibited [BS23, Theorem 2.5]. We present
our own brief account, for completeness. We do not give the most general construction but
address in section 2.6 how it can be generalized.

Construction 2.1.1. Let E1 and E2 be elliptic curves over k and let P ∈ E1[ℓ](k) and
Q ∈ E2[ℓ](k) be k-rational points of order ℓ. Let

G := ⟨(P,Q)⟩ ⩽ E1 × E2 and A := (E1 × E2)/G,

and let q : E1 × E2 → A be the quotient map.

In section 2.5, we will use Construction 2.1.1 in the proof of Theorem 1.2.1.

Lemma 2.1.2. With setup as in Construction 2.1.1, the following statements hold.

(a) A is an abelian surface over k with a (1, ℓ)-polarization over k.
(b) For a field extension k′ ⊇ k, if there is no isogeny E1 → E2 over k′, then any

polarization on A over k′ has degree divisible by ℓ.
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Proof. First part (a). Since G is defined over k, so too is A defined over k. We have the
principal product polarization λ0 on E1 × E2; it is a symmetric isogeny, so λ∨

0 = λ0 under
the canonical isomorphism of an abelian variety with its double dual. Since G is isotropic
(the pairing is alternating and the group is cyclic) and λ0 is a principal polarization, the
pushforward under q of λ0 provides a (1, ℓ)-polarization λ on A.

Next, part (b). Without loss of generality, we may replace k by k′. Let λ : A → A∨ be
a polarization (over k) of degree d2. Consider the pullback q∗λ := q∨ ◦ λ ◦ q, a polarization
on E1 × E2, so again (q∗λ)∨ = q∗λ. The composition ϕ := λ−1

0 ◦ q∗λ ∈ End(E1 × E2) is an
endomorphism of degree (ℓd)2. Further, ϕ is fixed under the Rosati involution † (associated
to λ0):

(2.1.3) ϕ† := λ−1
0 ϕ∨λ0 = λ−1

0 (λ−1
0 ◦ q∗λ)∨λ0 = λ−1

0 (q∗λ)(λ−1
0 )λ0 = λ−1

0 (q∗λ) = ϕ.

Since by hypothesis E1 and E2 are not isogenous over k, we have

End(E1 × E2) ≃ End(E1)× End(E2)

(endomorphisms over k). The ring of Rosati-fixed endomorphisms of an elliptic curve is
Z—if the elliptic curve has complex multiplication, the Rosati involution acts by complex
conjugation—so ϕ = (d1, d2) with d1, d2 ∈ Z>0 satisfying d1d2 = ℓd. Since ϕ factors through
q, we have the containment ker q ⊆ kerϕ = E1[d1]× E2[d2].

Now assume for purposes of contradiction that ℓ ∤ d. Without loss of generality, ℓ | d1 and
ℓ ∤ d2, which implies that, under projection onto the E2 factor, ker q projects to the trivial
subgroup in E2[d2]. But this is a contradiction, since by construction ker q projects to a
nontrivial subgroup under projection to both E1 and E2. □

2.2. Background on Hilbert irreducibility. In this section, we quickly adapt the state-
ment of the Hilbert irreducibility theorem for our purposes. For a reference, see Serre [Ser97,
sections 9.2, 9.6] or [Ser92, Chapter 3], or Lang [Lang83, Chapter 9].

Let K be a number field and let

(2.2.1) ft(x) = f(t1, ..., tn;x) ∈ K(t1, ..., tn)[x]

be an irreducible polynomial of degree d over K(t1, . . . , tn), the function field of An
K in the

variables t1, . . . , tn. The coefficients of ft(x) are simultaneously defined on a nonempty open
subset U ⊆ An

K (avoiding denominators). Suppose that ft(x) has generic Galois group
G ≤ Sd over the field K(t1, . . . , tn), obtained by the permutation action on the roots of ft(x)
(in an algebraic closure).

Theorem 2.2.2 (Hilbert irreducibility theorem). For all a ∈ U(K) outside of a thin set,
the specialization fa(x) ∈ K[x] has Galois group G ≤ Sd over K.

Proof. The set of points where the Galois group is smaller is defined by nontrivial polynomial
conditions, and so lies in a thin set: see e.g. Serre [Ser92, Proposition 3.3.5]. For further
treatment, see also Serre [Ser97, Chapter 10], Saltman [Sal82], or more recently Wittenberg
[Wit24, section 1]. □

Since K is Hilbertian, the set of points of U(K) outside a thin set Z ⊆ U has density 1 in
the sense that

(2.2.3) lim
B→∞

#{P ∈ (U ∖ Z)(K) : ht(P ) ≤ B}
#{P ∈ U(K) : ht(P ) ≤ B}

= 1

where ht : U(K) → Q>0 is the usual height [Ser97, §9.7].
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Theorem 2.2.2 can be understood geometrically, as follows.

Corollary 2.2.4. Let X → U be a finite morphism over K with X irreducible. Then for
points t ∈ U(K) outside of a thin set, the fiber Xt is irreducible over K. If further X → U
is generically Galois with generic Galois group G := Gal(K(X) |K(U)), then for a ∈ U(K)
outside of a thin set the fiber Xa → SpecK is also a G-Galois cover.

Proof. This is merely a restatement of Theorem 2.2.2. Explicitly, if U = SpecA ⊆ An
K is

affine with A ⊆ K(t1, . . . , tn) (a finitely generated K-subalgebra with fraction field equal to
K(t1, . . . , tn)), we could take X = SpecA[x]/(ft(x)) → U . □

We will need to apply Theorem 2.2.2 under multiple specializations: we will want not
just that there are infinitely many G-extensions, but for these to be as disjoint as possible.
See also recent work of Zywina [Zyw23], who studies families of abelian varieties with large
Galois image in an effective manner.

Proposition 2.2.5. Let X be irreducible and X → U a finite morphism that is generically
Galois with group G := Gal(K(X) |K(U)). Let L ⊇ K be the algebraic closure of K in
K(X) ⊇ K(U). Then the following statements hold.

(a) X has a canonical structure as a variety over L, corresponding to a factorization
X → UL → U where UL := U ×K L.

(b) X×LX is irreducible, and when considered as a K-scheme (X×LX)K it is irreducible.
(c) Let G0 := Gal(L |K) ∼= Gal(L(U) |K(U)) and let π : G → G0 be the restriction map.

Then the natural morphism (X ×L X)K → U ×K U is a finite generically Galois
morphism with Galois group

(2.2.6) G×G0,π G := {(σ1, σ2) : π(σ1) = π(σ2)}.

(d) For all (a, b) ∈ (U ×K U)(K) outside a thin set, the fiber (X ×K X)(a,b) → SpecK
has splitting field with Galois group G×G0,π G.

Proof. We first prove part (a). The fact that X is an L-variety is a standard fact: in an affine
patch as above with B := A[x]/(ft(x)), we have L ↪→ Frac(B) so B∩L has Frac(B∩L) = L
but contains K so must be L, and so we get injective maps A ↪→ A⊗K L ↪→ B (the second
map under multiplication) giving the desired factorization.

For (b), we briefly recall the standard proof that X×X is irreducible, taking L = K. Since
X is irreducible there is a dense open affine domain SpecA ⊆ X. Since K is algebraically
closed in K(X), it is algebraically closed in A. We then recall that A ⊗K A is a domain
(see e.g. the proof of Milne [Mil12, Proposition 4.15]). Thus Spec(A ⊗K A) ⊆ X × X is
irreducible, and we conclude the proof by taking the Zariski closure. And in general if Y is
irreducible over L then the K-scheme YK is also irreducible (the topology has not changed,
just the structure map).

Next, part (c). We first prove the statement for K = L. Then X ×K X is irreducible by
(b), and we want to show Gal(K(X ×X) |K(U × U)) = G×G. We have a diagram

(2.2.7)

X ×K X

vv ((
X ×K U

((

U ×K X

vv
U ×K U
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where the bottom maps are G-extensions. By irreducibility, we get a corresponding field
diagram of function fields over K. By basic Galois theory (e.g. [DF04, §14.4, Proposition
21, p. 592]), we need to show that K(X × U) and K(U × X) are linearly disjoint over
K(U × U). By the universal property of the fiber product we have

X ×X ∼= (U ×X)×U×U (X × U)

as K-schemes (the condition that maps factor through is automatic). Taking generic points
shows that

K(X ×X) ∼= K(U ×X)⊗K(U×U) K(X × U);

sinceK(X×X) is a field (as X×X is irreducible), we conclude thatK(U×X) andK(X×U)
are linearly disjoint over K(U×U) and K(X×K X) is their compositum. The claim follows.
Now the general case, finishing (c). In an open affine as in (a), the natural map is

A⊗K A → B ⊗K B → (B ⊗L B)K .

By (b), the scheme X ×L X is irreducible. We consider the diagram of fields, using (a):

(2.2.8)

L(X ×L X) = K((X ×L X)K)

L
(
X ×L UL

)
L
(
UL ×L X

)
L
(
UL ×L UL

)
= L(U ×K U)

K(U ×K U)

Applying the case over L = K, we get that the top diamond (2.2.8) is a compositum of
linearly disjoint extensions. Since Gal(L(U ×K U) |K(U ×K U)) ∼= Gal(L |K), we conclude
that (2.2.6) holds as above by basic Galois theory.

Part (d) follows by applying Corollary 2.2.4 to (c) as follows. We have Xa = SpecBa and
Xb = SpecBb where Ba, Bb are fields, so (X ×K X)(a,b) ∼= Spec(Ba ⊗K Bb) and similarly
((X ×L X)K)(a,b) ∼= Spec(Ba ⊗L Bb). Outside of a thin set, we have Ba, Bb linearly disjoint
over L so Ba ⊗L Bb = BaBb is the compositum and Ba ⊗K Bb ≃

∏
σ∈Gal(L|K) BaBb [FT93,

Exercise I.2, p. 335], showing that the two fibers have the same splitting field. □

2.3. Computation of the Galois action on A. Now let K be a number field linearly
disjoint from Q(ζℓ) (i.e., K ∩ Q(ζℓ) = Q), and let Kal be the algebraic closure. Let A
be an abelian surface over K as in Construction 2.1.1 with (E1, P ) and (E2, Q) satisfying
P ∈ E1[ℓ](K) and Q ∈ E2[ℓ](K) nontrivial.
We recall that the modular curve Y1(ℓ) is a coarse moduli space for the functor which

associates to a scheme S the set of isomorphism classes of pairs (E,P ) where E is an elliptic
curve over S and P ∈ E(S) is a point of order ℓ. For ℓ ≥ 5, in fact Y1(ℓ) is a fine moduli
space, so any point [(E,P )] ∈ Y1(ℓ)(K) comes from a unique pair (E,P ) over K. Explicitly
and classically, we have the universal families in Tate normal form:

(2.3.1) Eℓ : y
2 + (1− cℓ(t))xy − bℓ(t)y = x3 − bℓ(t)x

where (0, 0) has order ℓ, and

(2.3.2)
(b5(t), c5(t)) = (t, t)

(b7(t), c7(t)) = (t3 − t2, t2 − t)
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For ℓ = 3, the same conclusion holds whenever j(E) ̸= 0 (such points have trivial stabilizer),
and we may take the family

(2.3.3) E3 : y
2 + xy + ty = x3

with (0, 0) of order 3 and Y1(3) ≃ P1 ∖ {0, 1/27,∞} in the variable t. Finally, for ℓ = 2 the
generic stabilizer is {±1}, so with mild resignation we choose the family

(2.3.4) E2 : y
2 + xy = x3 + tx

and again (0, 0) has order 2 and Y1(2) ≃ P1 ∖ {0, 1/64,∞} in t.

Lemma 2.3.5. Let ℓ ⩽ 7 be prime. Then the following statements hold.

(a) For all t ∈ Y1(ℓ)(K) corresponding to E = Eℓ,t, the image of the ℓ-adic Galois
representation

ρE,ℓ : GalK → Aut(Tℓ(E)(Kal)) ≃ GL2(Zℓ)

is contained in

(2.3.6)

{(
a b
ℓc d

)
∈ M2(Zℓ) : a, d ∈ Z×

ℓ , a ≡ 1 (mod ℓ)

}
⩽ GL2(Zℓ)

in any basis P1, P2 for Tℓ(E) such that P1 mod ℓ = P . In particular,

ρE,ℓ : GalK → Aut(E[ℓ](Qal)) ≃ GL2(Fℓ)

has image contained in

(2.3.7)

{(
1 b
0 d

)
∈ M2(Fℓ) : d ∈ F×

ℓ

}
⩽ GL2(Fℓ).

(b) For all n ≥ 1, the generic Galois group of Eℓ[ℓ
n] → Y1(ℓ) ⊆ P1

t is equal to Gℓn, the
reduction of (2.3.6) modulo ℓn. Moreover, the algebraic closure of K in K(Eℓ[ℓ

n]) is
equal to K(ζℓn).

(c) Outside of a thin set in Y1(ℓ)(K), the image ρE,ℓ(GalK) in (a) is the entire subgroup
in (2.3.6).

Proof. Part (a) follows by a direct calculation.
For part (b), for each n ≥ 1 we will apply Hilbert irreducibility in the form of Corol-

lary 2.2.4 applied to the cover Yfull(ℓ
n) → Y1(ℓ) where Yfull(ℓ

n) is the modular curve parametriz-
ing full level ℓn structure (see Deligne–Rapoport [DR73, IV-3.1] or Katz–Mazur [KM85,
§3.1]). The same calculation in (a) shows that the generic Galois group is contained in Gℓn ,
the reduction of (2.3.6) modulo ℓn; we need to show that equality holds.

We show equality by computing degrees. On base change to L = K(ζℓn), we have Yfull(ℓ
n)L

a disjoint union of components with a simply transitive action of Gal(L |K) ≃ (Z/ℓnZ)×
(since K ∩ Q(ζℓn) = K), indexed by the value taken by the Weil pairing on the basis
of ℓn-torsion. All components become isomorphic upon further base change to C to the
usual modular curve Y (ℓn)(C) (rescaling the basis). The fundamental group of the cover
Y (ℓn)(C) → Y1(ℓ)(C) is Gℓn ∩SL2(Z/ℓnZ) (as the corresponding quotients of the upper half-
plane, which is simply connected). This shows that the image of the generic Galois group
modulo ℓn has size at least

φ(ℓn)[SL2(Z/ℓnZ) : Gℓn ∩ SL2(Z/ℓnZ)] = [GL2(Z/ℓnZ) : Gℓn ]

so equality must hold. This argument proves the second moreover clause as well.
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For part (c), we first apply Corollary 2.2.4 (Hilbert irreducibility) to E[ℓn] → Y1(ℓ) with
n = 2 for ℓ ≥ 3 and ℓn = 8 for ℓ = 2. The result then holds after we recall the simple
inductive lemma that if H ≤ GL2(Zℓ) is a closed subgroup such that

H ∩
(
1 + ℓn−1M2(Z/ℓZ)

)
=

(
1 + ℓn−1M2(Z/ℓZ)

)
≤ GL2(Z/ℓnZ),

then H is the full preimage of its image under natural projection GL2(Zℓ) → GL2(Z/ℓnZ).
Indeed, computing degrees this follows from the fact the ℓth power map gives a surjection
1 + ℓmM2(Z/ℓZ) → 1 + ℓm+1M2(Z/ℓZ) (by the binomial formula) for all m ≥ n− 1. □

Remark 2.3.8. In fact, all we need in our construction is to have surjectivity modulo ℓ2: see
Proposition 2.3.16.

Choose a basis {P1, P2, Q1, Q2} for Tℓ(E1 × E2) ≃ Z4
ℓ as in Lemma 2.3.5:

• P1 mod ℓ = P ∈ E1[ℓ](K),
• Q1 mod ℓ = Q ∈ E2[ℓ](K),
• {P1, P2} is a symplectic basis for TℓE1, and
• {Q1, Q2} is a symplectic basis for TℓE2.

Then the Galois action on (E1 × E2)[ℓ](K
al) has image contained in the subgroup

(2.3.9)



1 b1 0 0
0 d1 0 0
0 0 1 b2
0 0 0 d2

 ∈ M4(Fℓ) : a1, d1, a2, d2 ∈ F×
ℓ

 ⩽ GL4(Fℓ).

The Galois equivariance of the Weil pairing (given explicitly by the determinant) [Sil09,
section III.8], which holds for any ℓn-torsion points (or more generally on Tℓ(E)), further
implies that ρE1×E2,ℓ(GalK) is contained in

(2.3.10)




a1 b1 0 0
ℓc1 d1 0 0
0 0 a2 b2
0 0 ℓc2 d2

 ∈ M4(Zℓ) :
a1, d1, a2, d2 ∈ Z×

ℓ ,
a1 ≡ a2 ≡ 1 (mod ℓ), and
a1d1 − ℓb1c1 = a2d2 − ℓb2c2

 ⩽ GL4(Zℓ).

We now show that there are infinitely many pairs where the image in fact surjects onto
this group.

Proposition 2.3.11. Let ℓ ⩽ 7 be prime. There are infinitely many pairs E1, E2 of elliptic
curves satisfying both of the following:

(i) The image of ρE1×E2,ℓ is the subgroup (2.3.10); in particular, there exist points P ∈
E1[ℓ](K) and Q ∈ E2[ℓ](K) of order ℓ; and

(ii) E1 is not geometrically isogenous to E2.

Moreover, the products E1 × E2 fall into infinitely many distinct geometric isogeny classes.

Proof. To satisfy condition (i), analogous to Lemma 2.3.5(b), we now apply HIT (Theo-
rem 2.2.2), taking the cover Eℓ[ℓ

n]×Eℓ[ℓ
n] → Y1(ℓ)×Y1(ℓ). For each factor, by Lemma 2.3.5(b)

we know that the generic Galois group is Gℓn , and the constant subextension is given by
L = K(ζℓn). The result then follows by applying Proposition 2.2.5(d).

To further satisfy (ii), let E1 × E2 have large image as in (i), and suppose that there is
an isogeny ϕ : E1 → E2 over a finite extension K ′ ⊇ K. Then the image of the restriction of
ρE1×E2,ℓ to GalK′ has finite index in ρE1×E2,ℓ(GalK). And moreover the Tate module Tℓ(E2,K′)
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is conjugate to Tℓ(E1,K′) inside the latter’s Tate representation Vℓ(E1,K′) := Tℓ(E1,K′)⊗Qℓ.
In particular, the image of ρ(E1×E2)K′ ,ℓ is contained in the subgroup{(

A 0
0 PAP−1

)
: A ∈ GL2(Zℓ)

}
≤ GL4(Zℓ)

where P is the matrix of ϕℓ : Tℓ(E1,K′) → Tℓ(E2,K′). This subgroup has infinite index in the
subgroup given by (b), a contradiction.

The final statement follows quite a bit more generally, see Cantoral-Farfán–Lombardo–
Voight [FLV23+, Proposition 6.6.1]. In fact, we claim that even for fixed E1, the curves E2

that satisfy (i) and (ii) fall into infinitely many distinct geometric isogeny classes. We give
a proof of this stronger statement. Recall (Tate’s algorithm) that E has bad potentially
multiplicative reduction at a prime p if and only if ordp(j(E)) < 0 has negative valuation.
Let t be a parameter on Y1(ℓ). We conclude in the style of Euclid: for any finite set
{(E ′

i, P
′
i )}i ⊂ Y1(ℓ)(K) corresponding to ti ∈ K, we can find p such that ordp(j(E

′
i)) ≥ 0

and there exists t∗ ∈ K giving (E∗, P ∗) ∈ Y1(ℓ)(K) such that ordp(j(Et∗)) < 0. Indeed,
this is determined by congruence conditions on the numerator and denominator, and the
resulting set has positive density so cannot be contained in the thin set excluded by Hilbert
irreducibility. If (E∗, P ∗) has j(E∗) = j(t∗) then E∗ cannot be geometrically isogenous to
any E ′

i, since each E ′
i has potentially good reduction at p whereas E∗ has bad potentially

multiplicative reduction. It follows that the set of products E1 × E2 of this form fall into
infinitely many distinct geometric isogeny classes: indeed, since none of E1, E2 and E ′

2 are
geometrically isogenous, by the Poincaré Complete Reducibility Theorem, E1 × E2 is not
geometrically isogeneous to E1 × E ′

2. □

For convenience, we rewrite the elements in (2.3.10) as

(2.3.12)


1 + x1ℓ b1 + y1ℓ 0 0
w1ℓ d+ z1ℓ 0 0
0 0 1 + x2ℓ b2 + y2ℓ
0 0 w2ℓ d+ z2ℓ

 =

(
A1 0
0 A2

)

where:

• d ∈ {1, . . . , ℓ− 1},
• b1, b2 ∈ {0, . . . , ℓ− 1}, and
• wi, xi, yi, zi ∈ Zℓ,

still subject to the condition (Weil pairing) that

(2.3.13) detA1 = detA2.

Recall that A = (E1×E2)/⟨(P,Q)⟩. Because A and E1×E2 are isogenous via q : E1×E2 →
A, we may choose the following change of coordinates matrix Mq,ℓ that allows us to compute
the Galois action on A from the action on E1 × E2:

(2.3.14) Mq,ℓ =


1 0 1/ℓ 0
0 1 0 0
0 0 1/ℓ 0
0 0 0 1

 .

Then detM−1
q,ℓ = ℓ and maps the lattice Z4

ℓ+Zℓ ·(1/ℓ, 1, 1/ℓ, 1) ⊂ Q4
ℓ into Z4

ℓ . Conjugating the

elements (2.3.12) above by this change of coordinates matrix (i.e. we compute M−1
q,ℓ GℓMq,ℓ)
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gives

(2.3.15)


1 + x1ℓ b1 + y1ℓ x1 − x2 −b2 − y2ℓ
w1ℓ d+ z1ℓ w1 0
0 0 1 + x2ℓ b2ℓ+ y2ℓ

2

0 0 w2 d+ z2ℓ

 ,

with the same conditions on the variables. See also our companion paper [FHV25] for more
on computing Galois actions on Tate modules within an isogeny class.

To get the image of ρ̄A,ℓ : GalK → GL4(Fℓ), we reduce this subgroup modulo ℓ, as given
in the following proposition.

Proposition 2.3.16. The image of ρ̄A,ℓ : GalK → GL4(Fℓ) is

(2.3.17)



1 b1 x1 − x2 −b2
0 d w1 0
0 0 1 0
0 0 w2 d

 ∈ M4(Fℓ) :
d ∈ F×

ℓ

bi, wi, xi ∈ Fℓ

 ⩽ GL4(Fℓ).

Proof. We need to check that the determinant condition (2.3.13) being satisfied does not
constrain our choices of variables above: it requires that

d+ (dx1 + z1 − b1w1)ℓ+ (x1z1 − w1y1)ℓ
2 = d+ (dx2 + z2 − b2w2)ℓ+ (x2z2 − w2y2)ℓ

2.

Given d ∈ F×
ℓ , bi, wi, xi ∈ Fℓ, choose lifts of wi, xi to Zℓ (which we continue to call wi, xi). One

can check that taking z2 = y1 = y2 = 0 and z1 = (1 + x2ℓ)
−1(dx2 − dx1 + b1w1 − b2w2) gives

a solution to the determinant equation, and thus an element in the image of ρA,ℓ reducing
to an element as in (2.3.17) with the given entries. □

2.4. Computation of the Galois action on A∨ via the contragredient. Next, we
would like to compare this to the Galois action on A∨[ℓ](Kal). To do so, we make use of the
following, as indicated in the introduction.

Lemma 2.4.1. Given the representation ρA,ℓ : GalK → Aut(TℓA), there is an isomorphism
ρA∨,ℓ

∼= ρ∗A,ℓ ⊗ εℓ, where ρ∗A,ℓ is the dual or contragredient representation and εℓ is the
cyclotomic representation. In particular, there is an isomorphism ρ̄A∨,ℓn

∼= ρ̄∗A,ℓn ⊗ εℓ for
all n ∈ Z≥1.

Proof. The tautological pairing TℓA × TℓA
∨ → Zℓ(1) is given by taking the inverse limit

over n of the Weil pairing A[ℓn] × A∨[ℓn] → µℓn . This is a perfect bilinear pairing, hence
non-degenerate, and so the result follows. □

By the Weil pairing, if ρ̄A,ℓ(σ) = M for M as in (2.3.12), then εℓ(σ) = d [Sil09, section
III.8]. Thus, when we take the inverse transpose of matrices as in Proposition 2.3.16 and
scale by this factor, we get the following.
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Proposition 2.4.2. If ρ̄A,ℓ(σ) =


1 b1 x1 − x2 −b2
0 d w1 0
0 0 1 0
0 0 w2 d

 as in (2.3.17), then

(2.4.3) ρ̄A∨,ℓ(σ) =


d 0 0 0

−b1 1 0 0
z1 − z2 −w1 d −w2

b2 0 0 1


where z1 − z2 = b1w1 − b2w2 − dx1 + dx2 ∈ Fℓ.

Proof. This proposition follows from the explanation above, but for the (3, 1)-entry which is

b1w1 − b2w2 − dx1 + dx2 = z1 − z2

by the determinant condition (2.3.13). □

2.5. Proof of the main result. We now prove Theorem 1.2.1.

Proof of Theorem 1.2.1. Let K be a number field with K ∩ Q(ζℓ) = Q and A an abelian
surface over K as in Construction 2.1.1, with the pair E1, E2 coming from the infinite set in
Proposition 2.3.11.

Let σ ∈ GalK . We apply Proposition 2.4.2. For ℓ = 2, we check computationally that
there is no M ∈ GL4(F2) for which Mρ̄A,2(σ)M

−1 = ρ̄A∨,2(σ) for all σ ∈ GalK ; see the
Magma [BCP97] code [FHV23]. Hence, these representations are not isomorphic and A[2] is
not isomorphic to A∨[2] over K.

It remains to show that the same is true for ℓ ∈ {3, 5, 7}. We claim that this can be seen
directly from just the images of the representations ρ̄A,ℓ and ρ̄A∨,ℓ. Indeed, A[ℓ](K) ̸= ∅,
since the first basis element is fixed by GalK . However, one can check that there is no vector
in F4

ℓ which is fixed by ρ̄A∨,ℓ(σ) for all σ ∈ GalK , so A∨[ℓ](K) = ∅. More precisely, although
each matrix ρ̄A∨,ℓ(σ) has fixed vectors, the coordinates depend on the matrix entries, whose
values are unconstrained, as shown in Proposition 2.4.2. (Note that this argument fails for
ℓ = 2, since both A and A∨ have a rational 2-torsion point, given on A∨ by the third basis
element.) □

2.6. Generalizing the construction. Construction 2.1.1 can be generalized to produce
more examples of abelian surfaces satisfying Theorem 1.2.1. Here, we give the construction
and outline the ways in which the results of sections 2.1–2.5 need to be adapted to arrive at
the result.

Instead of starting with E1 and E2 elliptic curves over k each with a k-rational ℓ-torsion
point, we suppose more generally that there are cyclic subgroups C1 ⩽ E1[ℓ] and C2 ⩽ E2[ℓ]

such that c : C1
∼−→ C2 are isomorphic as Galk-modules. We then take

G := ⟨(P, c(P )) : P ∈ C1⟩ ⩽ E1 × E2 and A := (E1 × E2)/G.

When ℓ = 2 or when the Galois action on C1 ≃ C2 is trivial, we recover Construction 2.1.1.
For ℓ = 3, 5, 7, there are again infinitely many elliptic curves E over K with a cyclic

subgroup C ⩽ E[ℓ](Kal) stable under GalK—they are parametrized by the modular curve
Y0(ℓ), which is birational to P1. Moreover, for such a pair (E,C), there exist infinitely many
pairs (E ′, C ′) such that C ≃ C ′ as GalK-modules. This can be seen by constructing a moduli
space for the desired pairs (E ′, C ′) as a twist of Y1(ℓ). This same strategy is employed in
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the construction of families of elliptic curves with a fixed mod N representation (see e.g.
Silverberg [Sil97]). This moduli space, YC(ℓ), has a universal family Euniv,C(ℓ) over it (or at
least over an open subset).

By sourcing our elliptic curves from Y0(ℓ) instead of Y1(ℓ), the images of the ℓ-adic and
mod ℓ Galois representations will change. There is no longer a condition on a (mod ℓ)
in (2.3.6), and similarly for the mod ℓ representation (that is, the 1 in the top left entry
can be any a ∈ F×

ℓ ). The same modification must be made in (2.3.9) and (2.3.10). Then
the proof of Proposition 2.3.11 goes through the same, replacing EC,ℓ with a versal family
over YC(ℓ). Thus there are again infinitely many pairwise geometrically non-isogenous such
abelian surfaces constructed as above with maximal Galois image.

Finally, the images of ρ̄A,ℓ and ρ̄A∨,ℓ can be calculated using the same techniques as in
sections 2.3–2.4. For ℓ = 3, 5, 7, it will no longer be the case that A[ℓ](K) ̸= ∅; rather, both
A[ℓ](Kal) and A∨[ℓ](Kal) have a unique Galois-stable line. The Galois actions on these lines
can be shown to differ—more precisely, if χ is the character on the common Galois-stable
line in E1[ℓ] and E2[ℓ], then the action on the line in A[ℓ] is χ whereas for A∨[ℓ] it is χ′ where
χχ′ = εℓ—and so A[ℓ] and A∨[ℓ] cannot be isomorphic group schemes over K.

3. Further analysis and discussion

With Theorem 1.2.1 now proven, we conclude with an application and some final re-
marks. In section 3.1, we examine the associated permutation representations, proving
Corollary 1.2.2 and giving an application to derived equivalences of Kummer fourfolds. In
section 3.2, we examine the context of our results, including considering further properties
the Galois actions on A[n] and A∨[n] must or need not share, with an eye toward how our
results may be extended in the future.

3.1. Associated permutation representations. Following the notation in the introduc-
tion, for an abelian surface A over K, let πA,ℓ : GalK → Sym(A[ℓ]) ≃ Sℓ4 be the permutation
representation associated to ρ̄A,ℓ. The following result shows that the associated permutation
and linear representations of abelian surfaces A constructed as in Construction 2.1.1 are also
non-isomorphic, which proves Corollary 1.2.2.

Proposition 3.1.1. Let A be an abelian surface as in Construction 2.1.1, coming from a
pair E1, E2 as in Proposition 2.3.11. Then for ℓ ∈ {3, 5, 7}, the permutation representations
πA,ℓ and πA∨,ℓ are not isomorphic. Moreover, the induced linear representations over any
field F with charF = 0 are not isomorphic.

Proof. We can see this computationally in multiple ways; see the Magma code provided
[FHV23]. For the permutation representations, we can check that the permutation characters
are inequivalent. For the induced linear representations, we compute the multiplicities of the
trivial representation in the induced linear representations; we find that the multiplicities are
different (for ℓ = 5 and 7, the computations are quite time-consuming!). We check this over
Q, but for F a field with charF = 0, the multiplicity of the trivial representation does not
change under base change to F . Since the induced linear representations are not isomorphic,
this also shows that the permutation representations cannot be isomorphic. □

Remark 3.1.2. We should expect that, in general, information is lost when passing from the
representation ρ̄A,ℓ to the permutation representation πA,ℓ and then further to the induced
linear representations—in each case, there are more possible elements to conjugate by.
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For ℓ = 2 above, we check in Magma that the permutation representations πA,2 ̸≃ πA∨,2

are not isomorphic, but the linear representations are isomorphic [FHV23] (so the first but
not the second statement holds in Proposition 3.1.1 for ℓ = 2).

3.2. Final remarks. In closing, we look at the larger context of our results. Although we
have shown that the Galois action on the torsion groups of an abelian surface and its dual
can be different, it is interesting to consider whether other weaker relationships hold. Then,
we speculate on further constructions of abelian surfaces or abelian varieties which would
satisfy the conclusion of Theorem 1.2.1.

First, we pause to prove the statement about semisimplifications made in the introduction.

Lemma 3.2.1. Let A be an abelian variety over a number field K and let ℓ be prime.
Then the semisimplifications of the mod ℓ Galois representations attached to A and A∨ are
equivalent.

Proof. Let λ : A → A∨ be a polarization. Then via λ, the Tate module TℓA is conjugate to
TℓA

∨ as GalK-lattices inside VℓA := (TℓA) ⊗Zℓ
Qℓ. Therefore the reductions modulo ℓ have

the same semisimplifications (the sum given by the factors in a Jordan–Hölder filtration).
We can also see this through point counts as follows. For all nonzero prime ideals p in the

ring of integers of K that are of good reduction for A, we obtain an isogeny λp : AFp → A∨
Fp

over the residue field Fp between the reductions of A and A∨ modulo p. Hence ρA,ℓ(Frobp) and
ρA∨,ℓ(Frobp) have the same characteristic polynomials for a dense set of Frobenius elements
Frobp ∈ GalK . The traces determine the semisimplifications up to isomorphism, by the
Brauer–Nesbitt theorem. □

The next result shows that, while the images of ρA,n and ρA∨,n can differ, the kernels (and
hence their fixed fields) always agree!

Lemma 3.2.2. For all n ∈ Z≥1, we have K(A[n]) = K(A∨[n]) ⊂ Kal.

Proof. We show that ker ρA,n = ker ρA∨,n ⩽ Gal(Kal |K). Let σ ∈ Gal(Kal |K). We prove
the containment (⊆) and suppose that ρA,n(σ) = 1. Then ρA∨,n(σ) = ρA,n(σ)

∗εn(σ) = 1
if and only if εn(σ) = 1, so we prove this. Since A has a primitive polarization λ over K,
there exist P,Q ∈ A[n](Kal) with Weil pairing ⟨P,Q⟩λ = ζn: indeed, if the polarization is of
type (d1, . . . , dg) with corresponding Frobenius basis P1, . . . , Pg, Q1, . . . , Qg (i.e., ⟨Pi, Qj⟩λ =
di, 0 as i = j or not), then gcd(d1, . . . , dg) = 1 so there exist a1, . . . , ag ∈ Z such that

d1a1+· · ·+dgag = 1 and thus P :=
∑g

i=1 aiPi and Q :=
∑g

i=1Qi have ⟨P,Q⟩λ = ζ
∑

i aidi
n = ζn.

Therefore

(3.2.3) ζn = ⟨P,Q⟩λ = ⟨σ(P ), σ(Q)⟩λ = ζεn(σ)n

the latter by the Galois equivariance of the pairing. We conclude indeed that εn(σ) = 1.
The containment (⊇) follows from interchanging A with A∨ and applying the canonical

isomorphism (A∨)∨ ∼= A. □

Remark 3.2.4. The subgroups H := img ρA,ℓ and H ′ := img ρA∨,ℓ are subgroups of the
subgroup G ⩽ GL4(Fℓ) of matrices preserving a rank 2 alternating form. (See also Propo-
sition 3.2.5.) Recall that two subgroups H,H ′ ⩽ G are Gassmann equivalent if #(H ∩ C) =
#(H ′ ∩ C) for all conjugacy classes C in G. We calculate that for ℓ = 2, in fact the images
are not Gassmann equivalent.
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It is interesting to consider which subgroups of GL4(Fℓ) could be the image of ρA,ℓ if ρA,ℓ

and ρA∨,ℓ are not isomorphic. In the following result, we enumerate such possible Galois
images in the case of ℓ = 2.

Proposition 3.2.5. The following statements hold.

(a) The subgroup G ⩽ GL4(F2) of elements preserving (up to scaling) the unique rank 2
degenerate symplectic form is a solvable group of order 576 and exponent 12 isomor-
phic to C4

2 ⋊ S2
3 as a group.

(b) Of the 128 conjugacy classes of subgroups H ⩽ G, there are 52 for which the natural
inclusion H ↪→ G ⩽ GL4(F2) is not conjugate (in GL4(F2)) to its (twisted) contra-
gredient, and a further 26 for which the groups are conjugate but the corresponding
representations are not equivalent.

For the additional 26 groups in part (b), there exists g ∈ GL4(F2) such that g−1Hg = H∨

but there is no g ∈ GL4(F2) such that g−1hg = h∨ for all h ∈ H.

Proof. This follows from a direct calculation with matrix groups, which was performed in
Magma; see the code [FHV23]. □

The list of groups from Proposition 3.2.5(b) is already quite interesting: the smallest group
has size 4, the largest has index 2 in G!
We conclude with a few final comments on constructing abelian surfaces.
First, Bruin [Bru17] has exhibited algorithms to work with finite flat group schemes; using

these methods, we could exhibit specific instances of our construction (including the Galois
action). In the same vein, although our abelian surfaces are not principally polarized, so
cannot arise as Jacobians of genus 2 curves, they may still be obtained as the Prym variety
attached to a cover of curves. It would be interesting to see this explicitly, for example in
the case ℓ = 2 [HSS21].

Second, abelian varieties with real multiplication over fields with nontrivial narrow class
group also give potential examples of abelian varieties without principal polarizations which
could be used as input into our method. The underlying parameter space is now a Hilbert
modular variety which may be disconnected—only one generic component corresponds to
those with a principal polarization.

Third, given that our construction is limited to ℓ ⩽ 7, one may wonder when it is even
possible to construct families of abelian varieties of dimension g defined over an open U ⊆ Pn

with a polarization of minimal degree d > 1. Even the existence of a single such abelian
variety is constrained: for abelian varieties A with fixed dimension g over number fields of
fixed degree d, the minimal degree of a polarization on A is conjecturally bounded by a
constant c(d, g), see Rémond [Rém18, Théorème 1.1(1)] who deduces this finiteness from
Coleman’s conjecture on endomorphism algebras using Zarhin’s trick. In particular, if g and
d are fixed, then we can only have A[ℓ] ̸≃ A∨[ℓ] for ℓ ≤ c(d, g).
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