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Abstract. For an abelian number field of odd degree, we study the structure of its 2-
Selmer group as a bilinear space and as a Galois module. We prove structural results and
make predictions for the distribution of unit signature ranks and narrow class groups in
families where the degree and Galois group are fixed.
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1. Introduction

1.1. Motivation. Originating in the study of solutions to the negative Pell equation, the
investigation of signatures of units in number rings dates back at least to Lagrange. While a
considerable amount of progress has been made for quadratic fields [38, 21, 7], predictions for
the distribution of narrow class groups and possible signs of units under real embeddings for
certain families of higher degree number fields have only recently been developed [16, 14, 4].

In this paper, we study unit signatures and class groups of abelian number fields of odd
degree. To illustrate and motivate our results, we begin with two special cases.

Conjecture 1.1.1 (Conjecture 6.3.3). As K varies over cyclic cubic number fields, the
probability that K has a totally positive system of fundamental units is approximately 3%.

For the conjectures presented in this paper, we sidestep the issue of ordering fields: we
expect that any fair counting function in the terminology of Wood [41] should be allowed,
for example ordering by conductor or by the norm of the product of ramified primes. We are
led to Conjecture 1.1.1 by combining structural results established herein with a randomness

Date: October 9, 2021.
2020 Mathematics Subject Classification. 11R29, 11R27, 11R45, 11Y40.

1



hypothesis (H2) in the vein of the Cohen–Lenstra heuristics. This conjecture agrees well with
computational evidence (see section 7.1), and it is compatible with the following theorem.

Theorem 1.1.2 (Theorem A.1.2, with Elkies). There exist infinitely many cyclic cubic fields
with a totally positive system of fundamental units.

The proof of Theorem 1.1.2 involves the study the integral points on a log K3 surface.
The (infinite) family of simplest cubic fields of Shanks were each shown to have units of all
possible signatures by Washington [40, p. 371], the case complementary to Theorem 1.1.2.

Our second illustrative conjecture is as follows.

Conjecture 1.1.3 (Conjecture 6.1.1). As K ranges over cyclic number fields of degree 7
with odd class number, the probability that the narrow class number is also odd is 7/9.

We recall that the narrow class group of a field coincides with the class group if and only
if there are units of all possible signatures. This conjecture also matches computational
evidence well (see section 7.2).

The predictions above are based on the philosophy underlying the Cohen–Lenstra heuris-
tics, which predicts random behavior for arithmetic objects as soon as one accounts for all
of the determined structure. Early examples of the need to account for structural proper-
ties, including genus theory and ranks of units, were already present in the original paper
of Cohen–Lenstra [9]. It remains mysterious and important to understand how one must
account for additional structure in generalizations of the Cohen–Lenstra heuristics. For ex-
ample, what makes a prime good [11], and the interaction between p-parts of class groups and
the presence of pth roots of unity [32, 33, 2], remain unresolved. On the other hand, some
reflection principles like those of Scholz and Leopoldt [28], seem to be inherently compatible
with the Cohen–Lenstra–Martinet conjectures [17, 26, 27].

In this paper, we propose a model for the distribution of 2-parts of narrow class groups
and signatures of units in families of abelian number fields of fixed odd degree and Galois
group. For such families, the Galois action and the presence of the 2nd roots of unity suggest
additional, nontrivial structure to account for (as confirmed by computations and available
function field analogues). The requirement that the degree is odd when p = 2 isolates the
“roots of unity problem” from other obstructions to arithmetic randomness, including genus
theory. Since the narrow class group is an extension of the class group by an elementary
abelian 2-group that measures signatures of units, our efforts are concentrated on 2-parts.

Our contributions are thus twofold. First, for these families we precisely identify and
analyze relevant structure, including the relationship to reflection principles. Second, under
the hypothesis that what remains behaves randomly, we make exact predictions for the
behavior of units and class groups—with corroborating computational evidence.

1.2. Structure: class groups. We now set up the structures we study and model in this
paper. We build on work of Dummit–Voight [16], who make predictions for fields of odd de-
gree n whose Galois closure has Galois group Sn. Here, we instead consider Galois extensions
of odd degree.

Recall that the 2-Selmer group of a number field K is

Sel2(K) := {α ∈ K× : (α) = a2 for a fractional ideal a of K}/(K×)2.
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Attached to K is a finite-dimensional F2-vector space V∞(K) � V2(K) equipped with a
nondegenerate symmetric bilinear form and a homomorphism

ϕK : Sel2(K)→ V∞(K) � V2(K)

called the 2-Selmer signature map. Dummit–Voight [16] showed that the image S(K) :=
img(ϕK) of ϕK is a maximal, totally isotropic subspace. If K is Galois over Q with Galois
group GK , then we observe that the above objects carry a GK-action and in particular S(K)
is a GK-invariant, maximal totally isotropic subspace (Corollary 3.1.3).

In preparation for stating our guiding result, we introduce a bit of notation. Let G be a
finite abelian group of odd order and let χ be an F2-character of G. Then every irreducible

F2[G]-module is isomorphic to F2(χ), the value field of an F2-character χ : G → F×2 taking
values in a (fixed) algebraic closure F2 of F2, where G acts through the character χ. For a
finitely generated Z[G]-module M , write rkχM for the multiplicity of the irreducible module

F2(χ) in the F2[G]-module M/M2, and let rk2M := dimF2 M/M2. For an F2-character χ
of G, there is a noncanonical F2[G]-module isomorphism HomF2(F2(χ),F2) ' F2(χ−1) (see
Lemma 5.1.2 and the discussion preceding it), and we write χ∗ := χ−1 for the corresponding
dual character. We say χ is self-dual if F2(χ∗) ' F2(χ) as F2[G]-modules. For an F2-
character χ of G and V an F2[G]-module, we write Vχ for the F2(χ)-isotypic component of V
and Vχ± := Vχ+Vχ∗ for the sum. If V is equipped with a symmetric, G-invariant F2-bilinear
form, then the decomposition of V into the spaces Vχ± is orthogonal (Lemma 3.2.7), giving
a canonical decomposition as F2[G]-modules.

Now let K be a Galois number field with abelian Galois group GK of odd order; then the
class group Cl(K) and narrow class group Cl+(K) are Z[GK ]-modules. For an F2-character
χ, we define the following nonnegative integers:

ρχ(K) := rkχ Cl(K);

ρ+
χ (K) := rkχ Cl+(K);

k+
χ (K) := rkχ Cl+(K)− rkχ Cl(K)

= ρ+
χ (K)− ρχ(K).

(1.2.1)

We refer to k+
χ (K) as the χ-isotropy rank. When K is clear from context, we drop it from the

notation. Our main theorem, governing the above structures and quantities, is as follows.

Theorem 1.2.2 (Theorem 5.4.2). Let K be a Galois number field with abelian Galois group
GK of odd order. Then for each F2-character χ, there are exactly 6 possibilities for S(K)χ± ≤
V∞(K) � V2(K) up to GK-equivariant isometry.

Theorem 1.2.2 follows from an investigation of the F2[GK ]-module structure of the 2-
Selmer signature map together with a classification of invariant, maximal isotropic subspaces
in a bilinear space with group action. The six possibilities are given in Table 1.2.3: we
write q := #F2(χ) = #F2(χ∗), and we write # IsomG(V ) for the number of G-equivariant
isometries of V (K) := V∞(K)�V2(K). All cases occur (see Example 6.4.1), so the statement
is optimal in this sense.

In Tables 1.2.3 and 1.2.4 we observe parallel relations when V∞(K) is replaced by V2(K)
and Cl+(K) is replaced by Cl4(K), the ray class group of K of conductor 4, with the
quantities ρ4,χ(K) and k4,χ(K) defined analogously as in (1.2.1); we restrict attention to
narrow class groups in this introduction.
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Case χ self-dual? Sχ± Sχ± ∩ V∞ Sχ± ∩ V2 # IsomG(V )

A Yes F2(χ) {0} {0} √
q + 1

B No F2(χ)2 F2(χ) F2(χ) 1

B′ No F2(χ∗)2 F2(χ∗) F2(χ∗) 1

C No F2(χ)⊕ F2(χ∗) F2(χ) F2(χ∗) 1

C′ No F2(χ)⊕ F2(χ∗) F2(χ∗) F2(χ) 1

D No F2(χ)⊕ F2(χ∗) {0} {0} q − 1

Table 1.2.3: Possibilities for the Galois bilinear structure of the image of the 2-Selmer group

Case ρχ and ρχ∗ ρ+
χ and ρ+

χ∗ ρ4,χ and ρ4,χ∗ k+
χ k+

χ∗ k4,χ k4,χ∗

A ρχ = ρχ∗ ρ+
χ = ρ+

χ∗ ρ4,χ = ρ4,χ∗ 0 0 0 0

B ρχ = ρχ∗ + 1 ρ+
χ = ρ+

χ∗ ρ4,χ = ρ4,χ∗ 0 1 0 1

B′ ρχ = ρχ∗ − 1 ρ+
χ = ρ+

χ∗ ρ4,χ = ρ4,χ∗ 1 0 1 0

C ρχ = ρχ∗ ρ+
χ = ρ+

χ∗ − 1 ρ4,χ = ρ4,χ∗ + 1 0 1 1 0

C′ ρχ = ρχ∗ ρ+
χ = ρ+

χ∗ + 1 ρ4,χ = ρ4,χ∗ − 1 1 0 0 1

D ρχ = ρχ∗ ρ+
χ = ρ+

χ∗ ρ4,χ = ρ4,χ∗ 0 0 0 0

Table 1.2.4: Possibilities for the class group and isotropy rank

The following corollary is then immediate.

Corollary 1.2.5. Under the hypotheses of Theorem 1.2.2, we have

|rkχ Cl(K)− rkχ∗ Cl(K)| ≤ 1,

|rkχ Cl+(K)− rkχ∗ Cl+(K)| ≤ 1,

and 0 ≤ k+
χ + k+

χ∗ ≤ 1.

Corollary 1.2.5 can be seen as a Spiegelungssatz or reflection theorem as in Leopoldt [28]
for p = 2, and therefore Theorem 1.2.2 can be seen as a precise refinement of it. A precursor
to Corollary 1.2.5 is the theorem of Armitage–Fröhlich [1], generalized by Taylor [39] and
Oriat [34, 35]. Gras then proved a very general T -S-reflection principle [23, Théorème 5.18]
(see also the presentation in his book [24, Chapter II, Theorem 5.4.5]); however, certain
corollaries for p = 2 [24, Chapter II, Corollary 5.4.6(ii)] (details [24, Chapter II, (5.4.9)]
added in the second printing) are incorrect: case D of Table 1.2.3 does not appear.

We show that rank inequalities like Corollary 1.2.5 for a Galois number field K of odd
degree follow from Kummer duality and the GK-module structure of the 2-Selmer group
(and its intersection with coordinate subspaces in the 2-Selmer signature space). In partic-
ular, the relevant reflection principles are already encoded. In particular, we recover easily
several classical results from the literature. Our results can also instead be seen to fit into a
much more general context (Poitou–Tate duality of Selmer groups); however, in view of the
subtleties indicated in the previous paragraph, one advantage of our approach is it provides
a self-contained, uniform, and transparent proof of these corollaries. At the same time, the
concrete description in Theorem 1.2.2 states the precise structure (in particular, the image
of the 2-Selmer group under the signature map is a GK-invariant, maximal totally isotropic
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subspace) which must be respected in a random model and thereby serves as the foundation
for our heuristics, which we present in sections 1.4–1.5.

1.3. Structure: units. The structural result in Theorem 1.2.2 has the following conse-
quence for units. Let OK be the ring of integers of K. The archimedean signature map
sgn∞ : K× →

∏
v|∞{±1} ' Fn2 is the surjective group homomorphism recording the signs of

elements of K× under each real embedding; its kernel K×>0 := ker(sgn∞) is the group of
totally positive elements of K. Let O×K,>0 := O×K ∩K

×
>0 denote the group of totally positive

units. Define

sgnrkχ(O×K) := rkχ sgn∞(O×K), (1.3.1)

and the unit signature rank of K

sgnrk(O×K) := dimF2 sgn∞(O×K) =
∑

χ sgnrkχ(O×K) · [F2(χ) : F2], (1.3.2)

where the sum indexes over isomorphism classes of F2-characters χ. The structure on unit
signature ranks imposed by the Galois module structure is summarized in the following
result, keeping the notation (1.2.1).

Theorem 1.3.3 (Theorem 5.5.2). Let K be an abelian number field of odd degree with Galois
group GK, and let χ be an F2-character of GK. Then the following statements hold.

(a) If k+
χ (K) = 1, then sgnrkχ(O×K) = 0.

(b) If k+
χ (K) = 0, then 1− rkχ Cl(K) ≤ sgnrkχ(O×K) ≤ 1.

When the degree of K is prime, summing over χ gives the following corollary.

Corollary 1.3.4 (Corollary 5.5.4). Let K be a cyclic number field of odd prime degree `,
and let f be the order of 2 modulo `. Then

sgnrk(O×K) ≡ 1 (mod f),

and the following statements hold.

(a) If f is odd, then `+1
2
− rk2 Cl(K) ≤ sgnrk(O×K) ≤ `;

(b) If f is even, then `− rk2 Cl(K) ≤ sgnrk(O×K) ≤ `.

For example, if 2 is a primitive root modulo ` and the class number of K is odd, then
sgnrk(O×K) = `; this result for ` = 3 was observed by Armitage–Fröhlich [1, Theorem V].

1.4. Heuristics: narrow class groups. We begin by applying the results in the previous
section to make predictions for narrow class groups and signatures of units for odd-degree
abelian number fields. We keep the notation of (1.2.1).

Let G be a finite abelian group of odd order. A G-number field is a Galois number field
K, inside a fixed algebraic closure of Q, equipped with an isomorphism GK ' G, where
GK := Gal(K |Q). Such a field K is totally real, so ±1 are the only roots of unity in K.

Returning to Theorem 1.2.2 and Table 1.2.3, we see that the quantities k+
χ , k

+
χ∗ are uniquely

determined by Sχ± in the cases where χ is self-dual or cases B and B′ when χ is not self-dual.
However, when χ is not self-dual and ρχ = ρχ∗ , there is a question about the distribution
of cases C, C′, and D. Modeling the image of 2-Selmer signature map as a random totally
isotropic G-invariant subspace in the 2-Selmer signature space (see heuristic assumption
(H1)), we are led to the following conjecture.
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Conjecture 1.4.1 (Conjecture 6.1.1). Let G be an abelian group of odd order, and let χ
be an F2-character of G that is not self-dual and let q := #F2(χ). Then as K varies over
G-number fields satisfying ρχ(K) = ρχ∗(K),

Prob
(
k+
χ (K) + k+

χ∗(K) = 0
)

=
q − 1

q + 1
;

Prob
(
k+
χ (K) + k+

χ∗(K) = 1
)

=
2

q + 1
.

(1.4.2)

A concrete application of Conjecture 1.4.1 is given in Conjecture 6.1.2, as follows. Suppose
2 has order (`−1)/2 modulo a prime ` ≡ 7 (mod 8): then there are exactly two non-self-dual
characters, and if Cl(K) is self-dual then kχ = kχ∗ = 0. So as K varies over cyclic number
fields of degree ` such that Cl(K)[2] is self-dual, Conjecture 1.4.1 predicts that

Prob
(
Cl+(K)[2] ' Cl(K)[2]) =

2
`−1
2 − 1

2
`−1
2 + 1

. (1.4.3)

We further expect that the probability in Conjecture 1.4.1 remains the same in certain
natural subfamilies, such as when we fix the value rkχ Cl(K) = rkχ∗ Cl(K) = r. As a special
case, we arrive at Conjecture 1.1.3.

1.5. Heuristics: units. Next, we make predictions for signatures of units. Our model can
be applied under many scenarios; in this introduction, we consider two simple, illustrative
cases. We first examine the situation when the degree is prime and the class number is
odd. Modeling O×K/(O

×
K)2 as a random GK-invariant subspace of the 2-Selmer group of K

containing −1, and under an independence hypothesis (H2′), we are led to the following
conjecture.

Conjecture 1.5.1 (Conjecture 6.2.4). Let ` be an odd prime such that the order f of 2 in
(Z/`Z)× is odd. Let q := 2f , and define m := `−1

2f
∈ Z>0. Then as K varies over cyclic

number fields of degree ` with odd class number,

Prob
(
sgnrk(O×K) = fs+ `−1

2

)
=

(
m

s

)(
q − 1

q + 1

)s(
2

q + 1

)m−s
for 0 ≤ s ≤ m.

Second, we consider the situation when ` = 3 or 5 with no additional assumption on the
class number. In this case, Corollary 5.5.4(b) implies that sgnrk(O×K) = 1 or `. Although
complete heuristics for the 2-part of the class group over abelian fields are not known,
Malle [32] provides results in the case that ` = 3 or 5. We use the following notation: for
m ∈ Z≥0∪{∞} and q ∈ R>1, write (q)0 := 1 and otherwise (q)m :=

∏m
i=1(1−q−i). Combining

these results with a uniform random hypothesis (H2), we make the following prediction.

Conjecture 1.5.2 (Conjecture 6.3.3). Let ` = 3 or 5 and q = 2`−1. As K varies over cyclic
number fields of degree `, then

Prob
(
sgnrk(O×K) = 1

)
=

(
1 +

1
√
q

)
(
√
q)∞(q2)∞

(q)2
∞

·
∞∑
r=0

(`− 1) r

q(r2+3r)/2 · (q)r
· qr − 1

qr+1 − 1
. (1.5.3)
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Computing the numerical value of the quantity in (1.5.3), we predict that approximately
3% of cyclic cubic fields have sgnrk(O×K) = 1 which yields Conjecture 1.1.1. For cyclic
quintic fields we predict that this proportion drops to below 0.1%. The predictions in the
two conjectures above agree with the computational evidence we compiled: see section 7.

Remark 1.5.4. To extend the above conjectures to all odd primes (or more generally, to all
abelian groups G of odd order), we would need to refine the heuristics of Malle [32, 33] to
predict the distribution of rkχ Cl(K). This distribution will depend on the representation
theory of Z/`Z (or more generally, of G); in particular, the constraints in Theorem 1.2.2 must
be respected. In contrast, when 2 is a primitive root modulo `, there is only one nontrivial
(necessarily self-dual) F2[Z/`Z]-module, so these representation-theoretic complexities are
immaterial; in this case, we expect that the generalization of the above conjectures to such
` to be more straightforward.

We expect that as ` → ∞ varies over odd primes, we have Prob
(
sgnrk(O×K) = 1

)
→ 0%,

and we plan to give evidence to support this limiting behavior in the future (see also Remark
7.2.3).

Remark 1.5.5. The statements we prove and conjecture above on unit signature ranks in odd
degree extensions are quite different than the situation for real quadratic fields, related to
solutions to the negative Pell equation. By genus theory, 100% of real quadratic fields have
a totally positive unit [21], and the conjectural asymptotic due to Stevenhagen [38] arises
from an apparently different heuristic involving Rédei matrices.

Remark 1.5.6. We are not aware of a function field analogue which would bear on the
conjectures presented in this section. These conjectures are based on structural properties
of the 2-Selmer signature map, which rely in an essential way on the fact that 2 ∈ OK is
neither a unit nor zero.

1.6. Outline. In section 2, we set up basic notation and background. In section 3, we study
these objects in general as Galois modules over F2. We then restrict to the case of odd Galois
extensions in section 4 and show how reflection principles follow from the Galois action and
Kummer duality—these are for completeness (and to indicate that they are not missing from
our model). We then further restrict to abelian extensions and in section 5 prove our main
structural result, and we see classical reflection principles as a corollary. In section 6 we
introduce our heuristic assumptions and present our conjectures, including details on the
low-degree cases. In section 7, we carry out computations that provide some experimental
evidence for our conjectures. Finally, in appendix A we prove Theorem 1.1.2.
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1502834) and an NSF Grant (DMS-1844206). Voight was supported by an NSF CAREER
Award (DMS-1151047) and a Simons Collaboration Grant (550029). Elkies was partially
supported by an NSF grant (DMS-1502161) and a Simons Collaboration Grant.
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2. Properties of the 2-Selmer group and its signature spaces

We begin by setting up some notation and recalling basic definitions and previous results.

2.1. Basic notation. If A is a (multiplicatively written) abelian group and m ∈ Z>0, we
write

A[m] := {a ∈ A : am = 1}
for the m-torsion subgroup of A. For a prime p, we write

rkp(A) := dimFp(A/Ap)

for the p-rank of A; we then have #A[p] = prkp(A).

We quickly prove a standard lemma (for lack of a reference). Let Z(p) := {a/b ∈ Q : p - b}
be the localization of Z away from a prime p.

Lemma 2.1.1. Let G be a finite group, let p - #G be prime, and let M be a finitely generated,

torsion Z(p)[G]-module. Then there is a (noncanonical) isomorphism M/pM
∼−→ M [p] as

Fp[G]-modules.

Proof. Recall (by Maschke’s theorem) that every finitely generated Fp[G]-module is semisim-
ple, since p - #G. Let m = pr be the exponent of M (as an abelian group), with r ≥ 0. We
argue by induction on r. If r ≤ 1, then pM = {0} so indeed M/pM = M = M [p].

Suppose the result holds whenever M has exponent dividing pr; we prove it for M of
exponent pr+1. Multiplication by p gives an exact sequence

0→M [p]→M → pM → 0

of Z(p)[G]-modules. We can repeat this with pM , giving the following diagram, with exact
rows and columns:

0 0 0

0 (pM)[p] pM p2M 0

0 M [p] M pM 0

0 M1 M/pM pM/p2M 0

0 0 0

(2.1.2)

Here, M1 := coker((pM)[p] → M [p]) ' M [p]/(pM)[p]. By semisimplicity, the left vertical
and bottom horizontal maps split, so

M [p] ' (pM)[p]⊕M1

M/pM ' (pM/p2M)⊕M1

(2.1.3)

Since pM has exponent pr, by induction (pM)[p] ' (pM/p2M) so M [p] 'M/pM . �
8



Let K be a number field of degree n = [K : Q] with r1 real and r2 complex places, with
algebraic closure K and with ring of integers OK . For a prime p, we denote the localization
of OK away from (p) by

OK,(p) := {α ∈ K× : ordp(α) ≥ 0 for all primes p | (p)}
and the completion of OK at p by OK,p := OK ⊗ Zp, so that OK,(p) ↪→ OK,p. For a place v
of K, we let Kv denote the completion of K at v and OK,v its valuation ring, and we let

( , )v : K×v ×K×v → {±1}
denote the Hilbert symbol at v: recall that for αv and βv ∈ K×v , we have (αv, βv)v = 1 if and
only if βv is in the image of the norm map from Kv[x]/(x2 − αv) to Kv.

2.2. The 2-Selmer group and its signature spaces. The main object of study is the
2-Selmer group of a number field K, defined as

Sel2(K) := {α ∈ K× : (α) = a2 for a fractional ideal a of K}/(K×)2.

Following Dummit-Voight [16, Section 3], we recall two signature spaces that keep track of
behavior at ∞ and at 2, as follows.

Definition 2.2.1. The archimedean signature space V∞(K) is defined as

V∞(K) :=
∏
v real

{±1} '
∏
v|∞

K×v /K
×2
v

where the second product runs over all real places of K. The archimedean signature map is

sgn∞ : K× → V∞(K)

α 7→ (sgn v(α))v

where sgnx = x/|x| for x ∈ R×.

By definition, ker sgn∞ = K×>0, the totally positive elements of K, which contains (K×)2,
and so the map sgn∞ induces a well-defined map ϕK,∞ : Sel2(K)→ V∞(K). The product of
Hilbert symbols defines a map

b∞ : V∞(K)× V∞(K)→ {±1}

which is a (well-defined) symmetric, non-degenerate F2-bilinear form.

Definition 2.2.2. The 2-adic signature space V2(K) is defined as

V2(K) := O×K,(2)/(1 + 4OK,(2))(O×K,(2))
2.

The 2-adic signature map is the map

sgn2 : O×K,(2) → V2(K)

obtained from the projection O×K,(2) → V2(K).

For the following statements we refer to Dummit–Voight [16, §4]. We have dimF2 V2(K) =
n and there is an isomorphism of abelian groups

V2(K) '
∏
v|(2)

O×K,v/(1 + 4OK,v)(O×K,v)
2.
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Under this identification, the product of Hilbert symbols defines a map

b2 : V2(K)× V2(K)→ {±1}(
(αv)v, (βv)v

)
7→
∏
v|(2)

(αv, βv)v,

which is a nondegenerate, symmetric F2-bilinear form on V2(K). Every class in Sel2(K)
has a representative α such that α ∈ O×K,(2), unique up to multiplication by an element of

(O×K,(2))
2; therefore, the map sgn2 induces a well-defined map ϕK,2 : Sel2(K)→ V2(K).

Putting these together, we define the 2-Selmer signature space as the orthogonal direct sum

V (K) := V∞(K) � V2(K)

and write b := b∞ ⊥ b2 for the bilinear form on V (K). The isometry group of (V (K), b)
is the product of the isometry groups (or equivalently, the subgroup of the total isometry
group preserving each factor). Equipped with b, the 2-Selmer signature space V (K) is a
nondegenerate symmetric bilinear space over F2 of dimension r1 + n. Similarly, we define
the 2-Selmer signature map

ϕK := ϕK,∞ ⊥ ϕK,2 : Sel2(K)→ V (K). (2.2.3)

Theorem 2.2.4 (Dummit–Voight [16, Theorem 6.1]). For a number field K, the image of
the 2-Selmer signature map ϕK is a maximal totally isotropic subspace.

Recall from the introduction that the class group of K is denoted by Cl(K), its narrow
class group is denoted by Cl+(K), and its ray class group of conductor 4 by Cl4(K).

Definition 2.2.5. The archimedean isotropy rank of a number field K is

k+(K) := rk2 Cl+(K)− rk2 Cl(K),

and the 2-adic isotropy rank of K is

k4(K) := rk2 Cl4(K)− rk2 Cl(K).

By Dummit–Voight [16, Theorem 6.1], we have

k+(K) = dimF2 img(ϕK) ∩ V∞ = dimF2 ker(ϕK,2)− dimF2 ker(ϕK)

k4(K) = dimF2 img(ϕK) ∩ V2 = dimF2 ker(ϕK,∞)− dimF2 ker(ϕK)

hence the nomenclature given in Definition 2.2.5. Moreover, there is a classical equality

k4(K) = k+(K) + r2 (2.2.6)

(see for example, Theorem 2.2 of Lemmermeyer [29] and also Theorem 4.3.3 below).

2.3. Connections to Sel2(K) via class field theory. There is a natural, well-defined map
Sel2(K) → Cl(K)[2] sending [α] 7→ [a] where a2 = (α); this map is surjective and fits into
the exact sequence

1→ O×K/(O
×
K)2 → Sel2(K)→ Cl(K)[2]→ 1. (2.3.1)

In addition, the 2-Selmer signature map arises naturally in class field theory as follows.
Let H ⊇ K be the Hilbert class field of K. Class field theory provides an isomorphism
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Gal(H |K) ' Cl(K); let H(2) denote the fixed field of the subgroup Cl(K)2. The Kummer
pairing

Gal(H(2) |K)× ker(ϕK)→ {±1}

(τ, [α]) 7→ τ(
√
α)√
α

is (well-defined and) perfect [16, (3.11)]. The Artin reciprocity map provides a canonical
isomorphism Gal(H(2) |K) ' Cl(K)/Cl(K)2 and so we can rewrite the above map instead
as

Cl(K)/Cl(K)2 × ker(ϕK)→ {±1}. (2.3.2)

The pairing (2.3.2) is the first of four perfect pairings [16, Lemma 3.10] (see also Lemmer-
meyer [29, Theorem 6.3]); the other three perfect pairings are

Cl4(K)/Cl4(K)2 × ker(ϕK,∞)→ {±1},
Cl+(K)/Cl+(K)2 × ker(ϕK,2)→ {±1}, and

Cl+4 (K)/Cl+4 (K)2 × Sel2(K)→ {±1},
(2.3.3)

where Cl+4 (K) denotes the ray class group of K of conductor 4 · ∞.

3. Galois module structures

We next study the Galois module structure on the arithmetic objects introduced in the
previous section; we will continue in the next section with more precise results in the odd
degree case. Our results overlap substantially with those of Taylor [39].

From now on, suppose that K is Galois over Q, with Galois group GK := Gal(K |Q). We
work throughout with left F2[GK ]-modules. (We could consider more generally structures
implied by the action of a nontrivial automorphism group Aut(K), and many of the results
below could be generalized to this setting; we focus here on the extreme case, where Aut(K)
is as large as possible.)

3.1. Basic invariants. We first prove Galois invariance of the signature spaces in generality.
Recall that a F2-bilinear form b : V ×V → F2 on an F2[G]-module V is G-invariant if b(α, β) =
b(σ(α), σ(β)) for all σ ∈ G.

Proposition 3.1.1. The following statements hold.

(a) If K is totally real, then V∞(K) ' F2[GK ] as F2[GK ]-modules; otherwise, V∞(K) is
trivial. In either case, the bilinear form b∞ is GK-invariant.

(b) We have V2(K) ' F2[GK ] as F2[GK ]-modules, and b2 is GK-invariant.

Proof. We begin with (a), and suppose that K is totally real. The Galois group GK acts
on V∞(K) (on the left) via its permutation action on the (index) set of real places of K (as
v 7→ v ◦ σ−1), so V∞(K) ' F2[GK ] as F2[GK ]-modules. Since b∞ is defined as the product
over real places v, it is GK-invariant.

For (b), we follow the proof in Dummit–Voight [16, Proposition 4.4]. The map a 7→ 1 + 2a
induces an isomorphism

OK,(2)/2OK,(2)
∼−→
(
O×K,(2)/(1 + 4OK,(2))

)
[2]

11



which is visibly GK-equivariant. By Lemma 2.1.1, the right hand side is isomorphic to V2(K)
as F2[GK ]-modules, since (1 + 4OK,(2))

2 ≤ 1 + 8OK,(2) ≤ O×2
K,(2).

Finally, we show b2 is GK-invariant. Let α, β ∈ O×K,(2) and let v | 2 be a prime of K.

Since GK acts transitively (on the left) on the set of places {v : v | (2)} with stabilizers
Dv := Aut(Kv) the decomposition group, choosing a place v we have

b2(α, β) =
∏

τDv∈GK/Dv

(α, β)τ(v)

well defined. The Hilbert symbol ( , )v is GK-equivariant and Dv-invariant, so for σ ∈ GK ,

b2(σ(α), σ(β)) =
∏

τDv∈GK/Dv

(σ(α), σ(β))τ(v) =
∏
τ

(α, β)(σ−1τ)(v) =
∏
τ

(α, β)τ(v) = b2(α, β)

since σ permutes the cosets of Dv in GK . �

Lemma 3.1.2. The 2-Selmer signature map ϕK is GK-equivariant.

Proof. We show that both sgn∞ and sgn2 are G-equivariant which implies that the induced
maps ϕK,∞ and ϕK,2 are G-equivariant as well. For sgn∞, we may suppose that K is totally
real, and then

sgn∞(σ(α)) = (sgn(v(σ(α))))v = (sgn((σ−1v)(α)))v = σ(sgn∞(α))

so sgn∞ is GK-equivariant.
To show that sgn2 is GK-equivariant, we observe that sgn2 is simply the composition of a

natural embedding and projection. �

Corollary 3.1.3. For a Galois number field K, the image of the 2-Selmer signature map
ϕK is a GK-invariant maximal totally isotropic subspace.

Proof. Combine Theorem 2.2.4 with Proposition 3.1.1 and Lemma 3.1.2. �

3.2. Duals and pairings. We now treat some issues of duality, with an application to the
Kummer pairing. Let G be a finite group and let V be a finitely generated (left) F2[G]-
module.

Definition 3.2.1. The dual of V is the F2-vector space

V ∨ := HomF2(V,F2)

equipped with the (left) F2[G]-action, arising from extending F2-linearly the natural G-
action: if σ ∈ G, f ∈ V ∨, and x ∈ V , then (σf)(x) := f(σ−1x). We say V is self-dual if
V ' V ∨ as F2[G]-modules.

The canonical evaluation pairing

e : V ∨ × V → F2

e(f, x) = f(x)
(3.2.2)

is nondegenerate and G-invariant, so gives a canonical isomorphism V
∼−→ (V ∨)∨ as F2[G]-

modules.
12



Lemma 3.2.3. For K a Galois number field, the Kummer pairings (2.3.2)–(2.3.3) induce
canonical isomorphisms of F2[GK ]-modules:

Cl(K)/Cl(K)2 ' ker(ϕK)∨

Cl4(K)/Cl4(K)2 ' ker(ϕK,∞)∨

Cl+(K)/Cl+(K)2 ' ker(ϕK,2)∨

Cl+4 (K)/Cl+4 (K)2 ' Sel2(K)∨

(3.2.4)

Proof. We work with the first line, the others follow by the same argument. The Kummer
isomorphism

K×/K×2 ∼−→ Hom(Gal(K |K), {±1}) (3.2.5)

is GK-equivariant and defines a canonical isomorphism ker(ϕK)
∼−→ Hom(Gal(Q |F ), {±1}),

where Q is the maximal subfield whose Galois group has exponent dividing 2 in the Hilbert
class field ofK. The Artin map defines a canonicalGK-equivariant isomorphism Gal(Q |F )

∼−→
Cl(K)/Cl(K)2. Combining these with the evaluation map then gives a canonical pairing

Cl(K)/Cl(K)2 × ker(ϕK)→ {±1} (3.2.6)

as claimed. This pairing may be explicitly described as

([a], [α]) 7→
(α
a

)
where a ⊆ OK is an ideal of odd norm, α ∈ OK is coprime to a, and

(α
a

)
is the Jacobi

symbol. �

Applying Lemma 2.1.1 to the groups on the left-hand side of (3.2.4) gives (now noncanon-
ical) F2[GK ]-module isomorphisms Cl(K)[2] ' ker(ϕK)∨, etc.

Lemma 3.2.7. Let b : V × V → F2 be a G-invariant F2-bilinear form, and let W,W ′ ⊆ V
be irreducible F2[G]-modules. If W∨ 6' W ′ as F2[G]-modules, then b(W,W ′) = {0}.

Proof. Restricting b, we obtain an F2[G]-module map W ′ → W∨ by w′ 7→ b( , w′); by Schur’s
lemma, this map is either zero or an isomorphism, and the result follows. �

Lemma 3.2.7, although easy to prove, is fundamental in what follows: it shows that
when a decomposition of V into irreducibles is possible, it is already almost an orthogonal
decomposition.

To conclude this section, we refine this into a canonical orthogonal decomposition. Suppose
G has odd order, so the category of F2[G]-modules is semisimple. Let W be an irreducible
F2[G]-module. We write VW for the W -isotypic component of V in a decomposition of V
into irreducibles. Suppose that V is equipped with a symmetric, G-invariant, F2-bilinear
form. Then by Lemma 3.2.7 we have a canonical decomposition as F2[G]-modules

V '�
W

(VW + VW∨), (3.2.8)

where the orthogonal direct sum is indexed by irreducibles W up to isomorphism and duals.
We call the decomposition given in (3.2.8) the canonical orthogonal decomposition of V .
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4. Galois module structures for odd degree extensions

In this section, we suppose throughout that K has odd degree (but remains Galois). Then
K is totally real and the only roots of unity in K are ±1. Moreover, since #GK is odd, the
category of left F2[GK ]-modules is semisimple.

4.1. Basic invariants. We quickly prove two standard lemmas, for completeness.

Lemma 4.1.1. We have O×K/(O
×
K)2 ' F2[GK ] as F2[GK ]-modules.

Proof. We consider O×K as a Z[GK ]-module multiplicatively. By Dirichlet’s unit theorem,

(O×K/{±1} ⊗Z R)⊕ R ' R[GK ]

as R[GK ]-modules where R has trivial GK action (corresponding to the trace zero hyperplane
in the Minkowski embedding). Counting idempotents, we conclude that

(O×K/{±1} ⊗Z Z(2))⊕ Z(2) ' Z(2)[GK ] (4.1.2)

as Z(2)-modules; tensoring (4.1.2) with Z/2Z and using that {±1} has trivial action gives

O×K/(O
×
K)2 ' O×K/{±1}(O×K)2 × {±1} ' F2[GK ]. �

Corollary 4.1.3. We have Sel2(K) ' F2[GK ]⊕ Cl(K)[2] as F2[GK ]-modules.

Proof. Since F2[GK ] is semisimple, the short exact sequence (2.3.1) splits as F2[GK ]-modules;
the result then follows from Lemma 4.1.1. �

Lemma 4.1.4. For any odd Galois number field K, the GK-invariant subspace of each of
the F2[GK ]-modules Cl(K)[2], Cl+(K)[2] and Cl4(K)[2] is trivial, whereas the GK-invariant
subspace of Cl(K)+

4 (K) is isomorphic to F2.

Proof. Let C(K) denote one of the groups under consideration, and let C(Q) denote the ray
class group of the same modulus but over Q. The norm map induces a group homomorphism
C(K)[2] → C(Q)[2], and on GK-invariants it is an isomorphism, with inverse extension of
ideals, since n is odd. Indeed, if [a] ∈ C(K)[2] is GK-invariant, then [Nm(a)] = [a]n = [a] ∈
C(K)[2]; similarly, if [(a)] ∈ C(Q)[2] then [Nm(aZK)] = [(a)]n = [(a)] ∈ C(Q)[2]. Since the
groups Cl(Q),Cl+(Q),Cl4(Q) are trivial and Cl+4 (Q) ' Z/2Z, the result follows. �

4.2. First reflection principle. In this section, we show that the Galois module structure
of the 2-Selmer group and Kummer duality imply rank inequalities on the class group,
classically known as a reflection theorem. Let W be an irreducible (left) F2[GK ]-module, and
for a finitely generated Z[GK ]-module M , let rkW (M) ∈ Z≥0 be the multiplicity of W in a
decomposition of M/2M into irreducible F2[GK ]-modules. We recall Lemma 2.1.1, which
gives an isomorphism M/2M ' M [2] for a torsion, finitely generated Z(2)[GK ]-module M ,
in particular giving rkW (M) = rkW (M [2]).

As mentioned in the introduction, our reflection theorems (Proposition 4.2.2, Proposition
4.3.6, and Theorem 4.3.3) are special cases of the very general T -S-reflection theorem of
Gras [23, Théorème 5.18]. Our goal in the next few sections is to give a direct proof of
these results: it shows that they can be read off from the 2-Selmer group, i.e., that they are
intrinsic to the underlying structure of the image of the 2-Selmer group, as we will see below.
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We use the notation
ρW (K) := rkW Cl(K)

ρ+
W (K) := rkW Cl+(K)

ρ4,W (K) := rkW Cl4(K).

(4.2.1)

Proposition 4.2.2. Let K be a Galois number field of odd degree, and let W be an irreducible
F2[GK ]-module. Then

ρW (K)− ρW∨(K) = rkW F2[GK ]− rkW∨ S(K) (4.2.3)

and
|ρW (K)− ρW∨(K)| ≤ rkW F2[GK ]. (4.2.4)

Proof. Since the short exact sequence in (2.3.1) splits as a sequence of F2[GK ]-modules,
decomposing Sel2(K) under ϕK gives

O×K/(O
×
K)2 ⊕ Cl(K)[2] ' Sel2(K) ' S(K)⊕ ker(ϕK) (4.2.5)

as F2[GK ]-modules. By Lemma 4.1.1, we have O×K/(O
×
K)2 ' F2[GK ]. By Lemma 3.2.3, we

have Cl(K)[2] ' ker(ϕK)∨, so ρW (K) = rkW∨ ker(ϕK). Plugging these in and taking rkW∨
in (4.2.5) yields

rkW F2[GK ] + ρW∨(K) = rkW∨ S(K) + ρW (K) (4.2.6)

so
ρW (K)− ρW∨(K) = rkW F2[GK ]− rkW∨ S(K) ≤ rkW F2[GK ]

giving (4.2.3). Repeating the argument with W∨, noting rkW F2[GK ] = rkW∨ F2[GK ], and
negating then gives (4.2.4). �

In particular, we see from the proof of Proposition 4.2.2 that the inequality is refined by
the equality 4.2.3, with the discrepancy in the inequality being measured by the group S(K).
This is the simplest instance of the motivation of our paper: we seek to understand structural
properties of the 2-Selmer signature map, from which reflection principles are corollaries.

4.3. Isotropy ranks. Similar inequalities govern the narrow class group and its relationship
to the class group, encoded in the 2-Selmer group. To measure these contributions, we make
the following definitions. Throughout, let W be an irreducible F2[GK ]-module.

Definition 4.3.1. The archimedean W -isotropy rank of K is

k+
W (K) := rkW Cl+(K)− rkW Cl(K)

and the 2-adic W -isotropy rank of K is

k4,W (K) := rkW Cl4(K)− rkW Cl(K).

We have k+
W (K), k4,W (K) ∈ Z≥0, since Cl+(K),Cl4(K) surject onto Cl(K).

Proposition 4.3.2. We have

Cl+(K)[2] ' Cl(K)[2]⊕ (S(K) ∩ V∞(K))∨, and

Cl4(K)[2] ' Cl(K)[2]⊕ (S(K) ∩ V2(K))∨.

In particular,
k+
W (K) = rkW∨(S(K) ∩ V∞(K)), and

k4,W (K) = rkW∨(S(K) ∩ V2(K)).
15



Proof. We have that S(K) ∩ V∞(K) ' ker(ϕK,2)/ ker(ϕK); since ker(ϕK,2) and ker(ϕK) are
Kummer dual to Cl+(K)[2] and Cl(K)[2] by Lemma 3.2.3, the first isomorphism follows;
taking W -rank and subtracting gives

rkW∨(S(K) ∩ V∞(K)) = rkW Cl+(K)− rkW Cl(K).

The second isomorphism and equality follow similarly. �

A further duality is reflected in the totally positive elements in the 2-Selmer group, as
follows.

Theorem 4.3.3. Let K be a Galois number field of odd degree. Then

Cl+(K)[2] ' Cl4(K)[2]∨

as F2[GK ]-modules.

Proof. Let Sel+2 (K) := ker(ϕK,∞) be the classes in the 2-Selmer group represented by a totally
positive element; then Sel+2 (K) ' Cl4(K)[2]∨ by Lemma 3.2.3; we show Sel+2 (K) ' Cl+(K)[2]
as F2[GK ]-modules.

Our proof considers the analogue for Sel+2 (K) of the exact sequence (2.3.1). Let PK be
the group of principal fractional ideals of K, and let PK,>0 be the subgroup of PK consisting
of principal fractional ideals generated by a totally positive element. The map K× → PK
sending α 7→ (α) is surjective and GK-equivariant with kernel O×K ; it induces the exact
sequence

1→ O×K/O
×
K,>0 → K×/K×>0 → PK/PK,>0 → 1.

By weak approximation, the natural map K×/K×>0 → V∞(K) is a GK-equivariant isomor-
phism, and so K×/K×>0 ' F2[GK ] by Proposition 3.1.1(a). Therefore we obtain an isomor-
phism of F2[GK ]-modules

F2[GK ] ' (O×K/O
×
K,>0)⊕ (PK/PK,>0). (4.3.4)

The natural GK-equivariant map PK → Cl+(K) defined by (α) 7→ [(α)] has kernel PK,>0

and so we have a canonical injection PK/PK,>0 ↪→ Cl+(K). Since P 2
K is a subgroup of PK,>0

the image of the injection is contained in Cl+(K)[2]. Therefore, the map

Sel+2 (K)→ Cl+(K)[2]/(PK/PK,>0)

mapping the class of α ∈ K× to the class of the fractional ideal a such that a2 = (α) is
well-defined; it is also visibly surjective, and so fits into the short exact sequence

1→ O×K,>0/O
×2
K → Sel+2 (K)→ Cl+(K)[2]/(PK/PK,>0)→ 1

of F2[GK ]-modules, giving the isomorphism

PK/PK,>0 ⊕ Sel+2 (K) ' O×K,>0/O
×2
K ⊕ Cl+(K)[2]. (4.3.5)

Adding O×K/O
×
K,>0 to both sides of (4.3.5), and using (4.3.4) and Lemma 4.1.1 we conclude

F2[GK ]⊕ Sel+2 (K) ' F2[GK ]⊕ Cl+(K)[2]

and cancelling gives the result. �
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By semisimplicity, we can decompose

SK ' (SK ∩ V∞)⊕ (SK ∩ V2)⊕ S ′K
as F2[GK ]-modules for some choice S ′K ⊆ SK , well-defined up to isomorphism. We call S ′K
a coordinate complement to SK in V . With this notation, we immediately turn to our next
reflection principle: again, all we use is F2[GK ]-module structure and Kummer duality.

Proposition 4.3.6. Let W be an irreducible F2[GK ]-module, and let S ′K be a coordinate
complement to SK in V . Then

ρ+
W (K)− ρ+

W∨(K) = rkW F2[GK ]− rkW (S ∩ V∞)− rkW∨(S ∩ V2)− rkW∨ S
′
K (4.3.7)

and
|ρ+
W (K)− ρ+

W∨(K)| = |ρ4,W (K)− ρ4,W∨(K)| ≤ rkW F2[GK ]. (4.3.8)

Proof. As K is fixed, we drop it from the notation. By Proposition 4.3.2, we obtain

rkW∨ S = k+
W + k4,W + rkW∨ S

′. (4.3.9)

From (4.2.6) we get
rkW∨ S = rkW F2[GK ] + ρW∨ − ρW ,

so plugging and rearranging gives

ρ+
W = k+

W + ρW = rkW F2[GK ] + ρW∨ − k4,W − rkW∨ S
′

ρ+
W − ρ

+
W∨ = rkW F2[GK ]− k+

W∨ − k4,W − rkW∨ S
′ ≤ rkW F2[GK ].

(4.3.10)

Repeating with W replaced by W∨ gives the inequality |ρ+
W (K) − ρ+

W∨(K)| ≤ rkW F2[GK ]
in (4.3.8). By Theorem 4.3.3, we have ρ+

W (K) = ρ4,W∨(K) and ρ+
W∨(K) = ρ4,W (K), which

gives the equality in (4.3.8) and finishes the proof. �

Proposition 4.3.11. Let W be an irreducible F2[GK ]-module, and let S ′K be a coordinate
complement to SK in V . Then

k+
W (K) + k+

W∨(K) = rkW F2[GK ]− rkW∨ S
′
K . (4.3.12)

Moreover, S ′K is self-dual and

0 ≤ k+
W (K) + k+

W∨(K) = k4,W (K) + k4,W∨(K) ≤ rkW F2[GK ]. (4.3.13)

Proof. We again drop K from the notation. For the equality in (4.3.13), by Theorem 4.3.3,
we have

ρ+
W + ρ+

W∨ = ρ4,W + ρ4,W∨ ;

subtracting ρW + ρW∨ from both sides gives the result. From (4.3.7) we have

k+
W + k4,W + ρW − ρW∨ = rkW F2[GK ]− rkW∨ S

′

But k4,W + ρW = ρ4,W = ρ+
W∨ by Theorem 4.3.3, so

k+
W + k+

W∨ = rkW F2[GK ]− rkW∨ S
′ ≤ rkW F2[GK ]

giving (4.3.12). To restore symmetry, we repeat the same argument with W∨ and conclude
that rkW S ′ = rkW∨ S

′, so in fact S ′ is self-dual. �

Just as in Proposition 4.2.2, we see from the proof of Proposition (4.3.11) that the real
content lies in the equality (4.3.12), i.e., the discrepancy in the upper bound (4.3.13) is
measured by the (noncanonically defined) “diagonal subspace” S ′(K) ⊆ S(K).

We deduce corollaries of these statements in the abelian case in section 5.4.
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5. Galois module structures for odd degree abelian extensions

In this section, we specialize further and suppose that the odd order group G is abelian
and prove the main structural results of the paper, first for class groups and then for unit
signatures.

5.1. Duality in the abelian case. We begin by revising notation and duality in the abelian
setting. Let F2 be a (fixed) algebraic closure of F2. An F2-character of G is a group homo-

morphism χ : G → F×2 . For an F2-character χ, let F2(χ) ⊆ F2 be the subfield generated by
the values of χ. Then F2(χ) is a finite extension of F2: more precisely, if χ has (odd) order d
and 2 has order f in (Z/dZ)×, then F2(χ) ' F2f as F2-vector spaces. The group G acts nat-
urally on F2(χ) via multiplication by χ(σ); thus F2(χ) is a cyclic, irreducible F2[G]-module,
generated by 1. Conversely, choosing a cyclic generator, every irreducible F2[G]-module is
of the form F2(χ) for some F2-character χ.

By character theory, two such modules F2(χ) and F2(χ′) are isomorphic if and only if
there exists ψ ∈ Gal(F2 |F2) such that χ′ = ψ ◦ χ. In particular, since ψ is a power of the

Frobenius automorphism, F2(χ) ' F2(χ′) if and only if χ′ = χ2k for some k ∈ Z. Moreover,
AutF2[G](F2(χ)) ' F2(χ)×.

There is also a simple way to understand duality when G is abelian. Let V be a finitely
generated F2[G]-module. The map σ 7→ σ−1 for σ ∈ G extends by F2-linearity to an
involution ∗ : F2[G] → F2[G], which is a ring automorphism when G is abelian. We define
V ∗ (the contragredient representation) to be the F2[G]-module with the same underlying
F2-vector space V but with the action of F2[G] under pullback from the involution map.
Explicitly, if γ ∈ F2[G] and x∗ ∈ V ∗ denotes the same element x ∈ V then γ(x∗) := (γ∗(x))∗;
in particular, for σ ∈ G, then σ(x∗) = σ∗(x)∗ = σ−1(x)∗. We conclude that

F2(χ)∗ ' F2(χ−1)

as F2[G]-modules, which explains the notation χ∗ = χ−1 from the introduction.

Remark 5.1.1. Without the hypothesis that G is abelian, starting with a left F2[G]-module
V , we would obtain a right F2[G]-module V ∗.

Lemma 5.1.2. There is a (non-canonical) F2[G]-module isomorphism V ∗
∼−→ V ∨.

Proof. Decomposing into irreducibles up to isomorphism, we may suppose without loss of
generality that V = F2(χ). Consider the map

V ∗ → V ∨

x∗ 7→ (fx∗ : y 7→ Tr(x · y))

where Tr: F2(χ) → F2 is the trace map. This map is nonzero and F2-linear. We claim it is
also G-equivariant: indeed, for all x∗ ∈ V ∗, σ ∈ G, and y ∈ V , we have

fx∗(y) = Tr((σ(x∗))∗ · y) = Tr(σ−1(x) · y) = Tr(χ(σ−1)x · y)

= Tr(x · χ(σ−1)y) = Tr(x · σ−1(y)) = fx∗(σ
−1(y)) = (σfx∗)(y).

(5.1.3)

By Schur’s lemma, the map x 7→ fx∗ is an isomorphism. �

Remark 5.1.4. See also Theorem 5.2.3 below, where we revisit the trace pairing on F2[G]
with its involution ∗.
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Lemma 5.1.5. Let m ∈ Z≥1 denote the (odd) exponent of the abelian group G. Every
irreducible F2[G]-module is self-dual if and only if there exists t ∈ Z such that 2t ≡ −1
(mod m), where m is the exponent of G.

Proof. Let F2(χ) be an irreducible F2[G]-module, and let d be the order of χ. We have

F2(χ) ' F2(χ)∗ = F2(χ∗) if and only if χ∗ = χ2k for some k ∈ Z, i.e., 2k ≡ −1 (mod d).
Choosing a character with order d = m then gives the result. �

Example 5.1.6. The smallest (odd) values of m ∈ Z>0 where −1 6∈ 〈2〉 ≤ (Z/mZ)× are
m = 7, 15, 21, and 23.

Example 5.1.7. Suppose #G = ` is prime and let f be the order of 2 in (Z/`Z)×. Then there
are `−1

f
distinct, nontrivial F2[G]-modules, up to isomorphism. They are all isomorphic as

F2-vector spaces to F2f , a generator of G acts by multiplication by a primitive `th root of
unity ζ ∈ F2f , and two such are isomorphic if and only if ζ ′ = ζ2k for some k ∈ Z. Finally,
all such modules are self-dual if and only if f is even.

The Galois module structure has concrete implications for ranks.

Example 5.1.8. Let K be a cyclic number field of odd prime degree `, and let f denote the
order of 2 modulo `. Then taking G = GK , applying the decomposition into irreducibles
given in Example 5.1.7 and Lemma 4.1.4, we conclude that f divides each of rk2 Cl(K),
rk2 Cl+(K), and rk2 Cl4(K), and that rk2 Cl+4 (K) ≡ 1 (mod f).

5.2. Bilinear forms. For an F2-character χ of G, we write Vχ for the F2(χ)-isotypic com-
ponent of V and Vχ± := Vχ + Vχ−1 = Vχ + Vχ∗ for the sum of the F2(χ)- and F2(χ∗)-isotypic
components of V . (If χ is not self-dual, then this sum is direct; if χ is self-dual, then
Vχ± = Vχ.)

Example 5.2.1. Since G is abelian, each isomorphism class of irreducible F2[G]-modules
occurs in F2[G] with multiplicity 1. Therefore

F2[G]χ± '

{
F2(χ), if χ is self-dual;

F2(χ)⊕ F2(χ∗), otherwise.

If V is equipped with a symmetric, G-invariant, F2-bilinear form, then V has a canonical
orthogonal decomposition (3.2.8)

V '�
χ

Vχ± , (5.2.2)

where the orthogonal direct sum is indexed by characters χ taken up to isomorphism and
inverses. Consequently, it is enough to understand bilinear forms on the components Vχ± .

Recall the algebra trace TrF2[G]|F2 : F2[G]→ F2. For all σ ∈ G, we have TrF2[G]|F2(σ) = 1 if
σ = 1, else TrF2[G]|F2(σ) = 0: indeed, in the standard basis G for F2[G], the element σ acts on

F2[G] by a permutation matrix with no fixed points when σ 6= 1. Hence TrF2[G]|F2

(∑
aσσ
)

=
a1.

Theorem 5.2.3. Let G be an abelian group of odd order. Then there is a unique G-invariant,
symmetric, nondegenerate, F2-bilinear form on F2[G] up to G-equivariant isometry, given by

b : F2[G]× F2[G]→ F2

(x, y) 7→ TrF2[G]|F2(x
∗y).

(5.2.4)
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In the standard basis for F2[G], the form b is the standard ‘dot product’.

Proof. For x, y ∈ F2[G], writing x =
∑
aσσ and y =

∑
cσσ in the standard basis, we have

x∗ =
∑
aσσ

−1 so

b(x, y) = TrF2[G]|F2

(
(
∑
aσσ

−1)(
∑
cσσ)

)
=
∑

σ∈G aσcσ. (5.2.5)

In other words, this pairing is the dot product in the standard basis, and consequently it is
symmetric, nondegenerate, and G-invariant. Note ∗ is the adjoint with respect to b, since

b(νx, y) = TrF2[G]|F2((νx)∗y) = TrF2[G]|F2(ν
∗x∗y) = TrF2[G]|F2(x

∗(ν∗y)) = b(x, ν∗y). (5.2.6)

Let b′ be another G-invariant, symmetric, nondegenerate, F2-bilinear form on F2[G]. We

obtain an F2[G]-module isomorphism ψ : F2[G]
∼−→ F2[G]∨ by ψ(x)(y) = b(x, y), and similarly

ψ′ with b′. Let ν = ψ−1(ψ′(1)). Then b′(x, y) = b(νx, y) for all x, y ∈ F2[G].
Since b, b′ are symmetric, by (5.2.6) we have

b(νx, y) = b′(x, y) = b′(y, x) = b(νy, x) = b(x, νy) = b(ν∗x, y)

for all x, y ∈ F2[G]. Taking x = 1, by nondegeneracy we conclude that ν = ν∗. Since F2[G]
is a product of fields of characteristic 2, the group of units F2[G]× is an abelian group of odd
order. The subgroup of units fixed under the ring automorphism ∗ is again of odd order,
so squaring is an automorphism and thus ν = µ2 for some µ ∈ F2[G]× with µ = µ∗. Thus
ν = µ∗µ. Since

b′(x, y) = b(νx, y) = b(µ∗µx, y) = b(µx, µy)

and therefore the F2[G]-module automorphism x 7→ µx defines a G-equivariant isometry
from b to b′. �

Example 5.2.7. As this will be central to our investigation, we write down explicitly the
pairing in Theorem 5.2.3 restricted to orthogonal components as in (3.2.8).

If χ is self-dual, then F2[G]χ± ' F2(χ) ' F2f and the bilinear form is non-alternating
when χ is trivial and alternating when χ is non-trivial. When χ is trivial then F2(χ) = F2

and b(1, 1) = 1 so the form is non-alternating. Now suppose that χ has order d > 1 and let
ζ ∈ F2(χ) be a primitive dth root of unity. Since TrF2(χ)|F2(1) = 0 (as f , the order of 2 in
(Z/dZ)× is even), we have b(ζk, ζk) = TrF2(χ)|F2(1) = 0 for all k, so by linearity we conclude
that b is alternating.

If χ is not self-dual, then F2[G]χ± ' F2(χ) ⊕ F2(χ∗) ' (F2f )2 and the bilinear form is
a sum of hyperbolic planes, pairing dual basis elements nontrivially. Put another way, the
canonical pairing (3.2.2) induces a natural pairing on F2(χ)∨⊕F2(χ), which can be described
explicitly as

b((f, x), (g, y)) = f(y) + g(x).

5.3. Maximal totally isotropic subspaces. In this section, we will classify the maximal
isotropic subspaces of F2[G] � F2[G] and study their isometry groups.

We continue our hypothesis that G is a finite abelian group of odd order. Let V be a
finitely generated F2[G]-module equipped with a G-invariant, symmetric, F2-bilinear form.
We let IsomG(V ) ≤ AutG(V ) be the group of G-equivariant isometries of V , i.e., the subset
of F2[G]-module automorphisms of V which preserve the bilinear form.
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Lemma 5.3.1. Equip F2[G] with the trace bilinear form b (5.2.4). Let χ be an F2-character
of G and let q = #F2(χ). Then

# IsomG(F2[G]χ±) =

{√
q + 1, if χ is self-dual;

q − 1, otherwise.

Proof. First, suppose χ is self-dual, so F2[G]χ± ' F2(χ). As in the proof of Theorem 5.2.3,
the group AutG(V ) of F2[G]-module automorphisms of F2(χ) are given by multiplication by
an element ν ∈ F2(χ)×. The subgroup IsomG(V ) ≤ AutG(V ) of isometries are those for
which

b(x, y) = b(νx, νy) = b(x, νν∗y) (5.3.2)

for all x, y ∈ F2(χ); since b is nondegenerate, this is equivalent to νν∗ = 1. The map
ν 7→ νν∗ is the norm to the unique subfield of F2(χ) of index 2; since the norm is surjective,
we conclude that IsomG(F2(χ)) is a cyclic group of cardinality (q − 1)/(

√
q − 1) =

√
q + 1.

Second, suppose χ is not self-dual, and write V := F2[G]χ± = F2(χ)⊕F2(χ∗). Then ∗ acts
on V by (x, y)∗ = (y∗, x∗). The group AutG(V ) is given by coordinate-wise multiplication
by (µ, ν) ∈ F2(χ)× × F2(χ∗)×. Such an automorphism is an isometry if and only if

b((x1, x2), (y1, y2)) = b((νx1, µx2), (νy1, µy2)) = b((x1, x2), (νµ∗y1, µν
∗y2))

= b((x1, x2), (νµ∗y1, (νµ
∗)∗y2))

(5.3.3)

for all (x1, x2), (y1, y2) ∈ F2(χ)×F2(χ∗). The same nondegeneracy argument in the previous
paragraph shows this is equivalent to νµ∗ = 1 ∈ F2(χ)× (equivalently, µν∗ = 1 ∈ F2(χ∗)×).
We conclude that IsomG(V ) ≤ AutG(V ) consists of the elements (ν, (ν−1)∗) with ν ∈ F2(χ)×,
a cyclic group of cardinality q − 1. �

Lemma 5.3.4. Suppose the bilinear form on V is nondegenerate. Then all G-invariant
maximal totally isotropic subspaces S ⊆ V �V such that S∩(V �{0}) = S∩({0}�V ) = {0}
are in the same G-equivariant isometry class, and there are exactly # IsomG(V ) of them.

Proof. See Dummit–Voight [16, Lemma A.9] for a proof in the case of F2-vector spaces; the
method of proof gives the same result for F2[G]-modules. For example, the isometry τ in
[16, Lemma A.9] is automatically a G-equivariant isomorphism when S is G-invariant: the
element g ◦ (v+ τ(v)) = g ◦v+g ◦ (τ(v)) is again an element of S, so τ(g ◦v) = g ◦ (τ(v)) �

In our main classification in section 5.4, we will need to classify Galois invariant maximal
totally subspaces in the setting of the following theorem.

Theorem 5.3.5. Let G be an abelian group of odd order, and let χ be an F2-character of G
and let q := #F2(χ). Let V := V1 � V2 with each Vi := F2[G]χ± equipped with the restriction
of the bilinear form (5.2.4) for i = 1, 2.

Then the possible G-invariant, maximal totally isotropic subspaces S ⊆ V are described in
Table 1.2.3, each row representing a different G-equivariant isometry class.

Proof. First, suppose χ is self-dual. Then up to G-equivariant isometry, we have Vi ' F2(χ)
for i = 1, 2 with the (restriction of the) trace bilinear form (5.2.4) (see also Example 5.2.7).
A subspace is G-invariant if and only if it is an F2(χ)-subspace; so by dimensions, a maximal
isotropic subspace S is generated by the F2(χ)-span of a single vector. We cannot have
S = V1 or S = V2, since each bi is nondegenerate. We finish with Lemma 5.3.1 and Lemma
5.3.4. Alternatively, each subspace is spanned by a unique vector (1, ν) with ν ∈ F2(χ)×,
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and one can verify directly that the F2(χ)-span is totally isotropic if and only if νν∗ = 1,
consistent with the calculation in (5.3.2). This covers case A.

So now suppose χ is not self-dual. Now Vi ' F2(χ) ⊕ F2(χ∗) for i = 1, 2, still with the
trace bilinear form b. Let S ⊆ V be a G-invariant, maximal totally isotropic subspace. Since
S has half of the F2-dimension of the bilinear space, as an F2[G]-module the possibilities for
S are F2(χ)2, F2(χ∗)2, or F2(χ) ⊕ F2(χ∗). If S ' F2(χ)2, then S = (V1)χ � (V2)χ which is
indeed totally isotropic since the restriction bχ of b to Vχ is identically zero by Lemma 3.2.7.
Similarly for S ' F2(χ∗)2; this handles cases B and B′.

We now consider the possibilities for S ' F2(χ)⊕ F2(χ∗). We have S = Sχ ⊕ Sχ∗ where

Sχ := F2(χ)(x1, x2) ⊆ Vχ,

Sχ∗ := F2(χ∗)(y1, y2) ⊆ Vχ∗ ,
(5.3.6)

for some (x1, x2), (y1, y2) where both are nonzero. Suppose that x1 = 0. Then

b((0, x2), (y1, y2)) = b1(0, y1) + b2(x2, y2) = b2(x2, y2); (5.3.7)

the nondegeneracy of b2 on V2 then implies that y2 = 0, and S = (V1)χ∗ � (V2)χ. This S is
indeed totally isotropic since the restriction (bi)χ of bi to (Vi)χ for i = 1, 2 is identically zero
by Lemma 3.2.7. Similar conclusions hold when x2 = 0, giving cases C and C′. Finally, if
x1, x2, y1, y2 are all nonzero, then S ∩ V1 = S ∩ V2 = {0}; by Lemma 5.3.1 and Lemma 5.3.4,
the number of subspaces of this form is q−1 and each subspace is in the same G-equivariant
isometry class. Alternatively, a calculation like (5.3.3) shows that S is uniquely determined
by the spans of (x1, x2) = (1, ν) and (y1, y2) = (1, µ) with νµ∗ = 1, giving indeed q − 1
possibilities.

�

5.4. Main result, and consequences. It is now a straightforward matter to conclude
our main structural result, restated here for convenience. We recall (2.2.3) the 2-Selmer
signature map ϕK : Sel2(K) → V (K) = V∞(K) � V2(K); by Proposition 3.1.1, we have
V∞(K) ' V2(K) ' F2[GK ] as F2[GK ]-modules, equipped with the orthogonal direct sum of
the bilinear forms (5.2.4). The image

S(K) := img(ϕK) ' Sel2(K)/ ker(ϕK)

of the 2-Selmer group under the signature map is a GK-invariant maximal totally isotropic
subspace of V (K) by Corollary 3.1.3. By the canonical orthogonal decomposition (3.2.8),

S(K) =�
χ

S(K)χ± , (5.4.1)

thus we conclude that S(K)χ± are maximal totally isotropic GK-invariant subspaces of
V (K)χ± .

Theorem 5.4.2. Let K be a Galois number field with abelian Galois group GK of odd order.
Then for each F2-character χ, there are exactly 6 possibilities for S(K)χ± ≤ V∞(K)�V2(K)
up to GK-equivariant isometry.

Proof. In view of the first paragraph, Theorem 5.3.5 applies to classify the possibilities. �

Using the notation (1.2.1), which matches (4.2.1) but with characters, we fill in Table 1.2.4
using Table 1.2.3, Kummer duality (2.3.3), and Proposition 4.3.2.
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We now see some immediate corollaries. First, we deduce the cornerstone results of Taylor
[39] and Oriat [35].

Corollary 5.4.3 (Taylor [39, Statement (∗), p. 157], Oriat [35, Théorème 2]). For an abelian
Galois number field K of odd degree, let F2(χ) be an irreducible F2[GK ]-module. Then we
have

0 ≤ k+
χ (K) + k+

χ∗(K) ≤ 1,

0 ≤ k4,χ(K) + k4,χ∗(K) ≤ 1.

Moreover, if F2(χ) is self-dual, then k+
χ (K) = k+

χ∗(K) = 0 = k4,χ(K) = k4,χ∗(K).

Proof. Immediate from either Proposition 4.3.11, using that rkχ F2[G] = 1 for all χ, or from
Table 1.2.3. �

Remark 5.4.4. Indeed, Proposition 4.3.11 gives the equality

k+
χ (K) + k+

χ∗(K) = k4,χ(K) + k4,χ∗(K);

we could not find this explicitly stated by either Taylor [39] or Oriat [35].

Another corollary we obtain is the following result, proven by Oriat [35] (and a special
case of the T -S-reflection principle of Gras [23, Théorème 5.18]): see also the survey by by
Lemmermeyer [29, Theorem 7.2].

Corollary 5.4.5 (Oriat [35, Corollaire 2c]). Let m ∈ Z≥1 denote the exponent of the Galois
group GK for the abelian number field K of odd degree. If there exists t ∈ Z such that
2t ≡ −1 (mod m), then Cl+(K)[2] ' Cl4(K)[2] ' Cl(K)[2] as F2[GK ]-modules.

Proof. By Lemma 5.1.5, every F2[G]-module is self-dual so the conclusion of Corollary 5.4.3
implies that k+

χ (K) = k4,χ(K) = 0 for all χ in the notation of Definition 4.3.1; the result
follows. Alternatively, for the first isomorphism, apply Theorem 4.3.3, given that all modules
are self-dual. �

Example 5.4.6. If ` is an odd prime such that 2 is a primitive root modulo `, then any cyclic
number field K of degree ` satisfies rk2 Cl(K) = rk2 Cl+(K) by Corollary 5.4.5.

Example 5.4.7. More generally, if 2 has even order modulo `, then Corollary 5.4.5 applies to
cyclic number fields of degree `. The first prime for which 2 has even order modulo ` but 2
is not a primitive root in (Z/`Z)× is ` = 17.

Example 5.4.8. Corollary 5.4.5 also applies to abelian groups that are not cyclic. For instance,
if K is a number field with Galois group GK ' Z/3Z × Z/3Z, then Corollary 5.4.5 implies
that rk2 Cl(K) = rk2 Cl+(K).

Remark 5.4.9. Edgar–Mollin–Peterson [18, Theorem 2.5] reprove Corollary 5.4.5, and they
additionally make the claim that the corollary holds for all Galois extensions (even though
they only give a proof for the abelian case). Lemmermeyer [29, p. 13] observes that this
claim is erroneous. We give an explicit counterexample (of smallest degree). Let K be the
degree-27 normal closure over Q of the field K0 of discriminant 316 · 374 defined by

x9 − 3x8 − 21x7 + 63x6 + 141x5 − 435x4 − 273x3 + 996x2 − 192x− 64,

which has LMFDB label 9.9.80676485676081.1. This nonabelian extension K has Galois
group isomorphic to the Heisenberg group C2

3 : C3 (with label 9T7), which has exponent
m = 3. The class group Cl(K) is trivial and Cl+(K) ' (Z/2Z)6.
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The next simplest case not treated by Corollary 5.4.3 is treated by the following corollary.

Corollary 5.4.10. Suppose K is a cyclic number field of prime degree ` ≡ 7 (mod 8) such
that 2 has order `−1

2
in (Z/`Z)×. Then there exist exactly 2 nontrivial irreducible F2[GK ]-

modules F2(χ) 6' F2(χ∗).
Moreover, if Cl(K)[2] is not self-dual, then either Cl+(K)[2] ' F2(χ) ⊕ Cl(K)[2] or

Cl+(K)[2] ' F2(χ∗) ⊕ Cl(K)[2]; and the same conclusion holds with Cl+(K)[2] replaced
by Cl4(K)[2].

Proof. By Lemma 5.1.5, the hypotheses on ` imply that there is an irreducible F2[GK ]-module
that is not self-dual. The first statement then follows from Example 5.1.7. In addition,
Cl(K)[2] is not self-dual if and only if ρχ(K) 6= ρχ∗(K), and so the second statement follows
from cases B′ and B, respectively, since Cl+(K)[2] ' Cl(K)[2] ⊕ (S ∩ V∞)∨ by Proposition
4.3.2. �

In the case that Cl(K)[2] is self-dual, there are no restrictions on Cl+(K)[2], and we model
this situation in Conjecture 6.1.2.

5.5. Unit signature ranks. We now deduce some consequences for unit signature ranks.
Recall that the unit signature rank of K is sgnrk(O×K) = dimF2 sgn∞(O×K), where sgn∞ was
defined in Definition 2.2.1. There is a natural exact sequence

1→ {±1}n/ sgn∞(O×K)→ Cl+(K)→ Cl(K)→ 1

tying together the unit signature rank and the isotropy rank. For example, we have

n− sgnrk(O×K) ≤ rk2 Cl+(K).

In addition, recall from (1.3.1) that sgnrkχ(O×K) is equal to the multiplicity of F2(χ) in

sgn∞(O×K). Since O×K/(O
×
K)2 ' F2[GK ], and GK is abelian, every irreducible F2[GK ]-module

occurs with multiplicity 1 inside the unit group and hence

0 ≤ sgnrkχ(O×K) ≤ 1. (5.5.1)

We improve upon the above inequality in the following main result.

Theorem 5.5.2. Let K be an abelian number field of odd degree with Galois group GK. Let
χ be an F2-character of GK. Then the following statements hold.

(a) If k+
χ (K) = 1, then

sgnrkχ(O×K) = 0.

(b) If k+
χ (K) = 0, then

max
(
0, 1− ρχ(K)

)
≤ sgnrkχ(O×K) ≤ 1.

Proof. The statement sgnrkχ(O×K) = 0 is equivalent to
(
O×K/(O

×
K)2
)
χ
⊆ ker(ϕK,∞)χ. We can

determine ker(ϕK,∞)χ by combining Theorem 4.3.3 with Lemma 3.2.3 to get

ker(ϕK,∞) ' Cl4(K)[2]∨ ' Cl+(K)[2].

Hence, the F2(χ)-multiplicities of ker(ϕK,∞)χ ⊆ Sel2(K)χ are given as follows:

rkχ Sel2(K) = ρχ(K) + 1

rkχ ker(ϕK,∞) = ρχ(K) + k+
χ (K) = ρ+

χ (K).
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When k+
χ (K) = 1, then (O×K/O

×2
K )χ ⊆ Sel2(K)χ = ker(ϕK,∞)χ and so sgnrkχ(O×K) = 0. This

establishes (a). For (b), observe that in order for (O×K/O
×2
K )χ ⊆ ker(ϕK,∞)χ, we would need

to have rkχ ker(ϕK,∞)χ 6= 0 which does not occur if k+
χ (K) = ρχ(K) = 0. �

Example 5.5.3. Let χ be the trivial character so that F2(χ) ' F2 is the trivial F2[GK ]-module.
Then sgnrkχ(O×K) = 1: indeed, −1 generates the unique subspace of O×K/(O

×
K)2 with trivial

action. To see that this accords with Theorem 5.5.2, note that from Lemma 4.1.4 we have
ρ+
χ (K) = ρχ(K) = 0 so k+

χ = 0 and hence sgnrkχ(O×K) = 1.

Summing the contributions of each irreducible gives the following corollary.

Corollary 5.5.4. Let K be a cyclic number field of odd prime degree `, and let f be the
order of 2 modulo `. Then

sgnrk(O×K) ≡ 1 (mod f)

and the following statements hold:

(a) If f is odd, then

max
(
1, `+1

2
− rk2 Cl(K)

)
≤ sgnrk(O×K) ≤ `.

(b) If f is even, then

max
(
1, `− rk2 Cl(K)

)
≤ sgnrk(O×K) ≤ `.

Proof. By Example 5.1.7, all nontrivial irreducible F2[GK ]-modules have cardinality 2f , and
so together with the trivial component generated by −1 gives the first congruence.

The upper bounds in (a) and (b) are immediate since rk2 V∞ = `. To prove (b), note
that all F2[GK ]-modules are self-dual by Lemma 5.1.5, hence Corollary 5.4.3 implies that
k+
χ (K) = 0. By adding up Theorem 5.5.2(b) for all 1 + `−1

f
irreducible F2[GK ]-modules as in

Example 5.1.7, we conclude the result.
We conclude by proving statement (a) by considering χ and χ∗ together. Every nontrivial

F2[G]-module is non-self-dual by Lemma 5.1.5. We refer to the cases in Table 1.2.3. We
claim that for every nontrivial character χ, we have

1− ρχ(K)− ρχ∗(K) ≤ sgnrkχ(O×K) + sgnrkχ∗(O×K). (5.5.5)

Indeed, if k+
χ (K) = 1 (cases B′/C′), then k+

χ∗(K) = 0 by Corollary 5.4.3, and sgnrkχ(O×K) = 0
by Theorem 5.5.2(a) so by Theorem 5.5.2(b) we have

1− ρχ(K)− ρχ∗(K) ≤ 1− ρχ∗(K) ≤ sgnrkχ∗(O×K) = sgnrkχ(O×K) + sgnrkχ∗(O×K).

By symmetry, the same conclusion holds when k+
χ∗(K) = 1 (cases B/C). In the remaining

case D where k+
χ (K) = k+

χ∗(K) = 0, summing Theorem 5.5.2(b) twice gives

1− ρχ(K)− ρχ∗(K) < 2− ρχ(K)− ρχ∗(K) ≤ sgnrkχ(O×K) + sgnrkχ∗(O×K).

This proves the claim in all cases.
Summing (5.5.5) over the (` − 1)/(2f) pairs of irreducible nontrivial F2[GK ]-modules as

well as the trivial F2[GK ]-module, then gives

`+ 1

2
− rk2 Cl(K) ≤ sgnrk(O×K). �

We record the following special case of Corollary 5.5.4 (observed for ` = 3 by Armitage–
Fröhlich [1, Theorem V]).
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Corollary 5.5.6. If K is a cyclic number field of prime degree ` where 2 is a primitive root
modulo `, then sgnrk(O×K) = 1 or `. If the class number of K is odd, then sgnrk(O×K) = `.

The above setup allows us to recover many other related statements. We illustrate with
the following.

Theorem 5.5.7 (Ichimura [25, Theorem 2]). Let K be an abelian number field of odd degree
with Galois group GK. Let χ be an F2-character of GK. Then the following statements are
equivalent:

(i)
(
O×K/(O

×
K)2
)
χ±
∩ ker(sgn∞) 6= {0}.

(ii)
(
O×K/(O

×
K)2
)
χ±
∩ ker(sgn2) 6= {0}.

Proof. This statement is trivially true whenever
(
O×K/(O

×
K)2
)
χ±
∩ker(ϕK) 6= {0}. Otherwise,

we have S(K)χ± = ϕK
((
O×K/(O

×
K)2
)
χ±

)
, so the statement is S(K)χ± ∩ V2(K) 6= {0} if and

only if S(K)χ± ∩ V∞(K) 6= {0} and then it is equivalent to Proposition 4.3.11. �

6. Conjectures

Even with many aspects determined in a rigid way by the results of the previous section,
there still remain scenarios where randomness remains. In this section, we propose a model
in the spirit of the Cohen–Lenstra heuristics for this remaining behavior.

6.1. Isotropy ranks. We begin by developing a model for isotropy ranks when K runs over
a collection of G-number fields (i.e., Galois number fields K equipped with an isomorphism
such that Gal(K |Q) ' G), where G is a fixed finite abelian group of odd order. In light of
Theorem 5.4.2 (and Table 1.2.3) a heuristic is only necessary to distinguish cases C,C′ from
D, i.e., when χ is a non-self-dual F2-character of G and the collection is restricted to those
K such that ρχ(K) = ρχ∗(K). For all other cases, the isotropy ranks are determined.

We make the following heuristic assumption:

(H1) For the collection of G-number fields K such that ρχ(K) = ρχ∗(K), the image com-
ponent S(K)χ± as defined in (5.4.1) is distributed as a uniformly random G-invariant
maximal totally isotropic subspace of F2[G]2χ± (see Example 5.2.1).

The assumption (H1), combined with the restrictions and masses in Table 1.2.3 lead us to
one of our main conjectures.

Conjecture 6.1.1. Let G be an odd finite abelian group, and let χ be a non-self-dual F2-
character of G with underlying module of cardinality #F2(χ) = q. Then as K varies over
G-number fields such that ρχ(K) = ρχ∗(K), we have:

Prob
(
k+
χ (K) + k+

χ∗(K) = 0
)

=
q − 1

q + 1
;

Prob
(
k+
χ (K) + k+

χ∗(K) = 1
)

=
2

q + 1
.

The same heuristic implies the same conjecture for the 2-adic isotropy ranks; indeed by
Proposition 4.3.11, we have k+

χ (K) + k+
χ∗(K) = k4,χ(K) + k4,χ∗(K). A particularly simple

case of Conjecture 6.1.1 is complementary to Corollary 5.4.10.
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Conjecture 6.1.2. Let G = Z/`Z where ` ≡ 7 (mod 8) is prime and suppose 2 has order
`−1

2
in (Z/`Z)×, and let q := 2

`−1
2 . As K varies over G-number fields such that Cl(K)[2] is

a self-dual F2[GK ]-module, we have

Cl+(K)[2] '


Cl(K)[2] with probability q−1

q+1
;

F2(χ)⊕ Cl(K)[2] with probability 1
q+1

;

F2(χ∗)⊕ Cl(K)[2] with probability 1
q+1

.

where χ is a nontrivial F2-character of GK.

We predict the same probabilities as in Conjectures 6.1.1 and 6.1.2 in other natural sub-
families, such as when we fix the value ρχ(K) = ρχ∗(K) = r; in particular, this includes the
family of G-number fields with odd class number (i.e., those with rk2 Cl(K) = 0).

6.2. Unit signature ranks. We now extend these heuristics to the unit signature rank.
Recall that the 2-Selmer group Sel2(K) is an F2[GK ]-module containing O×K/(O

×
K)2 and the

subspace ker(ϕK,∞) ⊆ Sel2(K) of totally positive elements. To study the distribution of the
units, for each odd order abelian group G, we make the following heuristic assumption:

(H2) For the collection of G-number fields K, the subspace of Sel2(K) generated by
O×K/(O

×
K)2 is distributed as a uniformly random F2[G]-submodule isomorphic to F2[G]

containing −1.

Decomposing into irreducibles, since O×K/(O
×
K)2 ' F2[G] we have rkχO×K = 1 for each

irreducible F2(χ), and so we might also make the heuristic assumption:

(H2′) For the collection of G-number fields K and for each nontrivial F2-character of G,
the subspace of Sel2(K)χ generated by (O×K/(O

×
K)2)χ is distributed as a uniformly

random, 1-dimensional F2(χ)-subspace.

Note that (H2) is equivalent to (H2′) and an independence assumption for each F2(χ), i.e., we
expect no extra structure relating different isotypic components of the units inside Sel2(K).

Remark 6.2.1. To make assumption (H2), we consider O×K/(O
×
K)2 ⊆ Sel2(K) and we do not

look at the 2-Selmer map ϕK,∞. The pairing and duality relations that put restrictions on
the kχ(K)’s as in Corollary 5.4.3 will have an effect on the subspace ker(ϕK,∞) ⊆ Sel2(K);
in particular, it will impose constraints on the isotypic components of ker(ϕK,∞). However,
we model the subspace ker(ϕK,∞) independently of O×K/(O

×
K)2, so there are no restrictions

on (O×K/(O
×
K)2)χ inside Sel2(K)χ.

We now state a conjecture for collections of G-number fields that are not completely
determined by Theorem 5.5.2. We recall from (5.5.1) that sgnrkχ(O×K) = 0 or 1 for any

F2-character χ of GK .

Conjecture 6.2.2. Let G be an abelian group of odd order and let χ be an F2-character of G
with q := #F2(χ). As K varies over G-number fields such that rkχ Cl+(K) = rkχ Cl(K) = r,
we have

Prob
(
sgnrkχ(O×K) = 0

)
=

qr − 1

qr+1 − 1
;

Prob
(
sgnrkχ(O×K) = 1

)
=
qr+1 − qr

qr+1 − 1
.
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Proof assuming (H2′). The dimensions of the isotypic components are given as follows:

• rkχO×K/(O
×
K)2 = 1;

• rkχ ker(ϕK,∞) = r; and
• rkχ Sel2(K) = r + 1.

Therefore, under (H2′) we would have

Prob
(
(O×K/(O

×
K)2)χ ⊆ ker(ϕK,∞)χ

)
=

#{1-dimensional subspaces of ker(ϕK,∞)χ}
#{1-dimensional subspaces of Sel2(K)χ}

=
(qr − 1)/(q − 1)

(qr+1 − 1)/(q − 1)
=

qr − 1

qr+1 − 1

as claimed. �

We now turn to the simplest case, where G is cyclic of prime order ` and 2 is a primitive
root mod `. By Corollary 5.5.6, we conclude that sgnrk(O×K) = 1 or ` and rk2 Cl(K) ≡ 0
(mod `− 1) by Lemma 4.1.4

Conjecture 6.2.3. Let ` be an odd prime such that 2 is a primitive root modulo `, and
let q := 2`−1. If r ∈ Z≥0, then as K ranges over cyclic number fields of degree ` with
rk2 Cl(K) = (`− 1)r, we have

Prob
(
sgnrk(O×K) = 1

)
=

qr − 1

qr+1 − 1
; Prob

(
sgnrk(O×K) = `

)
=
qr+1 − qr

qr+1 − 1
.

Proof assuming (H2′). There is a unique nontrivial F2-character χ of Z/`Z, and so rk2 Cl(K) =
(`− 1)r if and only if rkχ Cl(K) = r. The result follows then from the hypothesis (H2′). �

Conjecture 6.2.3 is a theorem for the case r = 0 (odd class number) by Corollary 5.5.6.
In a different direction, we can consider the class of fields where not all modules are

self-dual. The most common case is expected to be fields with odd class number which by
Theorem 5.5.2 has sgnrkχ(O×K) = 1− k+

χ (K). Using Conjecture 6.1.1 and summing over the
contributions we end up with the following binomial distribution.

Conjecture 6.2.4. Let ` be an odd prime, let f be the order of 2 modulo `, and suppose
that f is odd. Let q := 2f and m := `−1

2f
∈ Z>0. Then as K varies over cyclic number fields

of degree ` with odd class number, we have

Prob
(

sgnrk(O×K) = fs+
`+ 1

2

)
=

(
m

s

)(
q − 1

q + 1

)s(
2

q + 1

)m−s
for 0 ≤ s ≤ m.

6.3. Applications of class group heuristics for cyclic cubic and quintic fields. The
conjectures in the previous section give predictions conditioned on the 2-rank of the class
group. We next combine our conjectures with predictions for the latter by applying the
conjectures of [32] correcting the Cohen–Lenstra heuristics for cyclic cubic and quintic fields.

For m ∈ Z≥0 ∪ {∞} and q ∈ R>1, define (q)0 := 1 and for nonzero m, let

(q)m :=
m∏
i=1

(1− q−i).
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For cyclic fields of odd prime degree `, Cohen–Lenstra [9] made a prediction for the 2-
part of their class groups; in particular, they imply (in the first moment) that the average

size of Cl(K)[2] is equal to
(
1 + 2−f

) `−1
f , where f is the order of 2 in (Z/`Z)×. However,

computations by Malle [32] suggest that this prediction needs a correction for the fact that
the second roots of unity (but not the fourth roots of unity) are contained in any such field.
Malle [32, (1),(2)] goes on to make predictions for the distribution of rk2 Cl(K) as K ranges
over cyclic fields of degrees 3 and 5.

Conjecture 6.3.1 (Malle). Let ` = 3 or 5, and let q = 2`−1. Then as K ranges over cyclic
number fields of degree `, we have

Prob
(
rk2 Cl(K) = (`− 1)r

)
=

(
1 +

1
√
q

)
(
√
q)∞(q2)∞

(q)2
∞

· 1
√
qr(r+2) · (q)r

(6.3.2)

for all r ∈ Z≥0.

Note that under the hypotheses of Conjecture 6.3.1, we have rk2 Cl(K) = rk2 Cl+(K) by
Corollary 5.4.5, hence the left-hand side of (6.3.2) is equal to Prob

(
rk2 Cl+(K) = (`− 1)r

)
.

(For a discussion about class group heuristics for cyclic fields of prime degree ` ≥ 7, see
Remark 7.2.3.)

Combining Conjecture 6.3.1 with Conjecture 6.2.3 and summing gives the following:

Conjecture 6.3.3. As K varies over cyclic number fields of degree ` = 3 or 5, we predict

Prob
(
sgnrk(O×K) = 1

)
=

(
1 +

1
√
q

)
·

(
√
q)∞(q2)∞

(q)2
∞

·
∞∑
r=0

1
√
qr(r+2) · (q)r

· qr − 1

qr+1 − 1
,

where q = 2`−1.

Approximate numerical values of these probabilities are given in the following table:

` = 3 ` = 5

sgnrk(O×K) = 1 0.029573 0.000965

sgnrk(O×K) = ` 0.970427 0.999035

6.4. Summary of results in small degree. We now summarize the results and conjectures
for the case ` = 3, 5, and 7.

Cyclic cubic fields. We begin with the case G = Z/3Z and ` = 3. Here, 2 is a primitive root,
and so there is a unique nontrivial irreducible F2[G]-module with F2-dimension ` − 1 = 2
implying that rk2 Cl(K) is always even. Malle [32, (1)] (as in Conjecture 6.3.1) predicts

Prob
(
rk2 Cl(K) = 0, 2, 4

)
≈ 85.30%, 14.21%, 0.47%;

the remaining cyclic cubic fields (having rk2 Cl(K) ≥ 6) conjecturally comprise less than
0.004% of all cyclic cubic fields. By Corollary 5.4.5, we have Cl(K)[2] ' Cl+(K)[2].

In this case, Conjecture 6.2.3 predicts Prob
(
sgnrk(O×K) = s | rk2 Cl(K) = r

)
according to

the following table:
r = 0 r = 2 r = 4

s = 1 0 1
5

5
21

s = 3 1 4
5

16
21
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For example, amongst cyclic cubic fields with rk2 Cl(K) = 4, we predict 16
21

will have units
of mixed signature. Combining these first three values for the 2-ranks with the associated
conditional probabilities for sgnrk(O×K) yields

Prob
(
sgnrk(O×K) = 3

)
≈ 1 · 85.30% +

4

5
· 14.21% +

16

21
· 0.47% ≈ 97.03%.

Conjecture 6.3.3 then implies: as K varies over cyclic cubic fields, the unit signature rank
is equal to 1 approximately 3% of the time, and the unit signature rank is equal to 3
approximately 97% of the time.

Cyclic quintic fields. When G = Z/5Z, we again have that 2 is a primitive root modulo 5,
so there is a unique irreducible nontrivial irreducible F2[GK ]-module of dimension 4. Malle
[32, (2)] predicts

Prob
(
rk2 Cl(K) = 0, 4, 8

)
≈ 98.359%, 1.639%, 0.002%

and Prob
(
rk2 Cl(K) ≥ 8

)
≤ 0.02%. Again, by Corollary 5.4.5 we have Cl(K)[2] ' Cl+(K)[2].

Here, Conjecture 6.2.3 predicts Prob
(
sgnrk(O×K) = s | rk2 Cl(K) = r

)
as:

r = 0 r = 4 r = 8

s = 1 0 1
17

17
273

s = 5 1 16
17

256
273

Summing as above yields

Prob
(
sgnrk(O×K) = 5

)
≈ 1 · 98.35% +

16

17
· 1.63% +

256

273
· 0.002% ≈ 99.90%,

and so Conjecture 6.3.3 predicts that 99.9% of cyclic quintic fields have units of all possible
signatures, and indeed they are abundant. For sgnrk(O×K) = 1, we find the cyclic quintic field
K = Q(α) of conductor 39821 and discriminant 398214, where α is a root of the polynomial

x5 + x4 − 15928x3 − 218219x2 + 20800579x+ 363483463.

Cyclic septic fields. We now consider the case G = Z/7Z. Since 2 has order 3 modulo 7
and −1 6∈ 〈2〉 ≤ (Z/7Z)×, there are precisely two nontrivial irreducibles F2(χ) 6' F2(χ∗) and
#F2(χ) = #F2(χ∗) = 23 = 8. We refer to the cases in Table 1.2.3; case A does not occur
because χ is not self-dual. We have rk2 Cl(K) = rk2 Cl(K)χ± = 3(ρχ(K) + ρχ∗(K)).

• Cases B, B′ are exactly those where ρχ 6= ρχ∗ , i.e., Cl(K)[2] is not self-dual, in
which case ρχ − ρχ∗ = ±1. In these cases, k+(K) = 3(k+

χ (K) + k+
χ∗(K)) = 3, i.e.,

Cl+(K)[2] = Cl(K)[2]⊕ (Z/2Z)3.
• The remaining cases C, C′, and D are those where Cl(K)[2] is self-dual. For such fields,

we have k+(K) = 0 (in case D) or k+(K) = 3 (in cases C or C′), and Conjecture 6.1.1
predicts that

Prob
(
k+(K) = 3

)
= 2

9
,

Prob
(
k+(K) = 0

)
= 7

9
.

In particular, Cl(K)[2] is self-dual if and only if rk2 Cl(K) is even.

Example 6.4.1. We now provide examples of the above three cases for cyclic septic number
fields. For each case let K = Q(α) where α is a root of the polynomial f(x).
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• For the field with LMFDB label 7.7.14011639427134441.1 of discriminant 4916 defined
by f(x) = x7 − x6 − 210x5 − 1423x4 − 1410x3 + 8538x2 + 9203x − 19427, we have
Cl(K)[2] = (Z/2Z)3 and Cl+(K)[2] = (Z/2Z)6 so that Cl(K)[2] is not self dual, is an
example of case B/B′, and k+(K) = 3.
• For 7.7.594823321.1 of discriminant 296 defined by f(x) = x7 − x6 − 12x5 + 7x4 +

28x3−14x2−9x−1, we have Cl(K)[2] = 1 and Cl+(K)[2] = (Z/2Z)3 so that Cl(K)[2]
is self dual, is an example of case C/C′, and k+(K) = 3.
• For 7.7.6321363049.1 of discriminant 436 defined by f(x) = x7 − x6 − 18x5 + 35x4 +

38x3 − 104x2 + 7x + 49, we have Cl(K)[2] = Cl+(K)[2] = 1 so that Cl(K)[2] is self
dual, is an example of case D, and k+(K) = 0.

For unit signature ranks, using the formulas in Conjectures 6.2.2 and 6.2.4 we make the
following predictions for class groups of cyclic septic fields with low 2-rank.

• Suppose rk2 Cl(K) = 0. Conjecture 6.2.4 then implies:

Prob
(
sgnrk(O×K) = 4 | rk2 Cl(K) = 0

)
= 2

9
;

Prob
(
sgnrk(O×K) = 7 | rk2 Cl(K) = 0

)
= 7

9
.

• Suppose rk2 Cl(K) = 3. Without loss of generality, assume ρχ(K) = 1 and ρχ∗(K) =
0. By Theorems 5.4.2(b)(i) and 5.5.2(a), we have sgnrkχ∗(O×K) = 0. Using Conjecture

6.2.2 with ρχ(K) = 1, we predict that sgnrkχ(O×K) = 0 occurs with probability 7
63

, so

Prob
(
sgnrk(O×K) = 1 | rk2 Cl(K) = 3

)
= 1

9
;

Prob
(
sgnrk(O×K) = 4 | rk2 Cl(K) = 3

)
= 8

9
.

7. Computations

In this section, we present computations that provide evidence to support our conjectures.
To avoid redundancy, instead of working with families of G-number fields (which weights
each isomorphism class of a field K by # Aut(GK)), we weight each isomorphism class of
number fields by 1. (Either weighting evidently gives the same probabilities and moments.)

We begin by describing a method for computing a random cyclic number field of odd prime
degree ` of conductor ≤ X. Recall (by the Kronecker–Weber theorem) that f ∈ Z≥0 arises
as a conductor for such a field if and only if f = f ′ or `2f ′ where f ′ is a squarefree product
of primes p ≡ 1 (mod `). Moreover, the number of such fields is equal to (` − 1)ω(f)−2 if
ω(f) ≥ 2 and ` | f , otherwise the number is (`−1)ω(f)−1. Our algorithm generates a random
factored integer f ≤ X of this form and a uniform random character with given conductor;
then, it constructs the corresponding field by computing an associated Gaussian period.

7.1. Cubic fields. We sampled cyclic cubic fields in this manner, performing our computa-
tions in Magma [31]; the total computing time was a few CPU days. The class group and
narrow class group computations are conjectural on the Generalized Riemann Hypothesis
(GRH). Our code generating this data is available online [5].

Let N3(X) denote the set of sampled cyclic cubic fields K (having Cond(K) ≤ X), and
let N3(X, ρ = r) ⊆ N3(X) denote the subset of fields K with rk2 Cl(K) = r. For each of
X = 105, 106, and 107, we sampled #N3(X) = 104 fields. Note that the asymptotic number
of cyclic cubic fields with conductor bounded by X is c3 ·X where c3 ≈ 0.159 [12] (see also

[8, Corollary 4.7]). We remark that in Tables 7.1.1 and 7.1.2, N = sample size, ±1/
√
N
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indicates the confidence interval, and when the prediction is a theorem, we indicate it in
bold.

Family Property Proportion of family satisfying property Prediction

X = 105 X = 106 X = 107

N3(X)

1/
√
N = .01

rk2 Cl(K) = 0 0.873 0.871 0.867 0.853

rk2 Cl(K) = 2 0.127 0.129 0.133 0.142

rk2 Cl(K) ≥ 4 0.001 0.001 0.001 0.005

N3(X)

1/
√
N = .01

sgnrk(O×K) = 1 0.023 0.024 0.026 0.030

sgnrk(O×K) = 3 0.977 0.976 0.974 0.970

N3(X, ρ = 0)

1/
√
N ≈ .11

sgnrk(O×K) = 1 0.000 0.000 0.000 0

sgnrk(O×K) = 3 1.000 1.000 1.000 1

N3(X, ρ = 2)

1/
√
N ≈ .27-.28

sgnrk(O×K) = 1 0.177 0.185 0.189 0.200 = 1
5

sgnrk(O×K) = 3 0.823 0.814 0.811 0.800 = 4
5

Table 7.1.1: Data for class group and signature ranks of sampled cyclic cubic fields

Family Moment Average Prediction

X = 105 X = 106 X = 107

N3(X)

1/
√
N = .01

# Cl(K)[2] 1.404 1.434 1.467 1.500 = 3
2

(# Cl(K)[2])2 3.268 3.702 4.079 4.500 = 9
2

(# Cl(K)[2])3 14.76 21.44 26.67 40.50 = 81
2

Table 7.1.2: Data for moments of (narrow) class groups of sampled cyclic cubic fields

7.2. Septic fields. We now turn to computations for cyclic extensions of degree seven. The
complexity of the fields grew so quickly that it was infeasible to sample fields. Instead we
computed the first 8000 cyclic degree seven fields ordered by conductor. This list is available
online [5], and we confirmed our results against independent computations of Hofmann [6].

Let N7(X) denote the set of septic cyclic fields with Cond(K) < X, and let N7(X, ρ =
r) ⊆ N7(X) denote the subset of fields K satisfying rk2 Cl(K) = r. Asymptotically, we have
N7(X) ∼ c7 · X where c7 ≈ 0.033 by [8, Corollary 4.7]. The first 8000 cyclic septic fields
corresponds to the set N7(X0) where X0 = 244861. In addition, we have #N7(X0, ρ = 0) =
7739, #N7(X0, ρ = 3) = 241, and #N7(X0, ρ = 6) = 20. For all other r ∈ Z≥0, we have
#N7(X0, ρ = r) = 0. Because the sample size was so small, in Table 7.2.1 below we do not
compute statistics for the subset N7(X0, ρ = 6). The first few fields in N7(X0, ρ = 6) are
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generated by the roots of the polynomials:

x7 − 1491x5 + 29323x4 − 118783x3 − 662004x2 + 1844864x− 899641,

x7 + x6 − 3360x5 + 54087x4 + 1523280x3 − 24904626x2 − 194909041x+ 2439485891,

x7 − x6 − 8274x5 − 249021x4 + 3000578x3 + 60235500x2 + 152710207x+ 67428091,

x7 − x6 − 14340x5 + 328464x4 + 46377824x3 − 1467892080x2 − 11615446400x+ 118681888000,

x7 − 18543x5 + 154525x4 + 67057669x3 − 1368522848x2 − 26253624432x+ 269027889901.

These computations took approximately 1 CPU day. Further computations quickly run
into the difficulty of computing class groups of fields with large discriminants. When the
prediction is a theorem, we indicate it in bold. In addition, the class group and narrow class
group computations remain conjectural on GRH. Our code is available online [5].

Family Property
Proportion of family

Prediction
satisfying property

X ≈ 244861

N7(X)

# = 8000

rk2 Cl(K) = 0 0.967 ?

rk2 Cl(K) = 3 0.030 ?

rk2 Cl(K) ≥ 6 0.003 ?

N7(X, ρ = 0)
# = 7739

rk2 Cl+(K) = 0 0.772 0.778 = 7
9

rk2 Cl+(K) = 3 0.228 0.222 = 2
9

N7(X, ρ = 0)
# = 7739

sgnrk(O×K) = 4 0.228 0.222 = 2
9

sgnrk(O×K) = 7 0.772 0.778 = 7
9

N7(X, ρ = 3)
# = 241

rk2 Cl+(K) = 3 0.00 0

rk2 Cl+(K) = 6 1.00 1

N7(X, ρ = 3)

# = 241

sgnrk(O×K) = 1 0.083 0.111 = 1
9

sgnrk(O×K) = 4 0.917 0.889 = 8
9

sgnrk(O×K) = 7 0.000 0

Table 7.2.1: Data for class group and signature ranks of the first 8000 cyclic septic fields

There are two non-trivial characters χ and χ∗ for the Galois group when GK ' Z/7Z. In light
of Corollary 1.2.5, one may wonder how often the inequalities | rkχ Cl(K)− rkχ∗ Cl(K)| ≤ 1
and | rkχ Cl+(K) − rkχ∗ Cl+(K)| ≤ 1 are equalities, i.e., how often the class group or the
narrow class group is not self-dual. As previously mentioned, the 2-torsion subgroup of the
class group is self-dual precisely when rk2 Cl(K) = 3n with n even. In particular, for the
first 8000 cyclic septic fields we found that a proportion of 0.970 have Cl(K)[2] self-dual.
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Family Moment Average Prediction

X ≈ 244861

N7(X)

1/
√
N = 0.11

# Cl(K)[2] 1.368 1.375 = 11
8

?

(# Cl(K)[2])2 13.13 ?

(# Cl(K)[2])3 671.7 ?

N7(X)

1/
√
N = 0.11

# Cl+(K)[2] 4.823 ?(
# Cl+(K)[2]

)2
277.5 ?(

# Cl+(K)[2]
)3

75643.8 ?

Table 7.2.2: Data for moments of class groups of the first 8000 cyclic septic fields

For the 2-torsion subgroup of the narrow class group, there are two possibilities: if Cl(K)[2]
is not self-dual, then Cl+(K)[2] is self-dual; and if Cl(K)[2] is self-dual we conjecture that
Cl+(K)[2] is also self-dual with probability 7/9 = 0.778. Our conjecture implies that the
proportion of cyclic septic fields with Cl+(K)[2] self-dual is at least 0.778. This data suggests
that it may be much more likely for class groups and narrow class groups to be self-dual.

Remark 7.2.3. As of yet, no corrected predictions taking into account the existence of the
2nd (but not 4th) roots of unity in the base field have been made on the distribution of the
2-ranks of class groups of cyclic septic fields over Q (or more generally, of degree ` cyclic
fields for any (fixed) prime ` ≥ 7 over Q). The original distribution in Cohen–Lenstra [9]
predicts the average size of Cl(K)[2] when K varies over cyclic septic fields to be 81

64
≈ 1.266.

However, our computations for ` = 7 (see Table 7.2.2) weakly suggest that the average size
of Cl(K)[2] for cyclic septic fields is 11

8
.

In fact, we expect that the distribution of the moments for the 2-torsion subgroups in class
groups of cyclic fields of prime degree ` to be quite different when the order of 2 modulo `
is even than when the order is odd. For example, the distribution given in Conjecture 6.3.1
implies that the average size of Cl(K)[2] is 1 + 2−f/2 for ` = 3 or 5 and f denotes the order
of 2 modulo `. For ` = 7, this computes to approximately 1.354, which seems to diverge
from Table 7.2.2.

Appendix A. Cyclic cubic fields with signature rank 1 (with Noam Elkies)

In this appendix, we use Diophantine methods to construct infinite families of cyclic cubic
fields with no units of mixed sign (unit signature rank 1).

A.1. Setup. Start with a generic polynomial of the form

fa,b(x) = f(x) := x3 − ax2 + bx− 1, (a, b) ∈ Z2,

with constant coefficient −1; a root of f(x) is a unit in Z[x]/(f(x)). By the rational root
test, the polynomial f(x) is reducible over Q if and only if b = a or b = −a− 2. When f(x)
is irreducible, let K := Q[x]/(f(x)). To ensure that K is a cyclic cubic field, we need the
discriminant D(a, b) of this polynomial to be a square, i.e., we need c ∈ Z such that

c2 = D(a, b) = −4a3 + a2b2 + 18ab− 4b3 − 27. (A.1.1)
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The equation (A.1.1) describes a surface S in A3
Z in the variables (a, b, c). Several curves on

the surface S have been studied; for example, the simplest cubics of Shanks [36] are defined
by (a, b, c) = (a,−(a+ 3), a2 + 3a+ 9). See also work of Balady [3] for a study of the surface
S over Q and other families of cubic fields arising from rational curves on S; unfortunately,
the families he presents [3, §4] all have unit signature rank 3. By studying the surface S we
prove the following theorem.

Theorem A.1.2. There are cyclic cubic fields of arbitrarily large discriminant with unit
signature rank 1.

More precisely, we find families of Fermat–Pell curves on S that have infinitely many
integral points (a, b, c) ∈ S(Z) and such that:

the roots of f(x) are totally positive and not squares of smaller units. (A.1.3)

Studying the ramification in these extensions proves that our procedure produces cyclic cubic
fields of arbitrarily large discriminant.

Theorem A.1.2 makes a result of Dummit–Dummit–Kisilevsky [14, Theorem 3] uncondi-
tional: namely, the difference between ϕ(m)/2 and the unit signature rank of Q(cos(2π/m))
can be arbitrarily large. This result has also been given a different (unconditional) proof by
Dummit–Kisilevsky [15, Theorem 7].

A.2. Construction of curves. Plotting the discriminant D(a, b) = 0 we find two curves:

(A.2.1)

By continuity and checking values, the region in the upper right quadrant bounded by the
cuspidal curve is the locus of (a, b) ∈ R2 with three positive roots: these are precisely the
values of (a, b) where a, b > 0 and f(x) has all real roots.

The curve D(a, b) = 0 has a visible cusp at (a, b) = (3, 3), corresponding to the cubic
f3,3(x) = (x− 1)3. There are also two conjugate cusps (a, b) = (3ζ, 3ζ̄) where ζ is one of the
nontrivial cube roots of unity (−1±

√
−3)/2; these likewise correspond to f3ζ,3ζ̄(x) = (x−ζ)3.

The line joining these cusps is a+ b+3 = 0; on this line D(a, b) = D(a,−(a+3)) is a quartic
in a with a double root at each a = 3ζ, and indeed D(a,−(a + 3)) = (a2 + 3a + 9)2, so we
recover Shanks’ “simplest cubics”; we know already that we cannot use those cubics, and
indeed the line a+ b+ 3 = 0 is disjoint from the shaded region in (A.2.1).

We obtain our Fermat–Pell curves by trying curves of the next-lowest degree passing
through the conjugate cusps. We use the pencil of parabolas in the (a, b)-plane passing
through those cusps and the point at infinity (a : b : 1) = (0 : 1 : 0); that is,

Pm : b = m(a2 + 3a+ 9)− (a+ 3)
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depending on a parameter m ∈ Q. On such a parabola, D(a, b) is a sextic in a divisible by
(a2 + 3a+ 9)2; explicitly,

c2 = (a2 + 3a+ 9)2Qm(a), (A.2.2)

where Qm is the quadratic polynomial

Qm(a) = m2(1− 4m)a2 + (−12m3 + 12m2 − 2m)a+ (−36m3 + 36m2 − 12m+ 1).

Dividing equation (A.2.2) by the square factor on the right side transforms the Diophantine
equation D(a, b) = c2 into an equivalent Fermat–Pell curve of the form x2 = Qm(a) for
suitable choices of m.

To avoid issues with integrality, let m = p/q (written in lowest terms) and clear the
denominators of (A.2.2) by multiplying by q3. The change of variable y = qc/(a2 + 3a + 9)
yields an equivalent integral curve

Cm : qy2 = Aa2 +Ba+ C (A.2.3)

in A2
Z, where

A := −4p3 + p2q,

B := −12p3 + 12p2q − 2pq2,

C := −36p3 + 36p2q − 12pq2 + q3.

We shall see that there are m for which this curve yields an infinite family of cyclic cubic
fields with no mixed-sign units.

For starters, in order for Pm to have integral points, the denominator of m must be odd
since a2 + 3a+ 9 is always odd. Additionally, for Pm to have infinitely many integral points
in the first quadrant of the ab-plane, we must have m > 0, else the intersection of Pm with
the half-plane b > 0 is bounded.

Proposition A.2.4. Let m ∈ Q be such that the following conditions hold:

(i) There exists (a, y0) ∈ Cm(Z) with a > 0 and 2Aa+B > 0;
(ii) m = p/q with q odd;

(iii) 0 < m < 1/4; and
(iv) 1− 4m is not a square.

Then there exist infinitely many (a, y) ∈ Cm(Z) with a > 0, and we have a map

φm : Cm(Z)→ S(Z)

(a, y) 7→ (a, b, c) = (a,m(a2 + 3a+ 9)− (a+ 3), y(a2 + 3a+ 9)/q).

Remark A.2.5. We note that condition (i) implies condition (ii) in Proposition A.2.4. This
can be shown by checking 2-adic valuations of each side of Equation (A.2.3).

Proof. Completing the square in (A.2.3), we obtain the standard form:

x2 − (4Aq)y2 = B2 − 4AC (A.2.6)

where x = 2Aa + B. By (iii), we have 0 < m2(1 − 4m) = A/q3 so 4Aq > 0 and A > 0. By
(i), there exists (a, y0) ∈ Cm(Z) with a > 0, which gives a point (x0, y0) ∈ Z2 on (A.2.6) with
x0 = 2Aa+ B > 0. Changing signs, we may suppose without loss of generality that y0 > 0.
By (iv), we conclude 4Aq = (1− 4m)(2mq2)2 is not a square.

We now apply the theory of Pell equations to obtain infinitely many solutions (x, y) ∈ Z2

to (A.2.6) with x ≡ x0 ≡ B (mod 2A) and x > 0: explicitly, there exists a power of
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the fundamental unit for the real quadratic field Q(
√
Aq) of the form ε = r + s

√
4Aq with

r, s ∈ Z>0 and r ≡ 1 (mod 2A), so the solutions (xk, yk) obtained by multiplying x0+y0

√
4Aq

by the powers εk = rk + sk
√

4Aq for k ≥ 1 have rk ≡ 1 (mod 2A) and rk, sk > 0, so
xk = rkx0 + sky0(4Aq) ≡ x0 (mod 2A) and xk > x0 > 0. Thus

ak = (xk −B)/(2A) > · · · > (x0 −B)/(2A) = a > 0,

and we obtain infinitely many points (ak, yk) ∈ Cm(Z).
To conclude, we claim that if (a, y) ∈ Cm(Z), then

b = m(a2 + 3a+ 9)− (a+ 3) ∈ Z.
Reducing (A.2.3) modulo q gives

0 ≡ −4p3a2 − 12p3a− 36p3 = −4p3(a2 + 3a+ 9) (mod q);

and since q is odd and gcd(p, q) = 1 we conclude q | (a2 + 3a + 9), so m(a2 + 3a + 9) ∈ Z
and consequently b ∈ Z. �

Remark A.2.7. The method for getting infinitely many (a, y) ∈ Cm(Z) from an initial solution
was already known to Euler [20]; see Dickson [13, pp. 355–356] (English translation in the
Euler Archive, http://eulerarchive.maa.org/tour/tour_12.html). Dickson describes
Euler’s technique, which comes down to the same construction, though of course Euler did
not use the arithmetic of real quadratic number fields.

To find a value of m suitable for applying Proposition A.2.4, we work backwards by first
selecting an integral point (a, b, c) ∈ S (by a brute force search or starting with a cyclic cubic
field of unit signature rank 1) and then solving for the parameter m of the parabola Pm.
(Since m occurs linearly in the formula for Pm, there is a unique solution; explicitly

m =
a+ b+ 3

a2 + 3a+ 9
. (A.2.8)

As it happens the denominator is always positive so we do not even have to worry about
dividing by zero at an unfortunate choice of (a, b).)

Example A.2.9. Let (a, b) = (149, 4018). Solving for the corresponding parabola yields
m = 30/163 which satisfies the conditions on m. The resulting equation is

Cm : 163y2 = 38700a2 − 157740a− 924893

and yields a sequence of solutions

(a, b) = (149, 4018), (395449, 28781401718),

(655993191035058918, 79201300616753245838398841511537549), . . .

Example A.2.10. Similarly for (a, b) = (269, 10986), we obtain m = 2/13,

Cm : 13y2 = 20a2 − 148a− 275,

and

(a, b) = (1725, 456858), (17657181, 47965535241018),

(114572909, 2019530934725706),

(1175297035181, 212511249369405417243018), . . .
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Remark A.2.11. Having found one m satisfying the conditions of Proposition A.2.4, such
as m = 2/13 above, we can find infinitely many more. This is because D, and thus S, is
symmetric under (a, b) ↔ (b, a). Given an infinite sequence of (ak, bk) ∈ Cm(Z), we may
switch a, b in (A.2.8) to find an infinite sequence of mk = (ak+bk+3)/(b2

k+3bk+9) satisfying
condition (i) of Proposition A.2.4. For m = 2/13, these mk begin

2

21447
,

2

910279
,

2

95931035167687
,

2

4039061640305607
, . . .

corresponding to the initial solution (a, b) = (149, 4018) in Example A.2.9 and the further
four solutions listed there. Condition (ii), that 0 < mk < 1/4, is satisfied for all but finitely
many k: each mk is positive, and mk → 0 because ak → ∞ and bk ∼ ma2

k. It remains to
check that 1− 4mk is not a square for infinitely many k (condition (iii)). This can be done
in various ways; for example, once we have checked this for one k0, we can find some prime
` such that 1 − 4mk0 is not a square mod `, and apply Euler’s theorem as in A.2.4 to find
infinitely many k such that mk ≡ mk0 (mod `), whence 1− 4mk is not a square either. For
our m = 2/13 we may use mk0 = 2/21447 and ` = 5. This gives infinitely many curves
Cmk

each containing infinitely many integral points of S above the shaded region in (A.2.1),
thus showing that such points are Zariski-dense in S. (This is the same technique used
by Elkies [19] to find a Zariski-dense set of rational points on the Fermat quartic surface
A4 +B4 +C4 = D4 starting from a single elliptic curve on that surface with infinitely many
rational points.)

A.3. Infinitely many cyclic cubic fields. The construction above produces infinitely
many integral points (a, b) that correspond to cyclic cubic fields with totally positive units.
We now show that for all but finitely many (a, b), the condition (A.1.3) holds.

For a, b ∈ Z2 such that fa,b(x) = x3− ax2 + bx− 1 is irreducible, let Ka,b := Q[x]/(fa,b(x))
and let ηa,b ∈ Ka,b be the image of x.

Lemma A.3.1. The following statements hold.

(a) If ηa,b ∈ K×2
a,b , then (a, b) = (A2 − 2B,B2 − 2A) for some A,B ∈ Z.

(b) Let m ∈ Q. Then there are only finitely many (a, b) ∈ Pm(Z) such that ηa,b ∈ K×2
a,b .

Proof. For (a), let ε2 = ηa,b. Replacing ε by −ε if necessary, we may suppose that ε is a root
of x3 −Ax2 +Bx− 1. Expressing a, b as symmetric polynomials in the roots, we obtain the
result.

For (b), we study the squares on the parabola Pm by substituting in (a) to get

B2 − 2A = m((A2 − 2B)2 + 3(A2 − 2B) + 9)− (A2 − 2B + 3).

which yields

(1− 4m)B2 + (4mA2 + 6m− 2)B = mA4 + (3m− 1)A2 + 2A+ (9m− 3); (A.3.2)

multiplying by 1− 4m and letting B′ := (1− 4m)B, we obtain

B′2 + (4mA2 + 6m− 2)B′ = (1− 4m)(mA4 + (3m− 1)A2 + 2A+ (9m− 3)). (A.3.3)

The equation (A.3.3) describes a family of curves of genus 1 in the variables A,B over Q(m).
Its discriminant is −256m(1 − 4m)2(27m2 − 9m + 1)3, so (A.3.3) is smooth of genus 1 for
all m ∈ Qr {0, 1/4}, and so the same is true of (A.3.2). By Siegel’s theorem [37, Corollary
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IX.3.2.2], for fixed m the equation (A.3.2) has finitely many integral solutions (A,B) ∈ Z2.
The conclusion then follows from (a). �

Next, we prove that the construction above produces infinitely many distinct fields of the
form Ka,b. Let αa,b := 3ηa,b − a ∈ OKa,b

; then αa,b is an algebraic integer satisfying:

Ma,b(x) := x3 + (a2 + 3a+ 9)(9m− 3)x+ (a2 + 3a+ 9)(a(9m− 2)− 3) ∈ Z[x].

Lemma A.3.4. Let m ∈ Q satisfy conditions (i)–(iv) of Proposition A.2.4. Then as a
ranges over points (a, b, c) ∈ φm(Cm(Z)) ⊆ S(Z) with a > 0, the set of primes ` such that
3 - ord`(a

2 + 3a + 9) is infinite. Moreover, αa,b generates a totally ramified extension of Q`

for all but finitely many such ` (depending on m).

Proof. Let t ∈ Z>0 be cubefree. Then a2 + 3a + 9 = tz3 defines a genus 1 curve, so by
Siegel’s theorem it has finitely many integral points. Therefore there are only finitely many
(a, y) ∈ Cm(Z) such that a2 + 3a + 9 = tz3 for z ∈ Z. But #Cm(Z) = ∞ by Proposition
A.2.4, so the cubefree part of a2 + 3a+ 9 must take on infinitely many values.

For the second statement, we consider the Newton polygon of Ma,b(x) at `. Since

(81m2− 36m+ 4)(a2 + 3a+ 9) + ((2− 9m)a+ 3− 27m)((9m− 2)a− 3) = 27(27m2− 9m+ 1)

it follows that, for any prime ` such that ` - 27(27m2 − 9m+ 1)q2, we have

ord`[(a
2 + 3a+ 9)(a(9m− 2)− 3)] = ord`(a

2 + 3a+ 9).

For such primes, the `-Newton polygon of Ma,b(x) consists of a single segment of slope
ord`(a

2+3a+9)/3, and hence the extension defined by Ma,b(x) over Q` is totally ramified. �

We finish with a proof of the theorem in this section.

Proof of Theorem A.1.2. Let m ∈ Q satisfy (i)–(iv) of Proposition A.2.4, so that φm(Cm)(Z)
contains infinitely many points (a, b, c) ∈ S(Z) with a > 0, and hence b > 0; for example,
we may take m = 30/163, 2/13 as in Examples A.2.9 and A.2.10. The intersection of Pm
with the lines b = a and b = a− 2 removes at most 4 values of a; for the values that remain,
fa,b(x) = x3 − ax2 + bx − 1 is irreducible over Q. To each of these points we associate the
field Ka,b = Q(ηa,b) where ηa,b is a root of f(x), and consider the set of fields

Km := {Ka,b : (a, b, c) ∈ φm(Cm)(Z) and fa,b(x) is irreducible}.
Each Ka,b ∈ Km is a cyclic cubic extension because its discriminant is (up to squares) equal
to c2, and since a, b > 0 its roots are totally positive as in (A.2.1). By Lemma A.3.4, there
are infinitely many primes ` dividing the discriminants of the fields in K and so the set
contains fields with arbitrarily large discriminants. By Lemma A.3.1, in the set K there are
only finitely many fields where ηa,b ∈ K×2

a,b ; let K+ be the infinitely many remaining fields.

Since ηa,b 6∈ K×2
a,b , then ηa,b is a totally positive unit that is not a square. By Corollary 5.5.4,

we have sgnrkO×Ka,b
= 1, 3, so we must have unit signature rank 1, i.e., there is a basis of

totally positive units. �
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[23] G. Gras Théoremes de réflexions, J. Théor. Nombres Bordeaux 10 (1998), no. 2, 399–499.
[24] G. Gras, Class field theory: from theory to practice, Springer Monographs in Mathematics, Springer-

Verlag, Berlin, 2010, corrected 2nd printing.
[25] H. Ichimura, On a duality of Gras between totally positive and primary cyclotomic units, Math.

Journal of Okayama University 58 (2016), 125–132.
[26] Y. Lee, Cohen–Lenstra heuristics and the Spiegelungssatz: number fields, J. Number Theory 92

(2002), 37–66.
[27] Y. Lee, Cohen–Lenstra heuristics and the Spiegelungssatz: function fields, J. Number Theory 106

(2004), no. 2, 187–199.
[28] H.W. Leopoldt, Zur Struktur der `-Klassengruppe galoisscher Zahlkörper, J. Reine Angew. Math. 199

(1958), 165–174.
[29] F. Lemmermeyer, Selmer groups and quadratic reciprocity, Abh. Math. Sem. Univ. Hamburg 76

(2006), 279–293.
[30] The LMFDB Collaboration, The L-functions and Modular Forms Database, http://www.lmfdb.org,

2019.

40

https://github.com/BenKBreen/Cyclic-fields-code
https://arxiv.org/abs/1908.01752
https://arxiv.org/pdf/1904.04411
http://www.lmfdb.org


[31] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic
Comput. 24 (3–4), 1997, 235–265.

[32] G. Malle, Cohen-Lenstra heuristic and roots of unity, J. Number Theory 128 (2008), no. 10, 2823–
2835.

[33] G. Malle, On the distribution of class groups of number fields, Exp. Math. 19 (2010), vol. 4, 465–474.

[34] B. Oriat, Relations entre les 2-groupes des classes d’idéaux des extensions quadratiques k(
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