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Abstract. We construct infinitely many abelian surfaces A defined over the rational
numbers such that, for a prime ℓ ⩽ 7, the ℓ-torsion subgroup of A is not isomorphic as
a Galois module to the ℓ-torsion subgroup of its dual A∨. We do this by explicitly analyzing
the action of the Galois group on the ℓ-adic Tate module and its reduction modulo ℓ.

1. Introduction

1.1. Setup. Let K be a number field with algebraic closure Kal. Let A be an abelian
variety over K of dimension g := dimA ≥ 1. For n ≥ 1, we obtain a representation of
GalK := Gal(Kal |K)

(1.1.1) ρA,n : GalK → Aut(A[n](Kal)) ≃ GL2g(Z/nZ).
Here we compare the representation ρA,n to the representation ρA∨,n associated with the dual

abelian variety A∨ := Pic0A. The Weil pairing yields a canonical isomorphism

(1.1.2) ρA∨,n
∼= ρ∗A,n ⊗ εn

of Galois representations, where ∗ denotes the contragredient representation.
In general, these two linear representations are quite challenging to distinguish. For most

abelian varieties one encounters, there is an isomorphism ρA,n ≃ ρA∨,n. Indeed, if A has a
polarization λ : A → A∨ over K whose degree is coprime to n—such as if A is principally
polarized over K—then the polarization induces such an isomorphism. In general, the
number fields K(A[n]) and K(A∨[n]) are always equal, taken inside Kal (Lemma 3.2.2).
Of course, since A and A∨ are isogenous over K, they have isomorphic ℓ-adic representations
for all primes ℓ and hence the characteristic polynomials of ρA,n(σ) and ρA∨,n(σ) agree for
all σ ∈ GalK . In fact, for n = ℓ prime, the semi-simplifications of ρA,ℓ and ρA∨,ℓ are also
isomorphic (Lemma 3.2.1).

1.2. Results. Our main result shows that these representations need not be isomorphic in
general.

Theorem 1.2.1. Let n ∈ Z>0 be divisible by a prime ℓ ⩽ 7. Then there exist infinitely many
pairwise geometrically non-isogenous abelian surfaces A over Q such that ρA,n ̸≃ ρA∨,n.

Equivalently by (1.1.2), for a surface A in Theorem 1.2.1, the representation ρA,n is not
self-dual up to twist by its similitude character, the cyclotomic character.

It is enough to prove the theorem for n = ℓ ⩽ 7 prime. We construct the abelian surfaces in
Theorem 1.2.1 by choosing elliptic curves E1, E2 and nontrivial P ∈ E1[ℓ](Q), Q ∈ E2[ℓ](Q)
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and gluing E1, E2 along the diagonal subgroup ⟨(P,Q)⟩. The resulting abelian surfaces are
not simple over Q, and they have a (1, ℓ)-polarization but not a principal polarization over
Q. In fact, infinitely many of these surfaces do not have a principal polarization over Qal.
We are able to prove the above theorem for odd values of ℓ by observing that although these
abelian surfaces have a Q-torsion point, their duals do not. In the ℓ = 2 case, the dual
abelian surface will have a Q-torsion point, but the Galois actions are, nevertheless, not
isomorphic.

The underlying parameter space for our construction is the product Y1(ℓ)×Y1(ℓ) of modular
curves; for ℓ ⩽ 7, this space is birational to A2. We may therefore modify the setup or ask
for additional properties to be satisfied in Theorem 1.2.1. Accordingly, our results can be
extended over any number field K with K ∩Q(ζℓ) = Q.

Finally, we also go a bit further: forgetting the group structure, the linear representation
ρA,n yields a permutation representation πA,n : GalK → Sym(A[n]) ≃ Sn2g . If ρA,n ≃ ρA∨,n

then of course πA,n ≃ πA∨,n, but not necessarily conversely. In fact, the abelian surfaces
among those exhibited in Theorem 1.2.1 satisfy the stronger property that πA,n ̸≃ πA∨,n for
ℓ ∈ {3, 5, 7}.

Corollary 1.2.2. Let ℓ ∈ {3, 5, 7}. Then there exist infinitely many geometrically nonisoge-
nous abelian surfaces A over Q such that πA,ℓ ̸≃ πA∨,ℓ. Moreover, the linear representations
GalK → GLℓ2g(k) induced by the permutation representations πA,ℓ and πA∨,ℓ over any field k
with char k = 0 are not isomorphic.

In general, we could consider the subgroups G ⩽ GL2g(Z/nZ) preserving a degenerate
(but nonzero) alternating pairing up to scaling with the property that G is not isomorphic
to its contragredient twisted by the similitude character. We classify these groups in the
case g = n = 2 in Proposition 3.2.4. Attached to each G would be an associated moduli
space of polarized abelian varieties of dimension g, and the rational points of this moduli
space which do not lift to the moduli space attached to any proper subgroup G′ < G would
similarly give candidate examples. Theorem 1.2.1 can then be understood as exhibiting an
explicit two-dimensional rational subspace for several such groups G.

1.3. Application. The linear representation induced by the permutation representation
associated to the 3-torsion of an abelian surface A over K is contained in the ℓ-adic étale co-
homology of the generalized Kummer fourfold K2(A) [FH23, Theorem 1.1] (see also Hassett–
Tschinkel [HT13, Proposition 4.1]). As a result [FH23, Corollary 1.2], the fourfolds K2(A)
and K2(A

∨) are not derived equivalent over K if the induced linear representations asso-
ciated to A[3] and A∨[3] are not isomorphic. Using the ideas of [Huy19, §2.1] on twisted
derived equivalence and cohomology, this result extends immediately to prove that under this
condition, K2(A) and K2(A

∨) cannot be twisted derived equivalent, either. In particular,
Corollary 1.2.2 (Proposition 3.1.1) implies that there are infinitely many abelian surfaces A
defined over Q whereK2(A) andK2(A

∨) are not (twisted) derived equivalent overQ; it would
be interesting to determine if they have such a relationship over K(A[3], A∨[3]) = K(A[3]),
by Lemma 3.2.2 below.

Also in the direction of derived equivalence, recall that, as seen in the proof of Theo-
rem 2.5.1, the abelian surfaces in Theorem 1.2.1 are such that A[3](Q) ̸= ∅ and A∨[3](Q) = ∅.
Since A and A∨ are derived equivalent [Muk81], this shows that the Mordell–Weil group is
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not a derived invariant. Note that the first dimension in which this could happen is for
surfaces, since derived equivalent elliptic curves are isomorphic [AKW17, Theorem 1.1].

1.4. Contents. In section 2 we exhibit our family of abelian surfaces, describe its basic
properties, and complete the proof of Theorem 1.2.1. In section 3, we give some further
analysis, including a proof of Corollary 1.2.2, and conclude with some final remarks about
related questions and future work.

Acknowledgements. The authors would like to thank Eran Assaf, Asher Auel, Nils Bruin,
Johan de Jong, Aaron Landesman, Pablo Magni, Bjorn Poonen, Ari Shnidman, Alexei
Skorobogatov, David Webb, and Ariel Weiss for helpful comments. Frei was supported
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2. Constructions and computations

We begin with the construction of the abelian surfaces A used in Theorem 1.2.1. We then
compute the Galois action on A[ℓ] and on A∨[ℓ] by comparing TℓA and TℓA

∨ inside VℓA0 for
A0 a third abelian surface isogenous to both A and A∨. Finally, we give the proof of our
main theorem.

2.1. Construction of the abelian surfaces. Let k be a field with absolute Galois group
Galk := Gal(ksep | k) and let ℓ ̸= char k be prime. Recalling the introduction, a necessary
but not sufficient condition for A[ℓ] ̸≃ A∨[ℓ] is that every polarization on A has degree
divisible by ℓ. We produce abelian surfaces satisfying this condition by gluing together two
(non-isogenous) elliptic curves along a subgroup of order ℓ. There are many references for
this construction. For example it is described on MathOverflow [CP10], implicitly suggested
as an exercise [Gor02, Exercise 6.35], and even recently exhibited [BS23, Theorem 2.5]. We
present a brief account, for completeness. We do not give the most general construction but
address in section 2.6 how it can be generalized.

Construction 2.1.1. Let E1 and E2 be elliptic curves over k and let P ∈ E1[ℓ](k) and
Q ∈ E2[ℓ](k) be k-rational ℓ-torsion points. Let

G := ⟨(P,Q)⟩ ⩽ E1 × E2 and A := (E1 × E2)/G,

with the quotient map q : E1 × E2 → A.

In section 2.5, we will use Construction 2.1.1 in the proof of Theorem 1.2.1.

Lemma 2.1.2. With setup as in Construction 2.1.1, the following statements hold.

(a) A is an abelian surface over k with a (1, ℓ)-polarization over k.
(b) For a field extension k′ ⊇ k, if there is no isogeny E1 → E2 over k′, then any

polarization on A over k′ has degree divisible by ℓ.

Proof. Part (a) follows since G is defined over k, and A obtains a (1, ℓ)-polarization λ from
the pushforward under q of the principal product polarization λ0 on E1×E2. Next, part (b).
Without loss of generality, we may replace k by k′. Let λ : A → A∨ be a polarization (over
k) of degree d2. Consider the pullback q∗λ, a polarization on E1 × E2. The composition
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ϕ := λ−1
0 ◦ q∗λ ∈ End(E1 × E2) is an endomorphism of degree (ℓd)2, fixed under the Rosati

involution. Since E1 and E2 are not isogenous, we have

End(E1 × E2) ≃ End(E1)× End(E2).

The ring of Rosati-fixed endomorphisms of an elliptic curve is Z (if the elliptic curve has
complex multiplication, the Rosati involution acts by complex conjugation), so ϕ = (d1, d2)
with d1, d2 ∈ Z>0 satisfying d1d2 = ℓd. Since ϕ factors through q, we have the containment
ker q ⊆ kerϕ = E1[d1]× E2[d2].
Now suppose that ℓ ∤ d. Without loss of generality, ℓ | d1 and ℓ ∤ d2, which implies that,

under projection onto the E2 factor, ker q projects to the trivial subgroup in E2[d2]. But
this is a contradiction, since by construction ker q projects to a nontrivial subgroup under
projection to both E1 and E2. □

2.2. Background on Hilbert irreducibility. In this section, we quickly adapt the state-
ment of the Hilbert irreducibility theorem for our purposes. For a reference, see Serre [Ser97,
sections 9.2, 9.6] or [Ser92, Chapter 3], or Lang [Lang83, Chapter 9].

Let K be a number field and let

ft(x) = f(t1, ..., tn;x) ∈ K(t1, ..., tn)[x]

be an irreducible polynomial of degree d. The coefficients of ft(x) are simultaneously defined
on a nonempty open subset U ⊆ An

K (avoiding denominators). Suppose that ft(x) has
generic Galois group G ≤ Sd over the field K(t1, . . . , tn), obtained by the permutation action
on the roots of ft(x) in an algebraic closure of K(t) = K(t1, . . . , tn).

Theorem 2.2.1 (Hilbert irreducibility theorem). Suppose that ft(x) has Galois group G ≤
Sd over K(t). Then for all a ∈ U(K) outside of a thin set, the specialization fa(x) ∈ K[x]
has Galois group G ≤ Sd over K.

Proof. The set of points where the Galois group is smaller is defined by polynomial conditions,
and so lies in a thin set: see e.g. Serre [Ser92, Proposition 3.3.5]. For further treatment, see
also Serre [Ser97, Chapter 10], Saltman [Sal82], or more recently Wittenberg [Wit24, section
1]. □

Theorem 2.2.1 can be understood geometrically, as follows. Let X → U be a generi-
cally finite étale morphism with X irreducible; concretely, X is described by the equation
f(t1, . . . , tn;x) = 0 in U ×A1. (The converse holds by the primitive element theorem.) Then
the Hilbert irreducibility theorem says that for points u ∈ U(K) outside of a thin set, the
fiber Xu is irreducible over K. For the corollary, without loss of generality we suppose that
X → U is generically Galois with G := Gal(K(X) |K(U)) the Galois group over the generic
point. Then outside of a thin set in U(K), the fiber Xu → SpecK is also a G-Galois cover.

We will need to apply Theorem 2.2.1 under multiple specializations: we will want not
just that there are infinitely many G-extensions, but for these to be as disjoint as possible.
See also recent work of Zywina [Zyw23], who studies families of abelian varieties with large
Galois image in an effective manner.

It is of course enough to do this pairwise, so we consider the fiber product

X ×k X → U ×k U.
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Concretely, this corresponds to the polynomial ft(x)fu(x) ∈ K(t1, . . . , tn, u1, . . . , un)[x] intro-
ducing new transcendentally independent elements. In particular, the generic Galois group
is naturally a subgroup of G×G.

Proposition 2.2.2. Let X → U be a Galois cover with generic Galois group G. Let L ⊇ K
be the algebraic closure of K in K(X); let

G0 := Gal(L |K) ≃ Gal(L(U) |K(U)),

and let π : G → G0 be the restriction map. Then Gal(K(X ×X) |K(U × U)) is equal to

G×G0,π G := {(σ1, σ2) : π(σ1) = π(σ2)}.

Proof. We obtain a diagram of covers

X ×X
ww ''

X × U
''

U ×X
ww

U × U

where the bottom vertical maps are G-extensions. The corresponding field diagram has a
compositum on top. Let K ′ := K(X × U) ∩ K(U × X). By the fundamental theorem of
Galois theory, we have

Gal(K(X ×X) |K(U × U)) = {(σ1, σ2) ∈ G×G : (σ1)|K′ = (σ2)|K′} ⩽ G×G.

So we need to prove that K ′ = L(U × U).
We recall that if k is an algebraically closed field, and A and B are k-algebras that are

domains, then A ⊗k B is a domain (see e.g. Milne [Mil12, Proposition 4.15]). In fact, it is
enough for k to be algebraically closed in A and B. Since X is irreducible, we conclude that
L(X ×X) ⊇ L(U × U) is the compositum of two linearly disjoint extensions isomorphic to
L(X) ⊇ L(U); therefore K ′ ⊆ L(U × U). But of course K ′ ⊇ L so K ′ = L(U × U). □

2.3. Computation of the Galois action on A. Let A be an abelian surface over Q as in
Construction 2.1.1 with (E1, P ) and (E2, Q) satisfying P ∈ E1[ℓ](Q) and Q ∈ E2[ℓ](Q).

Lemma 2.3.1. Let ℓ ⩽ 7 be prime. Then the following statements hold.

(a) For (E,P ) such that [(E,P )] ∈ Y1(ℓ)(Q) ⊂ P1, the image of the ℓ-adic Galois
representation

ρE,ℓ : GalQ → Aut(Tℓ(E)(Qal)) ≃ GL2(Zℓ)

is contained in

(2.3.2)

{(
a b
ℓc d

)
∈ M2(Zℓ) : a, d ∈ Z×

ℓ , a ≡ 1 mod ℓ

}
⩽ GL2(Zℓ)

in any basis P1, P2 for Tℓ(E) such that P1 mod ℓ = P . In particular,

ρE,ℓ : GalQ → Aut(E[ℓ](Qal)) ≃ GL2(Fℓ)

has image contained in{(
1 b
0 d

)
∈ M2(Fℓ) : d ∈ F×

ℓ

}
⩽ GL2(Fℓ).
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(b) Outside of a thin set in Y1(ℓ)(Q), the image ρE,ℓ(GalQ) is the entire subgroup in
(2.3.2).

Since Q is Hilbertian, when [Et] ∈ Y1(ℓ)(Q) ⊆ P1 are ordered by the height of t ∈ P1, the
conclusion of Lemma 2.3.1(b) holds for a density 1 subset.

Proof. Part (a) follows by a direct calculation.
Part (b) follows from Hilbert irreducibility (Theorem 2.2.1), which we can make precise

in this case as follows: if the image of the Galois representation is H ⩽ GL2(Zℓ), a group
smaller than the one given, then there exists a (possibly branched) cover YH → Y1(ℓ) of
degree ≥ 2 where YH is the associated modular curve (see Deligne–Rapoport [DR73, IV-3.1]
or Rouse–Zureick-Brown [RZB15, section 2]) such that [(E,P )] ∈ Y1(ℓ)(Q) lifts to YH(Q).
There are finitely many minimal such H ⩽ GL2(Zℓ), so the errant curve lies in a thin set of
Y1(ℓ)(Q). □

Choose a basis {P1, P2, Q1, Q2} for Tℓ(E1 × E2) ≃ Z4
ℓ as in Lemma 2.3.1, specifically:

• P1 mod ℓ = P ∈ E1[ℓ](Q),
• Q1 mod ℓ = Q ∈ E2[ℓ](Q),
• {P1, P2} is a symplectic basis for TℓE1, and
• {Q1, Q2} is a symplectic basis for TℓE2.

Then the Galois action on (E1 × E2)[ℓ](Qal) has image contained in the subgroup

(2.3.3)



1 b1 0 0
0 d1 0 0
0 0 1 b2
0 0 0 d2

 ∈ M4(Fℓ) : a1, d1, a2, d2 ∈ F×
ℓ

 ⩽ GL4(Fℓ).

The Galois equivariance of the Weil pairing (given explicitly by the determinant) [Sil09,
section III.8], which holds for any ℓn-torsion points (or more generally on Tℓ(E)), further
implies that ρE1×E2,ℓ(GalQ) is contained in

(2.3.4) Gℓ :=




a1 b1 0 0
ℓc1 d1 0 0
0 0 a2 b2
0 0 ℓc2 d2

 ∈ M4(Zℓ) :
a1, d1, a2, d2 ∈ Z×

ℓ ,
a1 ≡ a2 ≡ 1 mod ℓ, and
a1d1 − ℓb1c1 = a2d2 − ℓb2c2

 ⩽ GL4(Zℓ).

We now show that there are infinitely many pairs where the image in fact surjects onto
this group.

Proposition 2.3.5. Let ℓ ⩽ 7 be prime. There are infinitely many pairs E1, E2 of elliptic
curves satisfying the following:

(a) The image of ρE1×E2,ℓ is the subgroup (2.3.4); in particular, there exist points P ∈
E1[ℓ](Q) and Q ∈ E2[ℓ](Q) of order ℓ; and

(b) E1 is not geometrically isogenous to E2.

Moreover, the products E1 × E2 fall into infinitely many distinct geometric isogeny classes.

Proof. First, for ℓ = 5, 7, there exists a universal elliptic surface πℓ : Euniv,1(ℓ) → Y1(ℓ) over
Y1(ℓ), equipped with (a zero section and) a section Puniv of order ℓ defined over Q. For ℓ = 2,
a similar statement holds over the open subset of Y1(ℓ) removing the points above j = 0
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and j = 1728 (universal for elliptic curves over a base S such that j is invertible on S). For
ℓ = 3, the same is true after removing the points above j = 0.

To prove (a), analogous to Lemma 2.3.1(b), we now apply HIT (Theorem 2.2.1), taking the
cover (Euniv,1×Euniv,1)[ℓ] over Y1(ℓ)×Y1(ℓ). We claim that over the generic point, the ℓ-adic
Galois representation ρAE ,ℓ : GalQ → GL4(Zℓ) has image given by (2.3.4). For this, we apply
Proposition 2.2.2, so we need to verify that the only constant subextension of Q(Euniv,1[ℓ

∞])
over Q(Euniv,1) ≃ Q(t) is Q(ζℓ). This is indeed a constant subfield since the Galois closure
contains the values Q(ζℓ) of the Weil pairing. To show it is no larger, for each ℓ ⩽ 7, we
find two elliptic curves E1 and E2 over Q each with rational ℓ-torsion points and such that
Q(E1[ℓ]) ∩Q(E2[ℓ]) = Q(ζℓ). Or more conceptually, the Galois group over Q is the same as
that over C, where it becomes the monodromy group; and then we note that the monodromy

group of Y (ℓ) over Y1(ℓ) is Γ(ℓ)/Γ1(ℓ) ≃
(
1 ∗
0 1

)
≃ Fℓ, so the constant extension can be no

larger by consideration of degree.
For part (b), let E1 × E2 have large image as in (a), and suppose that E1 is isogenous to

E2 over a number field K. Then this isogeny shows that the ℓ-adic representation ρE1,K ,ℓ

is conjugate to ρE2,K ,ℓ (over K). Concretely, restricting the Galois representation to K, we
conclude that ρ(E1×E2)K ,ℓ(GalK) lies in a subgroup abstractly isomorphic to ρE1,K ,ℓ(GalK), a
contradiction as this is a proper subgroup of Gℓ.

The final statement follows quite a bit more generally, see Cantoral-Farfán–Lombardo–
Voight [FLV23+, Proposition 6.6.1]: even for fixed E1, the curves E2 fall into infinitely
many distinct geometric isogeny classes. We also give a simpler proof in this special case.
Recall (Tate’s algorithm) that E has bad potentially multiplicative reduction at p if and
only if ordp(j(E)) < 0 has negative valuation. Let t be a parameter on Y1(ℓ). We conclude
in the style of Euclid: for any finite set {(E ′

i, P
′
i )}i ⊂ Y1(ℓ)(Q) corresponding to ti ∈ Q, we

can find p such that ordp(j(E
′
i)) ≥ 0 and there exists t∗ ∈ Q giving (E∗, P ∗) ∈ Y1(ℓ)(Q)

such that ordp(j(Et∗)) < 0. Indeed, this is determined by congruence conditions on the
numerator and denominator, and the resulting set has positive density so intersects the
density 1 subset. If (E∗, P ∗) has j(E∗) = j(t∗) then E∗ cannot be geometrically isogenous
to any E ′

i, since each E ′
i has potentially good reduction whereas E∗ has bad potentially

multiplicative reduction. □

For convenience, we rewrite the elements in Gℓ (defined in (2.3.4)) as

(2.3.6)


1 + x1ℓ b1 + y1ℓ 0 0
w1ℓ d+ z1ℓ 0 0
0 0 1 + x2ℓ b2 + y2ℓ
0 0 w2ℓ d+ z2ℓ

 =

(
A1 0
0 A2

)

where:

• d ∈ {1, . . . , ℓ− 1},
• b1, b2 ∈ {0, . . . , ℓ− 1}, and
• wi, xi, yi, zi ∈ Zℓ,

still subject to the condition (Weil pairing) that

(2.3.7) detA1 = detA2.
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Recall that A = (E1×E2)/⟨(P,Q)⟩. Because A and E1×E2 are isogenous, we may choose
the following change of coordinates matrix Mq,ℓ that allows us to compute the Galois action
on A from the action on E1 × E2:

(2.3.8) Mq,ℓ =


1 0 1/ℓ 0
0 1 0 0
0 0 1/ℓ 0
0 0 0 1

 .

Conjugating the elements (2.3.6) above by this change of coordinates matrix (i.e. we compute
M−1

q,ℓ GℓMq,ℓ), gives

(2.3.9)


1 + x1ℓ b1 + y1ℓ x1 − x2 −b2 − y2ℓ
w1ℓ d+ z1ℓ w1 0
0 0 1 + x2ℓ b2ℓ+ y2ℓ

2

0 0 w2 d+ z2ℓ


with the same conditions on the variables. This computation of the Galois action on Tℓ(A)
via the action on Tℓ(E1 × E2), including why Mq,ℓ is the appropriate matrix by which to
conjugate, is explained in detail in [FHV25].

To get the image of ρ̄A,ℓ : GalQ → GL4(Fℓ), we reduce this subgroup modulo ℓ, as given
in the following proposition.

Proposition 2.3.10. The image of ρ̄A,ℓ : GalQ → GL4(Fℓ) is given by the subgroup

1 b1 x1 − x2 −b2
0 d w1 0
0 0 1 0
0 0 w2 d

 ∈ M4(Fℓ) :
d ∈ F×

ℓ

bi, wi, xi ∈ Fℓ

 ⩽ GL4(Fℓ).

Proof. We need to check that the determinant condition (2.3.7) being satisfied does not
constrain our choices of variables above: it requires that

d+ (dx1 + z1 − b1w1)ℓ+ (x1z1 − w1y1)ℓ
2 = d+ (dx2 + z2 − b2w2)ℓ+ (x2z2 − w2y2)ℓ

2.

We may deduce that

(2.3.11) z1 − z2 = b1w1 − b2w2 − dx1 + dx2 ∈ Fℓ,

so for every d ∈ F×
ℓ and b1, b2, w1, w2, x1, x2 ∈ Fℓ, we can solve for z1 with z2 = 0 to obtain a

solution to the determinant equation. □

2.4. Computation of the Galois action on A∨ via the contragredient. Next, we
would like to compare this to the Galois action on A∨[ℓ](Qal). To do so, we make use of the
following, as indicated in the introduction.

Lemma 2.4.1. Given the representation ρ̄A,ℓ : GalQ → Aut(TℓA), there is an isomorphism
ρA∨,ℓ

∼= ρ∗A,ℓ ⊗ εℓ, where ρ∗A,ℓ is the dual or contragredient representation and εℓ is the
cyclotomic representation. In particular, there is an isomorphism ρ̄A∨,ℓn

∼= ρ̄∗A,ℓn ⊗ εℓ for
all n ∈ Z≥1.

Proof. The tautological pairing TℓA × TℓA
∨ → Zℓ(1) is given by taking the inverse limit

over n of the Weil pairing A[ℓn] × A∨[ℓn] → µℓn . This is a perfect bilinear pairing, hence
non-degenerate, and so the result follows. □
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By the Weil pairing, the cyclotomic character is given by multiplication by d [Sil09, section
III.8]. Thus, when we take the inverse transpose of matrices as in Proposition 2.3.10 and
scale by this factor, we get the following.

Proposition 2.4.2. The image of ρ̄A∨,ℓ : GalQ → GL4(Fℓ) is given by the subgroup


d 0 0 0
−b1 1 0 0

z1 − z2 −w1 d −w2

b2 0 0 1

 ∈ M4(Fℓ) :
d ∈ F×

ℓ

bi, wi, xi ∈ Fℓ

 ⩽ GL4(Fℓ),

where z1 − z2 = b1w1 − b2w2 − dx1 + dx2 ∈ Fℓ.

Proof. This proposition follows from the explanation above, but for the (3, 1)-entry which is

b1w1 − b2w2 − dx1 + dx2 = z1 − z2

by the determinant condition (2.3.11). □

2.5. Proof of the main result. We now prove Theorem 1.2.1, which we restate for conve-
nience.

Theorem 2.5.1. Let ℓ ⩽ 7 be prime. Then there exist infinitely many pairwise geometrically
non-isogenous abelian surfaces A over Q such that A[ℓ] ̸≃ A∨[ℓ] as group schemes over Q.

Proof. Let A be an abelian surface over Q as in Construction 2.1.1, with the pair E1, E2

coming from the infinite set in Proposition 2.3.5.
Let σ ∈ GalQ. Then Proposition 2.3.10 gives

ρ̄A,ℓ(σ) =


1 b1 x1 − x2 −b2
0 d w1 0
0 0 1 0
0 0 w2 d

 ∈ GL4(Fℓ)

for some d ∈ F×
ℓ and b1, b2, x1, x2, w1, w2 ∈ Fℓ. Similarly, Proposition 2.4.2 gives

ρ̄A∨,ℓ(σ) =


d 0 0 0

−b1 1 0 0
z1 − z2 −w1 d −w2

b2 0 0 1


where

z1 − z2 = b1w1 − b2w2 − dx1 + dx2 ∈ Fℓ.

Now, for ℓ = 2, we check computationally that there is no M ∈ GL4(F2) for which
Mρ̄A,2(σ)M

−1 = ρ̄A∨,2(σ) for all σ ∈ GalQ; see the Magma [BCP97] code [FHV23]. Hence,
these representations are not isomorphic and A[2] is not isomorphic to A∨[2] over Q.
It remains to show that the same is true for ℓ ∈ {3, 5, 7}. We claim that this can be seen

directly from the images of the representations ρ̄A,ℓ and ρ̄A∨,ℓ. Indeed, A[ℓ](Q) ̸= ∅, since
the first basis element is fixed by GalQ. However, one can check that there is no vector in F4

ℓ

which is fixed by ρ̄A∨,ℓ(σ) for all σ ∈ GalQ, so A∨[ℓ](Q) = ∅. (Each matrix ρ̄A∨,ℓ(σ) has fixed
vectors, but the coordinates depend on the matrix entries, whose values are unconstrained,
as shown in Proposition 2.4.2.) Note that this argument fails for ℓ = 2, since both A and
A∨ have a rational 2-torsion point (given on A∨ by the third basis element). □
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2.6. Generalizing the construction. It is possible to generalize Construction 2.1.1 to
produce more examples of abelian surfaces satisfying Theorem 1.2.1. Here, we give the
construction and outline the ways in which the results of sections 2.1–2.5 need to be adapted
to arrive at the result.

Instead of starting with E1 and E2 elliptic curves over k each with a k-rational ℓ-torsion
point, we assume more generally that there are cyclic subgroups C1 ⩽ E1[ℓ] and C2 ⩽ E2[ℓ]

such that c : C1
∼−→ C2 are isomorphic as Galk-modules. Then, we let

G := ⟨(P, c(P )) : P ∈ C1⟩ ⩽ E1 × E2 and A := (E1 × E2)/G.

When ℓ = 2 or when the Galois action on C1 ≃ C2 is trivial, we recover Construction 2.1.1.
For 3 ⩽ ℓ ⩽ 7 a prime, there are again infinitely many elliptic curves E over Q with a

cyclic subgroup C ⩽ E[ℓ](Qal) stable under GalQ — they are parametrized by the modular
curve Y0(ℓ), which is birational to P1. Moreover, for such a pair (E,C), there exist infinitely
many pairs (E ′, C ′) such that C ≃ C ′ as GalK-modules. This can be seen by constructing a
moduli space for the desired pairs (E ′, C ′) as a twist of Y1(ℓ). This same strategy is employed
in the construction of families of elliptic curves with a fixed mod N representation (see e.g.
Silverberg [Sil97]).This moduli space, YC(ℓ), has a universal family Euniv,C(ℓ) over it (or at
least over an open subset).

By sourcing our elliptic curves from Y0(ℓ) instead of Y1(ℓ), the images of the ℓ-adic and mod
ℓ Galois representations will change. There is no longer a condition on a mod ℓ in (2.3.2),
and similarly for the mod ℓ representation (that is, the 1 in the top left entry can be any
a ∈ F×

ℓ ). The same modification must be made in (2.3.3) and (2.3.4). Then the proof
of Proposition 2.3.5 goes through the same, replacing Euniv,1(ℓ) with the universal family
Euniv,C(ℓ) over YC(ℓ). Thus there are again infinitely many pairwise geometrically non-
isogenous such abelian surfaces constructed as above with maximal Galois image.

Finally, the images of ρ̄A,ℓ and ρ̄A∨,ℓ can be calculated using the same techniques as in
sections 2.3-2.4. It will no longer be the case that A[ℓ](Q) ̸= ∅; rather, both A[ℓ](Qal) and
A∨[ℓ](Qal) have a unique Galois-stable line. One can argue that the Galois actions on these
lines do not agree, and so A[ℓ] and A∨[ℓ] cannot be isomorphic group schemes over Q.

3. Further analysis and discussion

With Theorem 1.2.1 now proven, we conclude with an application and some final re-
marks. In section 3.1, we examine the associated permutation representations, proving
Corollary 1.2.2 and giving an application to derived equivalences of Kummer fourfolds. In
section 3.2, we examine the context of our results, including considering further properties
the Galois actions on A[n] and A∨[n] must or need not share, with an eye toward how our
results may be extended in the future.

3.1. Associated permutation representations. Following the notation in the introduc-
tion, for an abelian surface A, let πA,ℓ : GalQ → Sym(A[ℓ]) ≃ Sℓ4 be the permutation
representation associated to ρ̄A,ℓ. The following result shows that the associated permutation
and linear representations of abelian surfaces A constructed as in Construction 2.1.1 are also
non-isomorphic, which proves Corollary 1.2.2.

Proposition 3.1.1. Let A be an abelian surface constructed as in Construction 2.1.1, coming
from a pair E1, E2 as in Proposition 2.3.5.
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Then for ℓ ∈ {3, 5, 7}, the permutation representations πA,ℓ and πA∨,ℓ are not isomorphic.
Moreover, the induced linear representations over any field F with charF = 0 are not
isomorphic.

Proof. We can see this computationally in multiple ways; see the Magma code provided
[FHV23]. For the permutation representations, we can check that the permutation characters
are not isomorphic. For the induced linear representations, we compute the multiplicities of
the trivial representation in the induced linear representations; we find that the multiplicities
are different (for ℓ = 5 and 7, the computations are quite time-consuming!). We check
this over Q, but the result holds over any field not of characteristic 2 or 3 by Maschke’s
theorem. Since the induced linear representations are not isomorphic, this also shows that
the permutation representations cannot be isomorphic. □

Remark 3.1.2. We should expect that, in general, information is lost when passing from the
representation ρ̄A,ℓ to the permutation representation πA,ℓ, in the sense that πA,ℓ and πA∨,ℓ

can become isomorphic, despite ρ̄A,ℓ and ρ̄A∨,ℓ being non-isomorphic. This is simply because
there are more elements to conjugate by in Sℓ4 . The following two examples demonstrate
this phenomenon:

(1) For ℓ = 2, we have πA,2 ≃ πA∨,2 for any A as in Proposition 3.1.1. We check in Magma
that the subgroups from Propositions 2.3.10 and 2.4.2 are conjugate subgroups in S24

[FHV23].
(2) In section 2.6, we saw that there was a more general construction of abelian surfaces

satisfying Theorem 1.2.1, using elliptic curves from Y0(ℓ) instead of Y1(ℓ). In fact, for
A constructed in this more general way with ℓ = 3 (in particular, with a non-trivial
Galois action on C1 ≃ C2), we again have that πA,3 and πA∨,3 are isomorphic. This
is verified computationally [FHV23].

Thus, Proposition 3.1.1 stands in contrast to these results.

3.2. Final remarks. In closing, we look at the larger context of our results. Although we
have shown that the Galois action on the torsion groups of an abelian surface and its dual
can be different, it is interesting to consider whether other weaker relationships hold. Then,
we speculate on further constructions of abelian surfaces or abelian varieties which would
satisfy the conclusion of Theorem 1.2.1.

First, we pause to prove the statement about semisimplifications made in the introduction.

Lemma 3.2.1. Let A be an abelian variety over a number field K and let ℓ be prime.
Then the semisimplifications of the mod ℓ Galois representations attached to A and A∨ are
equivalent.

Proof. Let λ : A → A∨ be a polarization. Then for all nonzero prime ideals p in the ring of
integers of K that are of good reduction for A, we obtain an isogeny λp : AFp → A∨

Fp
over

the residue field Fp between the reductions of A and A∨ modulo p. Hence ρA,ℓ(Frobp) and
ρA∨,ℓ(Frobp) have the same characteristic polynomials for a dense set of Frobenius elements
Frobp ∈ GalK . Already the traces determine the semisimplifications up to isomorphism, by
the Brauer–Nesbitt theorem. □

The next result shows that, while the images of ρA,n and ρA∨,n can differ, the kernels (and
hence their fixed fields) always agree!
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Lemma 3.2.2. For all n ∈ Z≥1, we have K(A[n]) = K(A∨[n]) ⊂ Kal.

Proof. We show that ker ρA,n = ker ρA∨,n ⩽ Gal(Kal |K). Let σ ∈ Gal(Kal |K). Then
ρA∨,n(σ) = ρA,n(σ)

∗εn(σ) = 1 if and only if ρA,n(σ) = εn(σ). But A has a primitive
polarization λ over K, so there exist P,Q ∈ A[n](Kal) with Weil pairing ⟨P,Q⟩λ = ζn.
By Galois equivariance of the pairing, we have

⟨σ(P ), σ(Q)⟩λ = ζεn(σ)n ,

so if ρA,n(σ) = εn(σ) we get

⟨εn(σ)P, εn(σ)Q⟩λ = ζεn(σ)n ,

which yields εn(σ) = 1, and of course conversely. Thus ρA,n(σ) = εn(σ) if and only if
ρA,n(σ) = 1, proving the claim. □

Remark 3.2.3. The subgroups H := img ρA,ℓ and H ′ := img ρA∨,ℓ are subgroups of the
subgroup G ⩽ GL4(Fℓ) of matrices preserving a rank 2 alternating form. (See also Propo-
sition 3.2.4.) Recall that two subgroups H,H ′ ⩽ G are Gassmann equivalent if #(H ∩ C) =
#(H ′ ∩ C) for all conjugacy classes C in G. We calculate that for ℓ = 2, in fact the images
are not Gassmann equivalent.

It is interesting to consider which subgroups of GL4(Fℓ) could be the image of ρA,ℓ if ρA,ℓ

and ρA∨,ℓ are not equivalent. In the following result, we enumerate such possible Galois
images in the case of ℓ = 2.

Proposition 3.2.4. The following statements hold.

(a) The subgroup G ⩽ GL4(F2) of elements preserving (up to scaling) the unique rank 2
degenerate symplectic form is a solvable group of order 576 and exponent 12 isomor-
phic to C4

2 ⋊ S2
3 as a group.

(b) Of the 128 conjugacy classes of subgroups H ⩽ G, there are 52 for which the natural
inclusion H ↪→ G ⩽ GL4(F2) is not equivalent to its (twisted) contragredient.

Proof. This follows from a direct calculation with matrix groups, which was performed in
Magma; see the code [FHV23]. □

The list of groups from Proposition 3.2.4(b) is already quite interesting: the smallest group
has size 4, the largest has index 2 in G!

We conclude with a few final comments on constructing abelian surfaces.
First, Bruin [Bru17] has exhibited algorithms to work with finite flat group schemes; using

these methods, we could exhibit specific instances of our construction (including the Galois
action). In the same vein, although our abelian surfaces are not principally polarized, so
cannot arise as Jacobians of genus 2 curves, they may still be obtained as the Prym variety
attached to a cover of curves. It would be interesting to see this explicitly, for example in
the case ℓ = 2 [HSS21].

Second, abelian varieties with real multiplication over fields with nontrivial narrow class
group also give potential examples of abelian varieties without principal polarizations which
could be used as input into our method. The underlying parameter space is now a Hilbert
modular variety which may be disconnected—only one component generically corresponds
to those with a principal polarization.

Third, given that our construction is limited to ℓ ⩽ 7, one may wonder when it is even
possible to construct explicit families of abelian varieties of dimension g with a polarization
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of degree d > 1. For fixed dimension g over a fixed number field K, the possible degrees
d are conjecturally bounded: see Rémond [Rém18, Théorème 1.1(1)], which deduces this
finiteness from Coleman’s conjecture on endomorphism algebras using Zarhin’s trick.
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