
ERRATA:

COMPUTING CLASSICAL MODULAR FORMS

ALEX BEST ET AL.

This note gives errata and addenda for the article Computing classical modular forms [1].

1. Errata

(1) Theorem 5.1.2: Replace Sk(Γ1(n);Q) with Sk(Γ1(N);Q).

(2) Section 8.3: Replace
For a newform f with trivial character, its Fricke eigenvalue is minus the sign of the
functional equation of its L-function, and each Wq-eigenvalue is the sign of a certain local
functional equation.

with
For a newform of weight k and trivial character, the Fricke eigenvalue ε is related to the
sign ε that appears in the functional equation (9.1.3) via ε = (−1)k/2ε, see Miyake [70,
Cor. 4.3.7]. Each Wq-eigenvalue is similarly related to the sign of a certain local functional
equation.

(3) Conjecture 8.5.1: Missing new subspace. Replace statement with
For all k ≥ 2, the space Snew

k (Γ0(2)) decomposes under the Atkin–Lehner operator W2 into
Hecke irreducible subspaces of dimensions bd/2c and dd/2e where d := dimC S

new
k (Γ0(2)).

In the discussion that follows, replace the reference Kimball [64] with the reference to [Kimball
Martin, Refined dimensions of cusp forms, and equidistribution and bias of signs, J. Number Theory
188 (2018), 1–17.].

2. Addenda

(1) Section 8.5: Strike “However, we observed behavior analogous to the Maeda conjecture in weight
1 up to weight k ≤ 400, with the additional prediction that the Atkin–Lehner operator splits the
space as evenly as possible.” Replace with “However, we observed behavior analogous to the Maeda
conjecture in weight 1 up to weight k ≤ 400. The Atkin–Lehner operator W2 splits the space as
evenly as possible, and the W2-eigenspaces appear to always be irreducible.”

(2) We can prove the observation following Conjecture 8.5.1. Replace the text up to Question 8.5.3 with
the following:

The dimensions in the corollary follow from Martin [Thm. 2.2] (Kimball Martin, The basis
problem revisited, arXiv:1804.04234v2, 2019), which implies that for even weights k > 2 we
have

dimSnew
k (Γ0(2))+ − dimSnew

k (Γ0(2))− =

{
0 k = 4, 6 mod 8,

(−1)k/2 k ≡ 0, 2 mod 8,

is is only the irreducibility of the eigenspaces that is conjectural. The factor (−1)k/2 in
(8.5.2) appears as 1 in [64, Thm. 2.2] because there the Atkin-Lehner operator follows the
convention of Diamond–Shurman [39, p. 209], which includes a factor of (−1)k/2, while we
are following the convention of Miyake [70], which does not include this factor.
One can find similar formulas for dimSnew

k (Γ0(N))+−dimSnew
k (Γ0(N))− for any squarefree

N in Martin, in which case they are a linear function of the class number h(−4N). For
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general N > 4 not of the form M2, 2M2, 3M2, 4M2 with M squarefree, we refer the
reader to Helfgott [Harald A. Helfgott, Root numbers and the parity problem, Ph.D. Thesis,
Princeton University, 2003, pp. 266-267.].
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