
COMPUTING CLASS GROUPS AND UNIT GROUPS
IN MAGMA

ANDREAS-STEPHAN ELSENHANS AND JOHN VOIGHT

Abstract. We describe the computation of class groups and unit groups of number
fields as implemented in Magma (V2.29). After quickly reviewing the main algorithms
based on factor bases, relation collection, and analytic class number evaluation, we
distinguish their behavior across formalizable, rigorous, GRH-conditional, and heuristic
regimes.

1. Introduction

A bit of motivation. In computational algebraic number theory, determining the class
group and unit group of the ring of integers of a number field is a fundamental algorithmic
task. Their computation remains of significant theoretical interest—many central ques-
tions in number theory concern properties of these groups, including their distribution—
and they are indispensible in practice, underpinning explicit methods across arithmetic
geometry. We might even consider these algorithms as one key benchmark for a compu-
tational algebra system used in number theory.

Takeaways. We consider five possible regimes of computing.

• Formalizable: rigorously proven in a manner that could be verified by a formal-
ized proof assistant—in particular, unconditional. If numerical calculations are
performed, they must use ball arithmetic.

• Rigorous : proven, but we allow numerical calculations if they include floating-
point error analysis (but can ignore any possible accumulated round off errors).

• GRH-conditional formalizable and GRH-conditional rigorous : same but we as-
sume the Generalized Riemann Hypothesis (GRH).

• Heuristic: good heuristics may be assumed, so it is very likely to be the correct
answer, but it should not be considered proven. In particular, we allow good,
reliable, nonrigorous numerical computations.

One step beyond formalizable would be formalized, where steps along the way are
output with the intention of entering them into a formalized proof assistant.

In this article, we document class group and unit group algorithms in Magma [BCP97].
With the above in mind, the takeaways are as follows.

(1) By default (for example, calling ClassGroup with no optional arguments), the
class group algorithm in Magma is formalizable. A “standard” approach is taken:
generators are taken up to the Minkowski bound, relations are found, and then
the class group is confirmed to be saturated. The latter steps are done using exact
computations.

The bad news: a bug was uncovered (in fact, it has been a problem for a some
time!) which turned off saturation of the class group. So the results returned were
not formalizable. This has been fixed as of V2.29; and, for what it is worth, by

Key words and phrases. Class groups, unit groups.
1

the way that the relations are computed it is quite unlikely that a wrong answer
was returned.

(2) By default, the unit group algorithm in Magma is rigorous. A lower bound of
the regulator is computed and the class group is p-saturated with respect to all
primes p smaller than the quotient of the regulator and the regulator bound. As
all regulator computations use floating point numbers, this is not formalizable;
but it could be made so, with ball arithmetic.

(3) When the GRH flag is added, in V2.28 (indeed going back many versions), a
non-rigorous evaluation of the Euler product was used and so the class group and
unit group were not rigorous or formalizable. In V2.29, this bug is fixed.

Calling ClassGroup with proof level GRH will result in a GRH-conditional rig-
orous computation. Further, the proof level Subgroup in combination with a
GRH-bound for the generators of the class group will result in a GRH-conditional
formalizable algorithm, as the check for saturation is performed.

Calling UnitGroup with the additional parameter GRH will skip the saturation
and therefore result in a GRH-conditional rigorous computation. Without that
parameter, the saturation check is done as well and the result will be rigorous.

(4) As it turns out, the bit of good news is that a non-rigorous Euler product eval-
uation turns out to be extremely close and very useful as a heuristic—so much
so that again it seems extremely unlikely that a wrong answer was ever returned.
We discuss at the end some possible heuristic algorithms that follow up on this
observation.

Contents. This article gives a detailed account of how class groups and unit groups
of number fields are computed in Magma V2.29, peppered with observations and ques-
tions throughout. We start in Section 2 with a brief history. Section 3 recalls the basic
definitions and fundamental algorithmic problems, highlighting issues such as represen-
tation of number fields, maximal orders, and the Picard group. In section 4, we review
the core factor base method, describing how generators and relations are obtained under
various assumptions, how to decide when enough relations have been found, and how
this connects to heuristics and conjectures. Then we turn to analytic techniques in sec-
tion 5, detailing both rigorous GRH-conditional estimates and heuristic Euler product
evaluations of the Dedekind zeta residue, with discussion of error analysis and stopping
criteria. Section 6 focuses on unit group algorithms, including classical methods for qua-
dratic fields, strategies for detecting and saturating missing units, and the use of discrete
logarithms modulo primes. Then in section 7 we explain how the class group is saturated
and verified, describing the detection of missing generators or relations and the structure
of the saturation algorithm. We conclude in section 8 with a summary with benchmarks,
along with observations on typical error patterns and some possible future directions.

Acknowledgements. We would like to thank Eran Assaf, Edgar Costa, Tim Dokchitser,
Claus Fieker, Nicole Sutherland, Allan Steel, and Alain Chavarri Villarello for helpful
conversations. Thanks also to the participants in the Magma Meeting: Rational Points
2025 for their input including some suggestions for future work in the final section.

2. A bit of history

Many individuals have contributed to the current package in Magma. We would ap-
preciate hearing of any corrections or additions to our attempt to reconstruct the history
here. Since they often go together, we lump together code to compute the class group
and unit group together, referring only to the former.

2

The class group code in Magma originates from code taken from the KANT package
in 1994. This code was written in the early 1990s by Johannes Graf von Schmettow,
then rewritten chiefly by Klaus Wildanger and Florian Hess in 1996 and then updated in
Magma.

In the mid 1990s, code from Pari was installed and modified by Alexandra Flynn for
class groups of quadratic fields. Although it was heavily used and supported during that
time, it is no longer called (except through code for binary quadratic forms).

Claus Fieker built on the class group package by providing explicit algorithmic class
field theory during the period 2000–2011 [F01].

Jürgen Klüners and Sebastian Pauli developed algorithms for computing the Picard
group of non-maximal orders and for embedding the unit group of non-maximal orders
into the unit group of the field in the mid 2000s. Also during this period, Mark Watkins
implemented the fast algorithm of Wieb Bosma and Peter Stevenhagen for computing
the 2-part of the ideal class group of a quadratic field.

In 2011, Jean-François Biasse implemented a quadratic sieve for computing the class
group of a quadratic field in collaboration with Steve Donnelly and Nicole Sutherland.
He also developed a generalisation of the sieve for number fields of degree greater than
2; it is reported to perform well for degrees up to 5 and to some extent in degree 6.

In the period 2012–2014, Steve Donnelly provided a new implementation of the general
class group algorithm using a random walk on ideals with heavy use of LLL on ideal bases
to find smooth relations—this is generally much faster than the old KANT code. Allan
Steel also made significant improvements in this code.

Finally, Allan Steel implemented a distributed parallel version of the class group code
in 2022.

3. Basic algorithms

We refer to the Magma handbook and the article by Claus Fieker [F06] for an overview.
For general references, there is also an article by Lenstra [L92] and the books of Co-
hen [Co93, Co93]. Many of the results were originally obtained by Zassenhaus, Post,
Cohen, Buchmann and many others, but this is not the right place to attempt to give
detailed references.

Setup. In Magma, a number field K = Q(α) is represented by the minimal polynomial
f(x) ∈ Q[x] of a primitive element α. (In fact, it is represented in KANT by an equation
order, which is why there are sometimes issues when the polynomial does not have integer
coefficients.)

Question 3.1. We consider here only the absolute case. However, much of what is done
can be made relative. This could be important if considering many extensions K of a
given field F (to avoid recomputing data coming from the base field).

For example, what speed improvements could we hope for in the case of CM extensions
K of a totally real field F (analogous to the case of imaginary quadratic fields)? As the
rank of the unit group of a CM extension coincides with the unit rank over the totally
real field, a specialized unit group algorithm may be helpful.

Remark 3.2. We could also work more broadly with étale algebras; this is explained and
implemented in Magma by Stefano Marseglia. However, these algebras project onto their
number field factors and a basic primitive used in these algorithms is the number field
case.

3

Question 3.3. Do we gain any efficiency in working with number fields embedded in
higher codimension? For example, K = Q[x, y]/(f(x, y), g(x, y))? If a lot of time is
spent mapping from a power basis, then perhaps. If everything is computed relative to a
small (LLL-reduced?) integral basis, then this should be independent of the way that the
algebra is represented. Perhaps we should lead with this way of presenting arithmetic
in number fields—sure, the input is a minimal polynomial but most of the action is in
finding a good basis for orders?

We suppose that a maximal order has been computed.

Question 3.4. The assumption that the order is maximal is unnecessary and could be
quite expensive to prove. The algorithms work perfectly well without this assumption,
working instead with the Picard group and when something goes wrong, we typically
have produced a superorder. Is this difficult to implement?

Fundamental algorithms. We write ClOK for the class group of OK , and write h(OK)
for its order. Let r1, r2 be the number of real, complex places of K and let d := disc(OK)
be the discriminant.

The class group is a finite abelian group by the geometry of numbers, and the unit
group is a finitely generated abelian group by Dirichlet’s unit theorem, of rank r1+r2−1.
Applying logarithms to the absolute values under the set of r archimedean places of K
maps the unit group to a lattice of rank r − 1. The kernel of this map are the roots of
unity in O×

K . The covolume of this lattice is the regulator.
Given as input the maximal order OK , there are two fundamental (and related) prob-

lems.

(1) Class group: give as output a computable isomorphism between an abstract finite
abelian group and the class group ClOK (as a group of classes of ideals)—so one
can evaluate both the map (give an ideal which represents the given class) and its
inverse (given an ideal, find its class).

(2) Unit group: give as output a computable isomorphism between an abstract finitely
generated abelian group and the unit group O×

K .

We allow the output of the unit group to be in a compact representation, as a product
of elements with exponents. Calling UnitGroup with the optional parameter Raw gives
the user access to this representation.

We can easily get roots of unity in the field, so we ignore this throughout. One way to
obatain them is a search for elements of small T2-norm, which is part of the saturation.
But, usually they are obtained during the unit group computation.

The example

> _<x> := PolynomialRing(Rationals());

> K := NumberField(x^2 + 890232348011);

> ord := MaximalOrder(K);

> time c1, c2 := ClassGroup(ord : Proof := "GRH");

Time: 0.070

> 1.0 * Norm(c2(30000*c1.1));

6.02233400649697968550171564231E172002

shows that the class group map can result in huge representatives, if the class group is a
large cyclic group.

4

4. The factor base method: an overview

Basic idea. What better way to compute a finitely generated abelian group than with
generators and relations! For the class group, we take a set of classes of prime ideals; we
call this the factor base. We then find relations, meaning elements α ∈ K× which factor
completely over the factor base. We can combine relations until they have the trivial
factorization, which gives a unit.

Written out, let S := {p1, . . . , pm} be a set of primes. Let

O×
K,S := {α ∈ K× : ordp(α) = 0 if p ̸∈ S}

be the subgroup of elements which factor over the primes in S, i.e., the S-unit group.
Then there is an exact sequence

(4.1) 1 → O×
K → O×

K,S

ϕ−→ Zm π−→ ClOK

where the first map is the natural inclusion, the map ϕ is factorization

(4.2)
ϕ : O×

K,S → Zm

α 7→ (ordpi(α))i=1,...,m,

and π is taking the class

(4.3)

π : Zm → ClOK

(e1, . . . , em) 7→
m∏
i

[peii].

The set S generates the class group if and only if π is surjective; in that case, if we
can compute kerπ, we know the class group. So we search for enough elements in O×

K,S

to map to a generating system of ker π ≤ Zm. As a byproduct, we can find candidate
generators for the unit group from kerϕ.

So over the next few subsections we will discuss generators, finding relations, and then
how we know when we have found all relations. We break these up into the various
regimes explained above.

Formalizable generators. The theorem of Minkowski provides that every ideal class
of OK has an integral representative a with

(4.4) Nm(a) ≤ n!

nn

(
4

π

)r2√
|d|

where Nm denotes the absolute norm. (This is one way to prove that the class group is
finite, but it is not necessarily an efficient way to represent elements of the class group.)

So for something formalizable, to be sure we have generators we take all prime ideals
up to the Minkowski bound.

Remark 4.5. Sometimes the Minkowski bound is shortened to O(
√
|d|). But, this is only

literally true when the degree is fixed, as it does not take the leading coefficient into
account. Indeed, Stirling’s approximation (which is quite good!) gives

n!

nn
∼

√
2πn

en
≈ 2.50

√
ne−n

which decays exponentially in n. Already for n = 10, the constant is only 0.0012.
5

Although it is not meaningful to study the inequality for fixed discriminant, we might
study number fields of small discriminant relative to the GRH lower bound, which is of
the form √

|d| >
∼
(60.84)r1(22.38)2r2

which suggests that a lower estimate for the Minkowski bound of the shape

2.50
√
n(22.38)r1(9.29)2r2

is possible. This expresses the Minkowski bound for number fields of large degree n whose
discriminant is small relative to the degree: it at least indicates that the bound is larger
when there are more complex embeddings, which makes sense.

The Zimmert bounds improved the Minkowski constants; there is an elegant reformu-
lation due to Oseterlé. The best bound is that for every class C, there is an integral ideal
a either in C or dC where d denotes the different of OK such that

(4.6) Nm(a) ≤ (0.128− o(1))r1(0.044− o(1))r2
√
|d|

and

(4.7) Nm(a) ≤ (0.14− o(1))r1(0.051− o(1))r2
√
|d|

for all ideal classes. Note how much better this is than Minkowski, which gives roughly

(4.8) Nm(a) <
∼
2.50

√
n(0.36)r1(0.46)r2

√
|d|.

It is of course no trouble to include the class of the different (for example, it is trivial
for monogenic orders).

Remark 4.9. The constants in Zimmert’s inequality are known. Therefore, we have
ZimmertBound in Magma. But, the improvement is not as big as one might hope for, as
the following example shows:

> _<x> := PolynomialRing(Rationals());

> f := &*[x-i : i in [-6..6]] + 1;

> OK := MaximalOrder(f);

> 1.0* Discriminant(OK);

1.62088452500733828715108860464E88

> MinkowskiBound(OK);

2617536668803912827212778710271533052902

> ZimmertBound(OK);

9496537377795252212801557901238143503

> 1.0 * $2 / $1;

275.630639323783598832733968433

A constant factor, but in either case it is so large it is practically useless.

Remark 4.10. There is no known unconditional bound for the norms of a set of generators
for the class group. The Minkowski bound allows us to represent every element of the
class group this way, which is overkill.

Conditional generators. Conditional on the GRH, we can improve on Minkowski as
follows.

Theorem 4.11 (Bach). Assuming GRH, the set

{p ⊂ OK : Nm(p) ≤ 12(log|d|)2}
generates ClOK.

6

Proof. This is a direct consequence of [B96, Theorem 4]. □

Belabas–Diaz y Diaz–Friedman [BDF08] gave another GRH bound. In practice, one
can use the minimum of the two. This is implemented in Magma via GRHBound and is
used by the class group algorithm.

Heuristic generators. The Cohen–Lenstra–Martinet heuristics predict that the class
group is “close to cyclic”. More precisely, if G is the Galois group of K then the prime-
to-(#µK#G) part of the class group has a matrix model in generators and relations like
the above (with the size of matrices tending to infinity). For imaginary quadratic fields,
the heuristic says that the odd part is cyclic with probability 97.7%. The odds only go up
when considering higher degree fields, because they are modelled by a further quotient
by units.

Using the Chebotarev theorem as a heuristic, we expect prime ideals to land randomly
as elements in this cyclic group, so again the probability is very high that one small ideal,
surely a few, will generate. From this perspective, we do not need to take all primes up
to a given bound. But then we still have to find relations, a topic we turn to next.

Question 4.12. We also still have to worry about ℓ-Sylow subgroups with ℓ | #µK#G. For
the 2-part of quadratic fields, we have genus theory available, and recent heuristics are
theorems in this case. What does a generalization to arbitrary degree say heuristically?

Finding relations. By their construction as given above, the relations are elements of
ϕ(O×

K,S) ≤ Zm.
Many people have worked on different approaches to generate relations. Here, it is

sufficient to know that we have some code that does it; and the longer we run it, the
more relations we get. We may want at least to be sure that we loop over small elements
to find small units, as in Equation (6.2).

In general, one can (and has to) view such code as a black box. First, some of the al-
gorithms are randomized [Co93, section 6.5.2]. Second, if sieving is used to find relations,
one might implement the optimizations listed in [Co93, section 10.4.3]. These result in
a general speed up, but the search for relations is no longer exhaustive in a well-defined
search range.

Question 4.13. What if we started by making relations, keeping those that satisfy some
criterion, then form the generators based on the desired relations? This is the problem
of finding a subset of r rows which are supported on r columns. Is this NP-complete?

Using linear algebra, given sufficiently many relations one can:

• compute a sublattice of ker(ϕ).
• compute a subgroup of the unit group.

A parallel version of the relation search was implemented by Allan Steel in 2020–2022.
It is based on the farmer-worker-model and is turned on once Magma is set to parallel
mode via SetNthreads. As this allows to work with larger examples, the relation matrix
is now represented as a sparse matrix.

When to stop searching? Given a method to find relations, we need a mechanism
which indicates when to stop searching and proceed with simplifying the presentation.

For the unit group: if we miss units, the unit group does not have the expected rank
or the discriminant of the unit lattice (regulator) is larger than it is supposed to (fewer
units means larger covolume) by a positive integer factor.

7

For the class group: if we miss relations, given that we always take a set of generators
we have only a submodule of ker(π). Thus, the class number found is a multiple of what
it is supposed to be.

Remark 4.14. In the heuristic case, the factor base may also be too small and we may not
have generators; but that is the point of the heuristic method, by design this is supposed
to be very unlikely to happen.

In either case, because we are off by a positive integer factor, it would be enough to
know the product h(K) · Reg(K) to a specified precision, so we turn to this now.

5. Analytic approaches

The analytic class number formula reads:

res
s=1

ζK(s) =
2r1(2π)r2hR

w
√

|d|
where w = #OK,tors is the number of roots of unity in K, h = h(OK), and R = Reg(OK).

Formalizable evaluation. We could try to compute the residue by using the general
package for working with L-series, implemented by Tim Dokchitser [D04]. The given

complexity is O(
√

|d|), which makes it impractical unless the discriminant is small (in
which case other methods are still faster). Also, the error terms are not worked out all
the way to the end. In principle, this could be made formalizable using ball arithmetic.

An explanation for this: the Euler product actually converges for the Dedekind zeta
function (see below), but for elliptic curves at s = 1 it does not—you need analytic
continuation to push past Re(s) > 3/2.

Currently, there is no formalizable method available in Magma that uses an analytic
approach (in particular, we do not have ball arithmetic). However, we still use the
heuristic evaluation below to give a practical guess as to when to stop looking for relations,
as needed at the end of the previous section. We still have to do something else to certify
(see below), and for theoretical purposes we could skip this—but in practice, it gives us
a good indication of when we should stop searching.

Conditional evaluation. We now explain a conditional, rigorous method.
For X > 0, define

AK(X) :=
∑

p⊂OK ,N(pm)<X

logN(p)

N(p)m/2

(√
X log(X)

N(p)m/2 log(N(p)m)
− 1

)

fK(X) :=
3(AK(X)− AQ(X) + AQ(X/9)− AK(X/9))

2
√
X log(3X)

Theorem 5.1 (Belabas–Friedman, Bach). Assuming GRH, for all X ≥ 69 we have

|log ζ∗K(1)− fK(X)| ≤ 2.324 log|d|√
X log(3X)

C

where

C :=

(
1 +

3.88

log(X/9)

)(
1 +

2√
log|d|

)2

+

(
4.26(n− 1)√

X log|d|

)
.

Proof. See [BF15, Theorem 1]. □
8

To estimate the numerical error in the evaluation of log ress=1 ζK(s) we use ϵ for the
relative error of a single floating point operation. Further, we will use the inequalities
listed in [SMC06, § VII.1] and [SMC06, § VII.28].

As a first step, we estimate the sum of absolute values. For AK(X) this is bounded by∑
p⊂OK ,N(pm)<X

logN(p)

N(p)m/2

(√
X log(X)

N(p)m/2 log(N(p)m)

)

≤ [K : Q]
√
X log(X)

(∑
p<X

1

p
+
∑
p,m≥2

1

pm

)

≤ [K : Q]
√
X log(X)

(
log logX + 0.2615 +

1

2(logX)2
+ 0.77316

)
.

To simplify the notation, we set

E(X) :=
√
X log(X)

(
log logX + 0.2615 +

1

2(logX)2
+ 0.77316

)
.

Assuming that the computation of one term in AK uses k floating point operations, we
can bound the sum of all errors of all the terms of AK(X) by

ϵk[K : Q]E(X) .

As the total sum has less than [K : Q]X terms, the error of summing all the terms in a
pairwise summation scheme is bounded by

ϵ
log2([K : Q]X)

1− ϵ log2([K : Q]X)
[K : Q]E(X) .

This results in an error bound of

ϵ2(2 + log logX)([K : Q] + 1)
3

2
(k + log2([K : Q]X) + log2(X))

for log ress=1 ζK(s).
If we use the standard data type single, one gets ϵ = 2−24. This results in an error

bound of less than 0.01 for X ≤ 1010 and [K : Q] ≤ 100. We use the data type double,
in which case ϵ = 2−52; therefore we end up with an error bound of less than 10−10 for
X ≤ 1010 and [K : Q] ≤ 100.

To obtain a GRH-conditional rigorous algorithm, we compute the regulator to enough
precision: estimates are worked out by Biasse–Fieker [BF14, Lemma 4.4].

The current Magma implementation for the GRH-conditional unit group and class
group with proof level GRH rely on the correctness of the residue. However, setting only
the bound for the class group generators to GRH will call the check of saturation and gives
therefore a GRH-conditional formalizable result.

Heuristic evaluation. We can also just evaluate the Euler product “directly”.

Theorem 5.2. The infinite product

ζ∗K(1) := res
s=1

ζK(s) = lim
s→1

ζK(s)

ζ(s)
=
∏
p

ζK,p(1)

ζp(1)
=
∏
p

1− 1/p∏
p|p(1− 1/Nm(p))

over primes p converges.

Proof. The explicit bounds given in [GL22, Theorem 1] imply the convergence for any
number field K. □

9

Example 5.3. We get ∣∣∣∣∣ress=1
ζK(s)−

∏
p<X

1− 1/p∏
p|p 1− 1/Np

∣∣∣∣∣ < 0.1461

for X = exp(1034) and K = Q(i).

Remark 5.4. For the approximation

A(X) :=
∏
p<X

1− 1/p∏
p|p,Np<X 1− 1/Np

,

the GRH based estimate

| log(res
s=1

ζK(s))− A(X)| < 2 log |d|+ (0.928n+ 0.754) log(X)√
X

for X > 1000

was worked out in [B94, Thm. 2, Tab. 2].

Magma computes the finite product

res
s=1

ζK(s) ≈
∏

p<1000

ζK,p(1)

ζp(1)
.

If this does not match the class and unit group found with an error of 5%, the bound is
doubled, and this is repeated recursively. A test example with extra verbose printing is

> _<x> := PolynomialRing(Rationals());

> SetKantVerbose("CLASS_GROUP_CHECK",1);

> f := t^16 - 36*t^14 + 488*t^12 - 3186*t^10 + 10920*t^8

- 19804*t^6 + 17801*t^4 - 6264*t^2 + 64;

> OK := MaximalOrder(f);

> ClassGroup(ord : Proof := "GRH");

Euler-Product bound: 1000

Euler-Product bound: 2000

Abelian Group of order 1

(Alas, SetKantVerbose only works on the development version.) Thus, the increase in
factors works. Note that to ensure 5% error using the above GRH-based estimate would
require a bound of 106 even in small examples.
The above example is the most extreme one within more than 1000 polynomials. Here,

the relative error of the residue with the prime bound 1000 found is below 7.5%. If we
consider the partial evaluation ∏

p<1000 ζK,p(1)/ζp(1)

ress=1 ζK(s)

assuming GRH, we find in this experiment:

• mean value 1.012,
• standard deviation 0.015,
• skewness −0.0166, and
• kurtosis 3.114.

Because of the 5% error heuristic, the error has to be about 30 standard deviations to
cause trouble.

10

Example 5.5. We picked the field given by the randomly chosen polynomial x8+9127x3+
9127x2 + 9127x + 18254 for a closer inspection. It results in a maximal order with a
45-digit discriminant. We applied both methods described above to approximate the
residual. The plot below shows the resulting approximation errors of the logarithm of
the residue and the error estimates as a function of the used prime bound.

 100

 10

 1

 .1

 .01

 .001

 .0001

 .00001

.000001

10^1 10^2 10^3 10^4 10^5 10^6 10^7

 100

 10

 1

 .1

 .01

 .001

 .0001

 .00001

.000001

10^1 10^2 10^3 10^4 10^5 10^6 10^7

The color black is used for the Euler product approach and Bach’s estimate. The
red color is used for the weighted sum estimate and the Belabas-Friedman error bound.
Each dot shows the maximal error that occures in the interval that it covers whereas
the solid lines show the bounds. The dashed line shows a naive improvement of Bach’s
bound for small p. We can read off the plot that in practice both methods give about
the same error, whereas the error estimates show a much bigger difference. Note that
the downward spikes in the red dots indicate a change of sign in the error, whereas the
error of the Euler product oscillates at a much higher frequence. Therefore, the changes
of sign are not visible in his type of plot.

The next plot compares the two errors with the standard deviation of random Euler
products.

11

 100

 10

 1

 .1

 .01

 .001

 .0001

 .00001

.000001
10^1 10^2 10^3 10^4 10^5 10^6 10^7

 100

 10

 1

 .1

 .01

 .001

 .0001

 .00001

.000001
10^1 10^2 10^3 10^4 10^5 10^6 10^7

The plot indicates that, a stochastic model gives an accurate representation of the
errors. The article [GS03] may be interesting for a more theoretic perspective on this.

Question 5.6. Does this hold up for imaginary quadratic fields of large discriminant? How
should 1000 actually scale with the parameters (degree, discriminant)?

Remark 5.7. The GRH is a perfectly good heuristic, and some helpful GRH estimates
are given by Duke [Duk03, Proposition 5]. For example, we could add the assumption
that the ratio ζK(s)/ζ(s) is an entire Artin L-function—is this an additional assumption
we should add to the hierarchy from the introduction?

In any case, this finishes the description of a heuristic algorithm for computing the
class group and unit group.

6. Unit group algorithms

We now turn to the formalizable, rigorous, conditional, and heuristic algorithms focused
on the unit group.

Quadratic fields. Imaginary quadratic fields have a finite unit group. The unit group
of a real quadratic field can be determined by the continued fraction algorithm in quasi-
linear time in the size of the output (which can be exponential in the input size). Another
algorithm to compute a unit is to use Stark’s method and evaluate the L-series.

Question 6.1. A quasi linear version of the continued fraction algorithm is implemented
in magma /package/Ring/FldQuad/fund unit.m. When not using a power product
representation of units, this approach compares reasonably favorably in speed with the
factor base approach.

Missing units. At this stage in the algorithm, we may suppose we have the roots of
unity and (by continuing to generate relations) that we have a set of multiplicatively-
independent units of rank equal to r1 + r2 − 1.
Then any missing unit would have an nth power in our given subgroup for some n ≥ 2,

so we need to saturate the lattice of units. Our first task is to give an upper bound for n.
12

Any unit outside the subgroup generated would have to have bounded logarithmic
height (thinking of the lattice in the log Minkowski embedding), hence bounded expo-
nential height (by the arithmetic-geometric mean inequality):

log Nm(x) ≤ log
∏
i

(|x|i)2 = (
∑
i

log|x|i)2 ≤
∑
i

(log|x|i)2 ≤ λ1(logO×
K).

An approach not taken by Magma is to enumerate all elements up to that height.

Remark 6.2. In principle, this could be turned into a rigorous algorithm, at least once
we have found (the roots of unity and) a set of linearly independent units.

Instead, we bound n as follows. We enumerate all elements that have at most twice
the length of the last entry in the LLL bases of the given order. This gives lower bounds
for the logarithmic norm of generators of the unit group. By Minkowski’s inequalities
this gives a lower bound on the regulator. As this function does an enumeration of small
elements, it also determines all the roots of unity contained in the maximal order.

Using this, the index is bounded from above by the quotient

regulator of known subgroup

lower bound of regulator
.

The check for saturation is performed for all prime indices up to this bound.

Saturating the unit group. We can now ensure that logO×
K is ℓ-saturated for all

primes ℓ ≤ n, with n computed as in the previous subsection.
In other words, given a prime ℓ we have to show that no ℓth root of a known unit gives

a new unit.
A possible approach, not taken by Magma, is to just check if there is an ℓth root running

over all possible elements in the lattice modulo ℓth powers. This will be expensive!
Instead, we use the following reduction modulo p approach.

• Take sufficiently many (say m) prime ideals pi with ℓ | k×
i . Here, we set ki :=

(O/pi).
• An ℓ-th power of O× reduces to an ℓ-th power in k×

i .
• A ℓ-th power is contained in an index ℓm subgroup of

∏
k×
i .

This gives an algorithm, sketched as follows.

(1) Use discrete logarithms to map k×
i /(k

×
i)

ℓ to an additive group.
(2) Use linear algebra in (Z/ℓZ)m to determine all the known units that reduce to

the index ℓm subgroup.
(3) If a unit that is not an ℓ-th power reduces to the index ℓm subgroup, redo the

above computation with a larger value of m or terminate with an error message.
(4) Return that the unit group is ℓ-saturated.

All the above is implemented in KANT and called by Magma.

Remark 6.3. Currently, the discrete logarithm in k×
i /(k

×
i)

ℓ is computed via the discrete
logarithm of k×

i . To ensure that this does not get too hard, all the prime ideals pi used
are chosen to be degree one primes.

In the range this is used, Pohlig–Hellman reduction in combination with a random
walk algorithm for the discrete logarithm is a good choice. As this works by reducing to
quotients of prime order, the code could be optimised, by computing only the discrete
logarithm in the order ℓ quotient.
Generally, Magma caches the prime ideals, but for the discrete logarithm no caching

is visible in the code.
13

Question 6.4. The Chebotarev density theorem is the heuristic for why this works. What
does an optimistic version of this predict for the number of primes required?

7. Finishing the class group

In a similar way, we can saturate the class group. More precisely, we need to detect
the following two problems.

• Missing generators. If we miss a generator, then a prime ideal below the
Minkowski bound gives a new ideal class.

• Missing relations. A missing relation results in a class group larger than correct.
Further, the decomposition of ideals into classes found is finer than the correct
decomposition into ideal classes. As the result has a group structure, it will have
elements of prime order that consist of principal ideals.

We do not have to take generators to start with, and this is the approach taken by
Magma in the formalizable approach: we start with some plausible set of generators, then
after we have relations we check that all of the remaining primes up to the Minkowski
bound are covered by the known classes. This improves the speed in the linear algebra,
because we can get organized in the class group doing linear algebra with smaller matrices.

In the conditional approach, we are guaranteed a (reasonably small) set of generators.
(In a possible heuristic approach, we do not care.) Magma previously incorrectly used a
heuristic Euler product evaluation, but now we use a rigorous one and we can stop (in
proof level GRH) once we pass the analytic check explained in the previous section. If only
the bounds for the generators of the class group are set to GRH, a check for saturation of
the class group is done.

Saturating the class group. What remains then is a formalizable algorithm for the
class group. We again do this with saturation. The basic idea is as follows: if a is given
and an = (a) is known to be principal, then we have

• either a is not principal, or
• there exists u ∈ O×

K such that ua ∈ K×n is an nth power (in OK). (In this
instance, an n-th root will generate a.)

As usual, we reduce to the case where n = ℓ is prime (by raising to the power n/ℓ). We
compute a GRH-conditional unit group. The implemented check will confirm that the
class group and the unit group are in fact ℓ-saturated or terminate with an error message.
We have to saturate the entire class group and not just a cyclic subgroup. Therefore,

the approach is a bit more elaborate.
We use the notation Cl(OK) ∼= C1 × · · · × Ck to decompose the class group into a

product of cyclic groups. For each factor Ci we chose an ideal ai representing a generator.
Now, the function ClassGroupCyclicFactorGenerators returns a generator gi for each
principal ideal a#Ci

i . Further, we denote by u0, . . . , ur generators of the unit group. We
assume that u0 is the only generator of finite order.

Assuming the prime ℓ divides #C1, . . . ,#Cj then the class and the unit group are
ℓ-saturated if and only if the subgroup ⟨u0, . . . , ur, g1, . . . , gj⟩ does not contain an ℓth
power aside from 1. If ℓ ∤ ord(u0), then we can remove it from the subgroup. The search
for ℓ-th powers is done in the same way as the saturation of the unit group by a reduction
modulo p approach and linear algebra over Z/ℓZ.

Remark 7.1. The current C-level implementation of the class group saturation is switched
off and it is no longer compatible with the current C code. Therefore, this part is
reimplemented in package code.

14

As the above computation can be done modulo h-th powers, this allows to replace
ClassGroupCyclicFactorGenerators by a more efficient function that gives the results
of the linear algebra steps only modulo h (resp. the final result modulo h-th powers).
Further, it is not necessary to be compatible with the class group map, as it is not used
in the saturation algorithm. As the computation is done by reduction modulo p, all
elements are represented as power products and multiplied out after reduction modulo p.

Even in the case of imaginary quadratic fields with large discriminants, the time spent
on discrete logarithms is negligible. Other types of fields result in much smaller class
groups and the discrete logarithms are trivial to compute. The only step whose compu-
tation time is not negligible is the computation of the Smith form (with transformation
matrix) of the relation matrix.

The above saturation of the class group is implemented in KANT, but unfortunately,
it was switched off. As of V2.29, a new implementation is available.

8. Conclusions

Summary. To summarize, as of V2.29, the algorithms run as follows.

• To compute a formalizable class group, we use a heuristic set of generators and
a heuristic evaluation of the Euler product, compute a set of relations until the
analytic class number matches, and then (using exact methods) saturate the class
group. Finally it is checked that the heuristically chosen set of generators is in
fact a generating set for the class group.

• To compute a rigorous unit group, we saturate using the regulator of the known
subgroup. (This could be made formalizable with ball arithmetic.)

• We have a GRH-conditional formalizable algorithm for the class group, but again
only GRH-conditional rigorous algorithm for the unit group. For a GRH-conditional
rigorous algorithm, we use the GRH-bound, evaluate the analytic class number,
and declare we are done with relations when we match.

• We don’t yet have a fast heuristic algorithm.

The computation of ress=1 ζK(s) and error estimates are implemented in C. The satu-
ration proof for the class group is implemented in package level. The description of the
proof levels GRH, UserBound, Subgroup, Full in the handbook has been updated. By
an early abort of the relation search (before the Euler product matches), we can test the
saturation algorithms.

Benchmarks. The table below shows the timinings for the steps performed.

max order
Polynomial Euler prod Cl(OK) O×

K Cl(OK)
residue saturation

x2 + 3 0.000 0.030 0.000 0.000
x2 + 1030 + 57 0.010 2.090 0.000 5.620
x2 − 1030 − 57 0.010 0.960 2.010 0.000

x3 − 17 0.010 0.020 0.000 0.000
x3 − x+ 2015993900449 0.010 0.450 1.800 0.200
x6 + 4x3 + 30x2 + 4 0.020 0.070 0.010 0.010
x8 + 4346x4 + 169 0.050 0.370 0.280 0.070
x8 + 8932x4 + 17161 0.050 0.640 1.650 0.120
x12 + 4x6 + 270x4 + 4 0.080 0.640 0.130 0.110

x12 + 422x6 + 5070x4 + 44521 0.130 3.410 18.820 0.720
15

The time to saturate the unit group is proprtional to the upper index bound and the
time to fully check the class group is proportional to the Minkowski bound. Thus, both
is only possible in small examples.

Polynomial Conditional Verify O×
K

results Cl(OK) saturation

x2 − 13 0.010 0.000 0.000
x2 − 113 0.030 0.000 0.000
x2 − 1013 0.010 0.000 0.000
x2 − 10103 0.010 0.000 0.000

x2 − 105 − 103 0.020 0.000 0.000
x2 − 106 − 1003 0.030 0.000 0.000
x2 − 107 − 1009 0.030 0.000 0.010
x2 − 108 − 10017 0.030 0.020 0.020
x2 − 109 − 10029 0.040 0.050 0.070
x2 − 1010 − 100003 0.090 0.850 0.280
x2 − 1011 − 100009 0.080 1.270 0.560
x2 − 1012 − 1000021 0.180 10.190 2.620
x2 − 1013 − 1000029 0.450 81.710 8.580
x2 − 1014 − 10000003 1.990 — 89.170

The next larger example was terminated when using more than 20 GB of memory.

Testing. Among other test, the following was performed with repeated runs of more
than 10000 number fields. The relation search was terminated early, once the relation
matrix and the unit group reached full rank, but without a match in the analytic class
number formula.

The resulting class groups and unit groups were compared with GRH-conditional re-
sults. In case the results did not coincide, a rigorous computation was requestet. This
called the proof algorithms, as the result was viewed as conditional. The test found:

• Corrected indices of unit groups (by a search for small units) range from 2 to 648
and include various primes such as 2, 3, 7, 11, 13, 17, 23.

• Detected indices of unit groups (resulting in error messages) range from 2 to 648
(including 101 and other odd primes).

• Detected indices of class groups (resulting in error messages) range from 2 to 24.
Prime factors other than 2 and 3 did not show up.

In total an incorrect class group occurred about 4000 times, an incorrect unit group
occurred about 9000. For further improvements of the algorithm we can learn from
this test that a full rank relation matrix will give the correct class group with higher
probability than the unit group. An incorrect class group will most likely be off by a
factor of the shape 2i3j. Further, the unit group derived from an incomplete relation
matrix can have large index in the full unit group. In case the unit group is incorrect,
the index is 2 with a probability of about 2/3.

Possible future work.

(1) The algorithm to generate relations used in the class group computation would be
useful in other contexts. Could we have access to these functions at the user level,
perhaps with some parameters to control the factor base and how many relations
to generate? This would be potentially useful in Diophantine contexts, e.g. in the
Brauer–Manin obstruction . For this application it is not needed that the kernel

16

of the relation matrix gives the whole unit group. More precisely, we would like
to find elements whose norm is an ℓth power, without necessarily completeness
results; relation finding code provides an important input for that.

(2) It would be useful to be able to work with unexpanded power products for ideals
and units as a well-defined type.

(3) For abelian fields, can we do better in class group computations: for example,
computing class numbers using Bernoulli numbers?

(4) Is there any potential speedup to compute just (ClOK)/(ClOK)
ℓ? In principle,

the linear algebra is faster (no awfulness with Smith form), if we have generators
we only need to do ℓ-saturation which is easier. The case ℓ = 2 shows up frequently
in applications.

(5) Are there other heuristics or computational observations that would lead to faster
heuristic algorithms? Sometimes one just wants to know the answer as quickly as
possible without rigor, then after the experimental phase is over certifying it.

References

[B94] Eric Bach, Improved approximations for Euler products, in Number theory (Halifax, NS, 1994),
13–28, CMS Conf. Proc., 15, Amer. Math. Soc., Providence, RI. 10

[B96] Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990),
no. 191, 355–380. 7

[BDF08] Karim Belabas, Francisco Diaz y Diaz and Eduardo Friedman, Small generators of the ideal
class group, Math. Comp. 77 (2008), no. 262, 1185–1197. 7

[BF15] Karim Belabas and Eduardo Friedman, Computing the residue of the Dedekind zeta function,
Math. Comp. 84 (2015), no. 291, 357–369. 8

[BF14] Jean-François Biasse and Claus Fieker, Subexponential class group and unit group computation
in large degree number fields, LMS J. Comput. Math., 17(A) (2014), 385–403. 9

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user
language, J. Symbolic Comput. 24 (1997), 235–265. 1

[Co93] Henri Cohen, A course in computational algebraic number theory, Grad. Texts in Math.,
vol. 138, Springer, Berlin, 1993. 3, 7

[Co93] Henri Cohen, Advanced topics in computational number theory, Grad. Texts in Math., vol. 193,
Springer-Verlag, New York, 2000. 3

[D04] Tim Dokchitser, Computing special values of motivic L-functions, Experiment. Math. 13
(2004), no. 2, 137–149. 8

[Duk03] W. Duke, Extreme values of Artin L-functions and class numbers, Compositio Math. 136
(2003), 103–115. 12

[F01] Claus Fieker, Computing class fields via the Artin map, Math. Comp. 70 (2001), no. 235,
1293–1303. 3

[F06] Claus Fieker, Applications of the class field theory of global fields, Discovering mathematics
with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, 31–62. 3

[GL22] Stephan Ramon Garcia and Ethan Simpson Lee, Unconditional explicit Mertens’ theorems for
number fields and Dedekind zeta residue bounds, Ramanujan J. 57 (2022), no. 3, 1169–1191. 9

[GS03] A. J. Granville and K. Soundararajan, The distribution of values of L(1, χd), Geom. Funct.
Anal. 13 (2003), no. 5, 992–1028. 12

[L92] H. W. Lenstra Jr., Algorithms in algebraic number theory, Bull. Amer. Math. Soc. (N.S.) 26
(1992), no. 2, 211–244 3

[SMC06] József Sándor, Dragoslav S. Mitrinović,and Borislav Crstici, Handbook of number theory. I,
Springer, Dordrecht, 2006. 9

School of Mathematics and Statistics, University of Sydney, NSW, 2006, Australia
17

Institut für Mathematik, Universität Würzburg, Emil-Fischer-Straße 30, D-97074
Würzburg, German y

Email address: stephan.elsenhans@mathematik.uni-wuerzburg.de
URL: https://www.mathematik.uni-wuerzburg.de/institut/personal/elsenhans.html

School of Mathematics and Statistics, University of Sydney, NSW, 2006, Australia
Email address: jvoight@gmail.com
URL: https://jvoight.github.io/

18

	1. Introduction
	A bit of motivation
	Takeaways
	Contents
	Acknowledgements

	2. A bit of history
	3. Basic algorithms
	Setup
	Fundamental algorithms

	4. The factor base method: an overview
	Basic idea
	Formalizable generators
	Conditional generators
	Heuristic generators
	Finding relations
	When to stop searching?

	5. Analytic approaches
	Formalizable evaluation
	Conditional evaluation
	Heuristic evaluation

	6. Unit group algorithms
	Quadratic fields
	Missing units
	Saturating the unit group

	7. Finishing the class group
	Saturating the class group

	8. Conclusions
	Summary
	Benchmarks
	Testing
	Possible future work

	References

