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Computing Euclidean Belyi maps

par Matthew Radosevich et John Voight

Résumé. Nous exposons un algorithme explicite pour calculer les
couvertures ramifiées à trois points de la ligne projective complexe
lorsque le groupe de triangles uniformisants est euclidien.

Abstract. We exhibit an explicit algorithm to compute three-
point branched covers of the complex projective line when the
uniformizing triangle group is Euclidean.

1. Introduction

1.1. Motivation. Grothendieck in his Esquisse d’un Programme [5] de-
scribed an action of the absolute Galois group Gal(Qal |Q) of the rational
numbers on the sets of Belyi maps and dessins d’enfants, linking combi-
natorics, topology, geometry, and arithmetic in a deep and surprising way.
Computational aspects of this program remain of significant interest: for
a survey, see Sijsling–Voight [12]. A common thread underlying these ap-
proaches is to realize a Belyi map via uniformization as φ : Γ\H → ∆\H
where H is one of the three classical geometries (the sphere, the Euclidean
plane, or the hyperbolic plane), and Γ ≤ ∆ is a finite-index subgroup of
a triangle group. The case where H is spherical is truly classical, corre-
sponding to certain triangulations of the Platonic solids. In the hyperbolic
case, complex analytic methods can be employed to convert this geometric
description into an algebraic one [6, 9, 10, 1]. What remains is the case
of Euclidean triangle groups, those arising from the familiar regular trian-
gular tessellations of the Euclidean plane. In this paper, we fill this gap:
we compute Euclidean Belyi maps explicitly from maps of complex tori,
forming a bridge between the classical and the general.

1.2. Main result. A Belyi map over C is a morphism φ : X → P1
C of nice

(projective, nonsingular, integral) curves over C that is unramified away
from {0, 1,∞}. By the Riemann existence theorem, we may equivalently
work with such a map of compact Riemann surfaces. Famously, Belyi [2, 3]
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proved that a curve X over C can be defined over the algebraic numbers
Qal if and only if X admits a Belyi map.

Belyi maps admit a tidy combinatorial description, something we take
as the input to our algorithm. A permutation triple of degree d is a triple
(σ0, σ1, σ∞) ∈ S3

d of permutations on d elements such that σ∞σ1σ0 = 1.
A permutation triple is transitive if it generates a transitive subgroup of
Sd. The monodromy around 0, 1,∞ of a Belyi map of degree d gives a
permutation triple of degree d, giving a bijection between isomorphism
classes of Belyi maps of degree d and transitive permutation triples up to
simultaneous conjugation. Lifting paths, one can compute (by numerical
approximation) the permutation triple attached to a Belyi map; in this
paper, we consider the harder, converse computational task.

Let σ be a transitive permutation triple of degree d and let a, b, c be
the orders of σ0, σ1, σ∞, respectively. By the theory of covering spaces,
the permutation triple σ defines a homomorphism π : ∆(a, b, c) → Sd and
thereby a subgroup Γ ≤ ∆(a, b, c) of index d (see section 2). The quotient
Γ\H can be given the natural structure of a Riemann surface X(Γ), and the
further quotient to ∆\H defines a Belyi map φ : X(Γ) → X(∆) ≃ P1

C. By
the theorem of Belyi, the map φ can be defined over the field of algebraic
numbers Qal.

We say that σ (and its corresponding map φ) is Euclidean if 1/a+1/b+
1/c = 1, in which case the attached triangle group ∆(a, b, c) is a group
of symmetries of the Euclidean plane, whence (a, b, c) is equal to (3, 3, 3),
(2, 3, 6), or (2, 4, 4). Our main result provides an algorithmic way to com-
pute algebraic equations for φ given σ.

Theorem 1.2.1. There exists an explicit algorithm that, given as input a
transitive, Euclidean permutation triple σ, produces as output a model for
the Belyi map φ associated to σ over Qal.

The algorithm in Theorem 1.2.1 is specified in Algorithm 3.5.1. We
implemented the algorithm in the computer algebra system Magma [4]: the
running time is quite favorable. We computed a database of Euclidean
Belyi maps with this implementation (see section 4) which we will upload
to the LMFDB [7]. Our code is available as part of a Belyi maps package
available online (https://github.com/michaelmusty/Belyi).

Remark 1.2.2. It would be interesting to estimate the running time of our
algorithm by estimating the heights of intermediate computations and the
precision required in Step 4 of Algorithm 3.2.5.

1.3. Proof sketch. We now briefly indicate the idea behind the proof of
Theorem 1.2.1. We first convert the permutation triple σ into an explicit
description of the group Γ ≤ ∆. Next, we write Γ ≃ T (Γ) ⋊ R(Γ) as a
semi-direct product, where T (Γ) consists of the subgroup of translations in
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Γ and R(Γ) is generated by rotation around a particular point, which we
can find explicitly. The quotients E(Γ) := T (Γ)\C and E(∆) := T (∆)\C
define elliptic curves. We then have the following commutative diagram,
which we call the master diagram:

(1.3.1)

E(Γ) β

**
ψ

��
X(Γ)

φ

��
E(∆)

α **
X(∆) ≃ P1

To find the Belyi map φ, our strategy is to compute the other three
maps in our diagram, filling in φ by commutativity (“descending ψ along
α”). The bottom map α depends only on a, b, c and the choice of origin,
giving six possibilities. The map ψ is an isogeny of elliptic curves, which we
compute from the inclusion of lattices implied by T (Γ) ≤ T (∆) by applying
formulas of Vélu. The top map β is computed by looking at the fixed field of
C(E(Γ)) under the finite subgroup of automorphisms corresponding to the
rotations R(Γ) (taking care to ensure these rotations act by automorphisms
at the origin). The final step, to fill in φ to make the diagram commute, is
obtained via explicit substitution.

1.4. Contents. After reviewing background in section 2, we exhibit in
section 3 the main algorithm (Algorithm 3.5.1) in pseudocode and then
prove the main result (Theorem 1.2.1). In section 4 we describe an imple-
mentation in the Magma computer algebra system and then present some
computed examples.

2. Group theory and geometry

In this section, we begin by developing some preliminary input coming
from group theory and geometry.

2.1. Transitive permutation representations. First, a few basic facts
and conventions. In this article, the symmetric group Sd acts on the right on
{1, . . . , d}, written in exponentiated form: e.g., if τ = (1 2 3) and µ = (2 3)
then 1τµ = (1τ )µ = 2µ = 3.

Recall that if G is a group, a (finite) permutation representation of G
is a group homomorphism π : G → Sd for some d ≥ 1, and we say that
π is transitive if its image is a transitive subgroup of Sd. A transitive
permutation triple σ defines a transitive permutation representation by
π(δs) = σs for s = a, b, c, and conversely.

Let π : ∆ → Sd be a transitive permutation representation. Let

(2.1.1) Γ := {δ ∈ ∆ : 1π(δ) = 1}.



4 Matthew Radosevich, John Voight

be the preimage of the stabilizer of 1 under π. (The stabilizer of k ∈
{1, . . . , d} is conjugate to Γ in ∆.) Then [∆ : Γ] = d. Conversely, given
Γ ≤ ∆ of index d, the action of ∆ on the cosets of Γ gives a transitive per-
mutation representation π : ∆ → Sd, and this correspondence is bijective.

2.2. Euclidean triangle groups. We refer to Magnus [8, §II.4] for clas-
sical background on Euclidean triangle groups; we briefly summarize some
classical facts. Let T ∗ be a triangle in the Euclidean plane C with angles
π/a, π/b, and π/c at the vertices va, vb, and vc labeled clockwise, with
a, b, c ∈ Z≥2. Then in fact there are only three possibilities, namely

(a, b, c) = (3, 3, 3), (2, 3, 6), (2, 4, 4)

corresponding to the solutions to 1/a + 1/b + 1/c = 1; the corresponding
tessellations of the Euclidean plane by triangles are sketched in Figure 2.2.1,
with alternating triangles colored white and black.

Figure 2.2.1: Tessellations for ∆(3, 3, 3), ∆(2, 3, 6), and ∆(2, 4, 4)

The group generated by the reflections in the sides of T ∗ generates a
discrete group of isometries acting properly on C, with fundamental domain
T ∗. The further subgroup of orientation-preserving isometries ∆(a, b, c) has
index 2, described as follows. For s ∈ {a, b, c}, let δs be the counterclockwise
rotation about vs by an angle of 2π/s.

Proposition 2.2.2. The following statements hold.

(a) There is a presentation

∆ = ∆(a, b, c) ≃ ⟨δa, δb, δc | δaa = δbb = δcc = δcδbδa = 1⟩.

(b) There is a unique group homomorphism

(2.2.3) ρ : ∆ → 1
cZ/Z

∼−→ Z/cZ

such that

δa, δb, δc 7→ 1/a, 1/b, 1/c 7→ c/a, c/b, 1.
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(c) We have ker ρ = T (∆) where T (∆) ⊴ ∆ is the subgroup of transla-
tions, giving a split exact sequence

(2.2.4) 1 → T (∆) → ∆
ρ−→ Z/cZ → 1;

in particular,

∆ = T (∆)⟨δc⟩ ≃ Z2 ⋊ Z/cZ.

Proof. See Magnus [8, Theorem 2.5] for a proof of part (a) using the
Reidemeister–Schreier method.

For part (b), we check that the relations in ∆ are satisfied: indeed, we
have ρ(δss) = s(c/s) ≡ 0 (mod c), and ρ(δcδbδa) = c(1/a + 1/b + 1/c) ≡ 0
(mod c). Alternatively, we define a group homomorphism first by taking
the quotient by the commutator subgroup to surject onto (Z/aZ⊕Z/bZ⊕
Z/cZ)/⟨(1, 1, 1)⟩, then map to Z/cZ via (x, y, z) 7→ x(c/a) + y(c/b) + z.

Since it will be of some importance to us, we prove part (c) two ways.
First, we compute algebraically. We treat the case ∆ = ∆(2, 3, 6), the other
two being similar. Without loss of generality, we may suppose that vc = 0
and vb = 1. Then va = (ζ6+1)/2, where ζ6 = exp(2πi/6). The translations
in ∆ are precisely those that translate by the ∆ orbit of vc = 0, so T (∆) is
generated by z 7→ z + (ζ6 + 1) = z + 2va and z 7→ z +

√
3i = z + (2ζ6 − 1).

We then compute directly that

δa(z) = −z + (ζ6 + 1)

is the composition of the rotation z 7→ −z = ζ36z in ⟨δc⟩ followed by the
translation z 7→ z + (ζ6 + 1) in T (∆). Since δb = δ−1

c δ−1
a , we conclude that

∆ = T (∆)⟨δc⟩. In particular, every transformation δ ∈ ∆ is of the form
δ(z) = ζi6z + β for i ∈ Z/cZ and with z 7→ z + β in T (∆); and written
this way, ρ(δ) = i (mod c), so indeed ker ρ = T (∆). (We may also verify
independently that T (∆) is normal in ∆: if τ(z) = z + β ∈ T (∆) then

(2.2.5) (δ−1
c τδc)(z) = z + ζ−1

6 β = z + δ−1
c (β)

is again translation by a point in the ∆ orbit of vc, so δ
−1
c τδc ∈ T (∆).)

Finally, since T (∆) ≃ Z2 is generated freely by two translations, it follows
that ∆ ≃ Z2 ⋊ Z/cZ as claimed.

We may also argue geometrically, as follows. Intuitively, each transfor-
mation δs rotates the plane by the corresponding interior angle 2π/s =
(c/s)(2π/c), composition accumulates this rotation in an abelian way, and
the resulting transformation is a translation if and only if the total amount
of rotation sums to a multiple of 2π. In other words, every element of ∆ is
obtained by first rotation by a power of δc to put E into one of c positions,
then translation of E: see Figure 2.2.6.
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Figure 2.2.6: Geometric proof of Proposition 2.2.2(b)–(c)

More precisely, around vc there is a central hexagon or square E consist-
ing of c pairs of white and black triangles. Let δ ∈ ∆. Then δ(E) is another
hexagon or square in the tessellation, with center δ(vc). It is geometrically
evident (and can be verified in a straightforward manner) that there is a
unique translation τδ ∈ T (∆) mapping δ(vc) to vc, so the composition fixes
vc and maps E to itself. But again visibly, the stabilizer of E in ∆ is
precisely ⟨δc⟩. This association thereby defines a surjective group homo-
morphism ∆ → ⟨δc⟩ with kernel T (∆), as claimed. Figure 2.2.6 gives the
transformation taking T ∗ (blue) to T ′ (red) by first rotating about vc by
5π/3 (applying δ5c ) then translating by z 7→ z+β1, an element of T (∆). □

Corollary 2.2.7. The group T (∆) is generated by

(2.2.8) (ω1, ω2) :=


(δaδ

2
c , δbδ

2
c ), if (a, b, c) = (3, 3, 3);

(δaδ
3
c , δbδ

4
c ), if (a, b, c) = (2, 3, 6);

(δaδ
2
c , δbδ

3
c ), if (a, b, c) = (2, 4, 4).

Proof. In each case, ω1 and ω2 are in the kernel of the homomorphism ρ
described in proposition 2.2.2, and thus ω1, ω2 ∈ T (∆). From Figure 2.2.1,
it is straightforward to verify that the ⟨ω1, ω2⟩ orbit of vc is the same as
the T (∆) orbit of vc, so T (∆) = ⟨ω1, ω2⟩. □

Visibly from Figure 2.2.1 we have ∆(3, 3, 3) ⊴ ∆(2, 3, 6) with index 2
(halving a fundamental triangle), and T (∆(3, 3, 3)) = T (∆(2, 3, 6)). At-
tached to each translation subgroup is the orbit of 0

(2.2.9) Λ∆ := T (∆) · 0
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which defines a lattice Λ∆ ≃ Z2. We write

(2.2.10)
Λ□ := Λ∆(2,4,4) = Z[i]
Λ7 := Λ∆(3,3,3) = Λ∆(2,3,6) = Z[ζ6]

Remark 2.2.11. More precisely, we work with these lattices up to homoth-
ety, rescaling by an element of C×; to obtain elliptic curves defined over
Q (see section 3.1), we must rescale by a real number (which can be given
explicitly as a real period).

2.3. Fundamental domains. In this section, we describe fundamental
domains for the groups under consideration. A fundamental domain for
the action of ∆ is obtained from any pair of one shaded triangle and one
unshaded triangle which we may take to share an edge. This gives a region
where all the interior points are distinct under the identification ∆ ⟳ C.
Furthermore, we can divide the four sides of the quadrilateral into two pairs
of consecutive sides identified under the quotient by ∆ as in Figure 2.3.1,
so that X(∆) has genus 0.

Figure 2.3.1: Fundamental domains for ∆, like colors identified

Since T (∆) is generated by two noncollinear translations, we can take as
its fundamental domain the parallelogram determined from two sides shar-
ing a vertex at the origin. Opposite edges are identified while consecutive
edges are distinct as in Figure 2.3.2, so the fundamental region is equivalent
to a torus (genus 1). Similar statements hold for T (Γ).

Finally, a fundamental domain for Γ is constructed in the usual man-

ner: we choose coset representatives ∆ =
⊔d
i=1 γiΓ, and then for D(∆)

the fundamental domain for ∆ we have the fundamental domain D(Γ) =⋃d
i=1 γiD(∆).
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Figure 2.3.2: Fundamental domains for T (∆), like colors identified

We now consider the genus of the surface X(Γ) := Γ\C. Given a per-
mutation τ ∈ Sd, let k(τ) be the number of disjoint cycles in τ and define
its excess as e(τ) := d− k(τ). Then by the Riemann–Hurwitz formula, the
genus of X(Γ) is equal to [12, (1.5)]

(2.3.3) g(X(Γ)) = 1− d+
e(σ0) + e(σ1) + e(σ∞)

2
.

Lemma 2.3.4. We have g(X(Γ)) ≤ 1, with equality if and only if for all
s ∈ {a, b, c}, every cycle in σs has length s.

Proof. For s ∈ {a, b, c} since the cycle decomposition of σs can contain no
cycle of length greater than s, we have k(σs) ≥ d/s, so

e(σa) + e(σb) + e(σc) ≤ 3d−
(
d

a
+
d

b
+
d

c

)
= 3d− d = 2d

with equality if and only if all cycles in σs are length s. Substituting this
into (2.3.3), the result follows. □
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Remark 2.3.5. We will see later, in Corollary 2.5.7, that g(X(Γ)) = 1 if
and only if Γ = T (Γ).

2.4. Translation subgroups. Let

(2.4.1) T (Γ) := Γ ∩ T (∆) = ker ρ|Γ
be the subgroup of translations in Γ; then T (Γ) ⊴ Γ, as T (∆) ⊴ ∆ by
Proposition 2.2.2. Writing E(Γ) := T (Γ)\C and similarly for ∆, the con-
tainments of these four groups give quotient maps which fit into the diagram
(1.3.1).

We again have a lattice

(2.4.2) ΛΓ := T (Γ) · 0
with ΛΓ ≤ Λ∆ a subgroup of finite index. When no confusion can arise,
we will identify translation maps by the corresponding lattice element. We
define

(2.4.3) N := [T (∆) : T (Γ)].

In the following algorithm, we compute a convenient basis for T (Γ).

Algorithm 2.4.4. This algorithm takes as input σ and outputs a basis
η1, η2 for T (Γ) and N = [T (∆) : T (Γ)].

1. Let π be the transitive permutation representation attached to σ, and
for i = 1, 2, let ωi be as in Corollary 2.2.7 (a basis for T (∆)).

2. Let τ1 be the cycle containing 1 in π(ω1) and let τ2 be the cycle
containing 1 in π(ω−1

2 ). For i = 1, 2, let ℓi be the length of τi.
3. Compute

V :=
{
(b1, b2) : 0 ≤ bi ≤ ℓi for i = 1, 2 and 1τ

b1
1 = 1τ

b2
2
}
.

4. Let A be the matrix whose rows are the elements of V . Reduce A
to Hermite normal form (HNF) and take its first two row vectors
(n1, n2) and (0,m2).

5. Return η1 = ωn1
1 ωn2

2 and η2 = ωm2
2 and N = n1m2.

Proof of correctness. Since ω1 and ω2 commute, any η ∈ T (∆) is of the
form η = ωa11 ω

a2
2 for some (a1, a2) ∈ Z2. By definition, such η ∈ T (Γ) if

and only if 1(π1(ω1)a1π2(ω2)a2 ) = 1, or equivalently when 1τ
a1
1 = 1τ

a2
2 . Since

τi has order ℓi, we only need to consider 0 ≤ ai ≤ ℓi for i = 1, 2. The
Z-span of V therefore gives all pairs (a1, a2) such that η = ωa11 ω

a2
2 is in

T (Γ). Since only row operations are performed in computing the Hermite
normal form, the Z-span does not change, hence η1, η2 computed in step 5
generate T (Γ). Finally, we have

N = [T (∆) : T (Γ)] = det

(
n1 n2
0 m2

)
= n1m2. □
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2.5. Rotation index. In this section, we study rotations in Γ. Restricting
the exact sequence (2.2.4) we obtain

1 → T (Γ) → Γ → R(Γ) → 1

where R(Γ) := ρ(Γ) ≤ Z/cZ. Evidently, R(Γ) is a cyclic group with order
dividing c.

Definition 2.5.1. The rotation index of Γ is r(Γ) := [Γ : T (Γ)] = #R(Γ).

Lemma 2.5.2. We have

r(Γ) =
cN

d
where N = [T (∆) : T (Γ)].

Proof. From

[∆ : T (Γ)] = [∆ : Γ][Γ : T (Γ)] = [∆ : T (∆)][T (∆) : T (Γ)]

we conclude dr(Γ) = cN . □

In Proposition 2.2.2(c) we split the exact sequence using δc. Indeed,
the analogous sequence for Γ above is again split, but not necessarily by
a power of δc: instead, R(Γ) is generated by a rotation about some vertex
(an element in the ∆ orbit of va, vb, or vc), as follows.

Lemma 2.5.3. There exists a vertex vO whose stabilizer γO ∈ Γ has ρ(γO)
a generator of R(Γ), giving a split exact sequence

1 → T (Γ) → Γ → ⟨γO⟩ → 1

so in particular Γ = T (Γ)⟨γO⟩ ≃ Z2 ⋊ Z/r(Γ)Z.

Proof. Every element of ∆ is either a translation (and fixes no point) or
fixes a unique point (z 7→ uz + v fixes z = v/(1 − u) if u ̸= 1), necessarily
a vertex as every nonidentity element of finite order in ∆ is conjugate to
one of the generators δa, δb, δc. So let γO ∈ Γ be any element which maps
to a generator of R(Γ) under ρ, well-defined up to a translation in T (Γ).
If γO is a translation, which is to say γO ∈ T (Γ), then R(Γ) is trivial:
hence Γ = T (Γ), and we may take vO to be any vertex (each having trivial
stabilizer under Γ).

Otherwise, γO fixes a vertex vO with the claimed properties; the splitting
follows immediately, just as we saw in the geometric proof of Proposition
2.2.2(c). □

Definition 2.5.4. A vertex vO whose stabilizer generates R(Γ) is called a
vertex of maximum rotation.

With Lemma 2.5.3, we can be more precise about the possible vertices
of maximal rotation.
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Corollary 2.5.5. The vertices of maximal rotation, up to translation by
T (Γ), are in bijection with the union of the sets of cycles τ in σs with length
s/r(Γ) for s ∈ {a, b, c}.

Proof. Under the quotient map Γ\C → ∆\C, for s ∈ {a, b, c}, the preimages
of the vertex vs are in bijection with the cycles in σs and the stabilizer of
a vertex with cycle τ has order s/ℓ(τ) where ℓ(τ) is the length of τ . Such
a vertex has maximal rotation if and only if s/ℓ(τ) = r(Γ). □

Because a permutation triple which is simultaneously conjugate to σ
gives an isomorphic Belyi map (with differently labelled sheets), we may
suppose without loss of generality that one of va, vb, vc is a vertex of maxi-
mal rotation: after simultaneous conjugation, we just insist that 1 belongs
to a cycle as in Corollary 2.5.5. This “preprocessing” step is given as fol-
lows.

Algorithm 2.5.6. This algorithm takes as input a Euclidean permutation
triple σ and gives as output the rotation index r(Γ) and a simultaneously
conjugate triple σ′ and s ∈ {a, b, c} such that one of va, vb, vc is a vertex of
maximal rotation

1. Compute N using Algorithm 2.4.4 and r(Γ) = cN/d.
2. By trying all possibilities, find a cycle τ in σs with s ∈ {a, b, c} with

length ℓ(τ) = s/r(Γ).
3. For any i ∈ τ , return r(Γ) and the simultaneous conjugation of σ by

(1 i).

Proof. In Step 1, the rotation index is computed correctly by Lemma 2.5.2.
Step 2 will succeed by 2.5.5. By choice of Γ as the stabilizer of 1, we
conclude that vs is a vertex of maximal rotation. □

From here forward, we may suppose without loss of generality that this
“preprocessing” step has been applied.

We now see the exact circumstances when g(X(Γ)) = 1.

Corollary 2.5.7. We have g(X(Γ)) = 1 if and only if r(Γ) = 1 if and only
if Γ = T (Γ).

Proof. By Corollary 2.5.5, we have r(Γ) = 1 if and only if for all s ∈ {a, b, c},
every cycle in σs has length s; the result then follows from Lemma 2.3.4. □

3. Equations

From the subgroup Γ ≤ ∆ of index d, in the previous section we de-
fined the translation subgroups T (Γ) ≤ T (∆) whose quotients fit into the
commutative diagram (1.3.1). We now calculate equations for these curves
and the maps between them. As a basic reference, we refer to Silverman
[13, 14].
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3.1. Fixed maps. We begin with the bottom map α : E(∆) → X(∆) ≃
P1, which depends only on ∆ (with the choice of the origin at vc). From
Proposition 2.2.2(c), the map α is the quotient by a cyclic group of rotations
of order c at a vertex vc, which we may take as the origin of the elliptic
curve E(∆). Accordingly, these rotations act by automorphisms of the
elliptic curve E(∆), and so their equations are well-known [14, §II.2] (see
also Lemma 3.3.2 below). Define the elliptic curves

(3.1.1) E7 : y2 = x3 + 1 E□ : y2 = x3 − x

over Q, the automorphisms

(3.1.2)
δ3 : E7 → E7 δ4 : E□ → E□ δ6 : E7 → E7

(x, y) 7→ (ζ3x, y) (x, y) 7→ (−x, iy) (x, y) 7→ (ζ−1
3 x,−y).

and the quotient maps

(3.1.3)
α3 : E7 → P1 α4 : E□ → P1 α6 : E7 → P1

(x, y) 7→ y + 1

2
(x, y) 7→ x2 (x, y) 7→ y2.

We recall the lattices defined in (2.2.10). After homothety, the Weierstrass
map z 7→ (℘(z), ℘′(z)/2) gives an analytic isomorphism from the complex
elliptic curve C/Λ□ to E□(C). Moreover, the rotation δ4 acts by (x, y) 7→
(−x, iy) (gently abusing notation), and the quotient map E(∆) → X(∆)
is given by α4 in these coordinates. Similar statements hold for the two 7
cases.

Lemma 3.1.4. The maps αc for c = 3, 4, 6 are Euclidean Belyi maps of
degree c.

Proof. For α4, the set of preimages under (x, y) 7→ x2 = t has cardinal-
ity four unless t = 0,∞ or y = 0, in which case t = x2 = 0, 1, giving
ramification type (2, 4, 4). Similarly for α6, we have six preimages under
(x, y) 7→ y2 = t unless t = 0,∞ or y2−1 = x3 = 0, in which case t = y2 = 1,
giving ramification (2, 3, 6).

For α3, the map (x, y) 7→ y is ramified above {±1,∞} with ramification
(3, 3, 3), so to get ramification at {0, 1,∞} we simply postcompose with the
Möbius transformation y 7→ (y + 1)/2. □

3.2. Isogeny. We now turn to the isogeny ψ : E(Γ) → E(∆) in (1.3.1).
We first show how to work explicitly with torsion on E(∆) using exact

arithmetic. To handle the three cases uniformly, let j = i or j = ζ6, so that
Λ = Λ∆ = Z[j], let K := Q(j) ⊆ C, and let E = E□ or E = E7.

Lemma 3.2.1. For all a+ bj ∈ Z[j], there exists an effectively computable
rational function ma+bj(x) ∈ K(x) such that x([a + bj]P ) = ma+bj(x(P ))

for all P ∈ E(Qal).
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Proof. When b = 0, the lemma is established as part of the theory of
division polynomials: see Silverman [13, Exercise 3.7(d)]. When b ̸= 0,
we may similarly calculate using the explicit description of the action of j
given in (3.1.2): we still know that x([a + bj]P ) is a rational function in
x(P ), since x([a+ bj](−P )) = x(−[a+ bj]P ) = x([a+ bj]P ). □

For an integer N ≥ 1, the torsion group

E[N ] ≃ 1
NΛ/Λ ≃ Z[j]/NZ[j]

is a cyclic Z[j]-module; we use the symbol P ∈ E[N ] to denote a generator
of E[N ] as a Z[j]-module.

Algorithm 3.2.2. This algorithm takes as input N ∈ Z≥1 and returns as
output a number field L and the set

{(a+ bj, x([a+ bj]P )) : a, b ∈ Z/NZ} ⊆ Z[j]/NZ[j]× L

for a generator P .

1. Compute the N -division polynomial fN (x) ∈ Q[x] for E.
2. For each proper divisor D | N , compute the D-division polynomial
fD(x) ∈ Q[x] for E(∆) and divide fN (x) by gcd(fD(x), fN (x)) recur-
sively.

3. Let gN (x) be an irreducible factor of fN (x) over K[x] and let L :=
K(θ) with θ a root of gN (x).

4. Return the values

{(a+ bj,ma+bj(θ)) : a, b ∈ Z/NZ}.
Remark 3.2.3. As an alternative to Step 4 (in place of computing the ra-
tional functions), at the cost of enlarging L to include the y-coordinate (if

E : y2 = f(x), we just need
√
f(θ)), we can just compute directly using the

group law on E.

Proof of correctness. In Step 1, we form the polynomial whose roots are the
x-coordinates of the N -torsion points, by definition of the division polyno-
mial. In Step 2, we remove all roots whose order is a proper divisor of N ;
so any remaining root will be the x-coordinate of a point with exact order
N . Some such point P generates E[N ] as a Z[j] module. By Lemma 3.2.1,
in Step 3 any irreducible factor of fN (x) is a splitting field for fN (x) over
K, so if gN (θ) = 0 then x(E[N ]) ⊆ K(θ). The output of Step 4 is correct
by Lemma 3.2.1. □

Next, we recall section 2.4, where we defined N := [T (∆) : T (Γ)] and
computed in Algorithm 2.4.4 a basis for ΛΓ. Since NΛ∆ ⊆ ΛΓ, we have an
isogeny

(3.2.4)
ψ̂ : E(∆) → E(Γ)

z 7→ Nz
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dual to our desired isogeny ψ. From this setup, we compute an equation
for ψ using Vélu’s formulas, as in the following algorithm.

Algorithm 3.2.5. This algorithm takes as input a basis

(3.2.6)
η1 = n1ω1 + n2ω2

η2 = m2ω2

for ΛΓ ≤ Λ∆ = Zω1 + Zω2 and gives as output a model for the isogeny
ψ : E(Γ) → E(∆).

1. Let p1 := (0, ⌈n1/2⌉). If m2 is odd, let p2 := (⌊m2/2⌋, n1). If m2 is
even, let p2 := (m2/2, ⌊n1/2⌋).

2. Let

C := {(t1, t2) ∈ Z/m2Z× Z/n1Z : p1 ≤ (t1, t2) ≤ p2}

where ≤ here indicates the dictionary order.
3. Let

K :=
{

1
N (t1n1, t1n2 + t2m2) : (t1, t2) ∈ C

}
.

4. Compute

X := {℘Λ(aiω1 + biω2) : (ai, bi) ∈ K} ⊆ C

to enough precision to distinguish their values.
5. Call Algorithm 3.2.2 with output WL. Embed L ↪→ C, and let XL ⊆
L be the set of x-coordinates inWL whose embedding into C matches
a value in X.

6. Let

p(x) :=
∏
k∈XL

(x− k) ∈ L[x].

Let K ′ be the subfield of L generated (over Q) by the coefficients of
p(x).

7. Using Vélu’s formulas [15], compute the isogeny ψ̂ : E → E′ with
kernel p(x) ∈ K ′[x] and E′ defined over K ′.

8. Return the dual isogeny ψ : E′ → E.

Proof of correctness. Algorithm 2.4.4 gives η1 = n1ω1 + n2ω2 and η2 =
m2ω2, so ΛΓ ⊆ Λ∆. Note also that Nω1 = m2η1 − n2η2 and Nω2 = n1η2,
so NΛ∆ ⊆ ΛΓ.

Let fN (x) be theN -division polynomial. We determine the x-coordinates

of the points in ker ψ̂ from among the roots of fN . Since z ∈ (1/N)ΛΓ if

and only if Nz ∈ ΛΓ, it follows that ker(ψ̂) = (1/N)ΛΓ/Λ∆ ≃ ΛΓ/NΛ∆

and

#ker(ψ̂) = #(ΛΓ/NΛ∆) = det

(
m2 −n2
0 n1

)
= n1m2 = N.



Computing Euclidean Belyi maps 15

To list representatives for ΛΓ/NΛ∆, we proceed as follows: if we identify
ordered pairs (a, b) with coordinates relative to the basis {η1, η2} for ΛΓ (i.e.,
(a, b) indicates the point aη1+bη2), then (a1, b1) and (a2, b2) are equivalent
modulo NΛ∆ if and only if a1 − a2 = im2 and b1 − b2 = jn1 − in2 for some
i, j ∈ Z. So the set

(3.2.7) {t1η1 + t2η2 : 0 ≤ t1 < m2, 0 ≤ t2 < n1}

with N elements gives a complete set of coset representatives for ΛΓ/NΛ∆.
It follows then that the set
(3.2.8)
A := { 1

N (t1η1 + t2η2) : 0 ≤ t1 < m2, 0 ≤ t2 < n1}
= { 1

N t1(n1ω1 + n2ω2) +
1
N t2(m2ω2) : 0 ≤ t1 < m2, 0 ≤ t2 < n1}

= { 1
N xn1ω1 +

1
N (t1n2 + t2m2)ω2 : 0 ≤ t1 < m2, 0 ≤ t2 < n1}

gives a complete set of coset representatives for (1/N)ΛΓ/Λ∆.
We use the Weierstrass ℘-function to map the points in the set z ∈ A

to points P = (℘(z), ℘′(z)/2) ∈ E(C) on the algebraic model E. On this
model, since x(−Q) = x(Q) for all Q we only need one representative in A
up to inverses. Points in A corresponding to the pairs (t1, t2) and (t′1, t

′
2)

give inverses on E(C) if and only if m2 | (t1+t′1) and n1 | (t2+t′2). Forming
the set C in step 2 then avoids redundancies so that no points in the set K
are inverse to each other.

The algebraic recognition in Steps 4 and 5 follow since the values are
the distinct x-coordinates of N -torsion points. With an equation for E and

the polynomial representing the kernel of the isogeny ψ̂ : E → E′, we can

use Vélu’s formula to calculate ψ̂ explicitly. Taking the dual to ψ̂ gives the
desired isogeny ψ. □

Remark 3.2.9. If n1 and m2 above are coprime, then ker(ψ̂) ∼= Z/m2Z ×
Z/n1Z ∼= Z/NZ with N = n1m2 is cyclic. So, in algorithm 3.2.2, we need
only compute the set of values {ma(x(P )) : a ∈ Z/NZ} for a generating

point P of ker(ψ̂). Then, we may take those values as the roots of the
kernel polynomial p(x) in step 6 of algorithm 3.2.5. As the computation
of the rational maps ma+bj(x) can be costly, this is a useful simplification.
If n1 and m2 are not coprime, let k := gcd(n1,m2). Then, we may factor
ψ = [k] ◦ ψ′ where [k] : E(∆) → E(∆) is the multiplication by k map and
ψ′ : E(Γ) → E(∆) is the isogeny with cyclic kernel obtained as described
above replacing n1 with n1/k and m2 with m2/k.

Remark 3.2.10. If in Algorithm 2.4.4 we compute instead the Smith normal

form (SNF) of A as

(
n 0
0 m

)
= PAQ (with n | m), the result gives a basis

for ΛΓ relative to a basis for Λ∆ such that ΛΓ = ⟨nω′
1,mω

′
2⟩ with Λ∆ =
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⟨ω′
1, ω

′
2⟩. Accordingly, we adjust Step 4 in Algorithm 3.2.5 by replacing

the occurrences of ω1 and ω2 respectively with ω′
1 = aω1 + bω2 and ω′

2 =

cω1 + dω2 where Q−1 =

(
a b
c d

)
.

Incorporating Remark 3.2.9, we may further simplify by factoring n from
each entry in our basis matrix (corresponding to factoring the multiplication

by n map from ψ̂). This reduces us to the case n = 1 in Algorithm 3.2.5.

3.3. Descent using automorphisms. Returning to our master diagram
(1.3.1), we now consider the top map β : E(Γ) → X(Γ) having computed in
the previous section an equation for ψ and E(Γ) over a number field K ′. To
do so, we apply a bit of Galois theory. Associated to our master diagram
is the following diagram of inclusions of function fields (see e.g. Silverman
[13, §II.2]):

(3.3.1)

C(E(Γ)) β∗

ψ∗ C(X(Γ))

φ∗C(E(∆))

α∗
C(X(∆))

We recall our explicit equations from section 3.1 and the automorphisms
(3.1.2). The inclusion α∗ realizes C(X(∆)) as the fixed field under ⟨δ∗c ⟩.
For example, for c = 4 we have

C(E□) = C(x, y)

with y2 = x3 − x, and so with δ4(x, y) = (−x, iy) we have

C(E□)
⟨δ∗4⟩ = C(x2, y4) = C(x2) ⊆ C(E□)

because y4 = x6 − 2x4 + x2 ∈ C(x2).
By Lemma 2.5.3, there exists a vertex of maximal rotation (Definition

2.5.4) for Γ. At the end of section 2, we argued that up to isomorphism
(without loss of generality) we may suppose that this vertex is one of
va, vb, vc. We have deg β = r(Γ) ∈ {1, 2, 3, 4, 6} equal to the rotation index.

If r(Γ) = 1, then E(Γ) = X(Γ) and β is the identity. So we may suppose
that r(Γ) > 1.

First suppose that vc = 0 is a vertex of maximal rotation under a sub-
group of rotations generated by a power of δc. Then the quotient map β is
again by a subgroup of automorphisms of E(Γ) over K ′ as an elliptic curve,
so is given in the same well-known manner as in section 3.1.

Lemma 3.3.2. Suppose vc is a vertex of maximal rotation with r(Γ) > 1.
Then X(Γ) ≃ P1, and the following statements hold.
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(a) If r(Γ) = 3, 6, then E(Γ) has an equation of the form y2 = x3 + B
for some nonzero B ∈ K ′, and β : E(Γ) → X(Γ) can be taken to be
(x, y) 7→ y, y2, respectively.

(b) If r(Γ) = 4, then E(Γ) : y2 = x3 +Ax for some nonzero A ∈ K ′, and
β(x, y) = x2.

(c) If r(Γ) = 2, then β(x, y) = x.

Proof. We may suppose that E(Γ) has a Weierstrass equation y2 = x3 +
Ax + B. Any automorphism of E is of the form (x, y) 7→ (u−2x, u−3y)
for some u ∈ C× with u−4A = A and u−6B = B. Considering the cases
r(Γ) = 3, 4, 6 gives A = 0 or B = 0 as in (a) and (b). We compute the maps
in (a)–(c) by considering the fixed subfields under these automorphisms, as
above. □

Suppose now that our vertex vO of maximum rotation is either va or
vb, with rotations generated by an element δO (generating the coset repre-
sentatives of Γ/T (Γ)). In this case, δO need not induce an automorphism
of E(Γ), because as a rotation of the plane δO need not take the lattice
corresponding to T (Γ) back to itself. However, we may simply translate,
as in the following lemma.

Lemma 3.3.3. Let QO := (℘(vO), ℘
′(vO)/2) ∈ E(Γ) be the image of of

vO. Let E(Γ)′ denote the elliptic curve whose underlying curve is E(Γ) but
with origin QO. Then we have an isomorphism

(3.3.4)
τ−QO

: E(Γ) → E(Γ)′

P 7→ P −QO

of elliptic curves, and δO induces an automorphism of the elliptic curve
E(Γ)′ under τ−QO

.

Proof. The translation isomorphism moves QO to the origin on E(Γ)′; thus
the action induced by δO is bijective and fixes the origin on E(Γ)′, so gives
an automorphism of E(Γ)′ as an elliptic curve. □

Thus to compute the map β : E(Γ) → X(Γ), by the lemma we first com-
pose with the isomorphism τ−QO

: E(Γ) → E(Γ)′ to reduce to the previous
case. But rather than compute the point QO ∈ E(Γ) and the translation
map, we find it computationally more convenient to translate by the point
PO := (℘(vO), ℘

′(vO)/2) ∈ E(∆) on the base curve.
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Writing E(∆)′ for the elliptic curve E(∆) having origin PO, we have the
following diagram:

(3.3.5)

E(Γ)′

β′

''
ψ

��

E(Γ)
β

--

ψ

��

τ−QO 55

X(Γ)

φ

��

E(∆)′

α′

''
E(∆)

α --

τ−PO 55

X(∆)

The diagram is commutative because ψ(QO) = PO, both points corre-
sponding to vO under the complex uniformization. Note that the map
ψ : E(Γ)′ → E(∆)′ has the same defining equation as the map E(Γ) →
E(∆), and still defines a finite map of curves—it just loses the property of
being a homomorphism.

In this way, we have “aligned” E(∆)′ with E(Γ)′, and we can more simply
repeat the steps above with E(∆)′ in place of E(∆) at the cost of computing
translation maps τPO

: E(∆) → E(∆)′ with PO the image of either va or
vb, giving a few more fixed maps α′, which can be computed by composing
α with translation (computed using the group law).

Lemma 3.3.6. The following statements hold, with E(∆)′ = E(∆) as in
(3.1.1).

(a) If c = 6 and vO = va = v2, then we have

α′ : E(∆)′ → P1

(x, y) 7→ (9ζ6 − 9)x2 + 9ζ6x+ 9

x3 + (3ζ6 − 3)x2 − 3ζ6x+ 1
= 9ζ26

(x− ζ6)(x+ 1)

(x+ ζ26 )
3

(b) If c = 6 and vO = vb = v3, then we have

α′ : E(∆)′ → P1

(x, y) 7→ x6 + 8x3y + 8x3 + 16y2 + 32y + 16

x6

(c) If c = 4 and vO = va = v2, then we have

α′ : E(∆)′ → P1

(x, y) 7→ (x+ 1)2

(x− 1)2

In case (a), we may need to extend the field of definition K ′ to include ζ6.
In the remaining cases, we have taken vO = vc without loss of generality,



Computing Euclidean Belyi maps 19

so the maps (3.1.3) may be used. After having made this reduction, we
drop the superscripts (the underlying curves have the same equations) and
proceed to the final step.

3.4. The Belyi map. With three of the four maps in our master diagram
determined, we complete the computation of φ : X(Γ) → X(∆) by filling
in the map in the master diagram from the other three sides, using com-
mutativity. To do this, we again apply Galois theory, referring to the field
diagram (3.3.1).

Let ξ := α ◦ψ : E(Γ) → X(∆), a map represented by a rational function
ξ(x, y) ∈ K ′(x, y) where E′ = E(Γ) : y2 = f ′(x) is the defining equation
of E′. By commutativity, we have ξ = φ ◦ β. If r(Γ) = 1, then β is the
identity map so φ = ξ. So we may suppose that r(Γ) > 1.

The monomial map β : E(Γ) → X(Γ) is described by Lemma 3.3.2, corre-
sponding to the cyclic field extension C(E(Γ)) ⊇ C(X(Γ)), given explicitly
by β(x, y) = y2, x2, y, x. In particular, φ ∈ C(X(Γ)) lies in this fixed field,
and we need to solve

ξ(x, y) = φ(β(x, y))

given ξ and β explicitly for φ. Accordingly, we can write ξ(x, y) as a rational
function in the monomial β(x, y), using the relation y2 = f ′(x) if necessary,
replacing every instance of β(x, y) in ξ(x, y) with a new variable u. Then
φ(u) ∈ K ′(u) defines the map φ : X(Γ) ≃ P1 → P1.

Remark 3.4.1. We have seen that Euclidean Belyi maps can be understood
as descending an isogeny along a fixed quotient map; this is encoded in our
master diagram. Our effort has been to take as input a permutation triple
and then to compute the master diagram (associated isogeny and then
its descent). One can also cut this in the middle, working directly with
the master diagram by specifying a pair (K,H) where K ≤ Z[j]/NZ[j] ≃
(Z/NZ)2 is a subgroup containing an element of order N and H ≤ ⟨j⟩ is a
subgroup with H ̸= {±1} and HK = K. This data defines an isogeny to
E(∆) dual to the one provided by the torsion subgroup, and the descent is
along the subgroup of automorphisms, with H stabilizing this kernel.

3.5. Proof of main result. To finish, we put all of the pieces together.

Algorithm 3.5.1. This algorithm takes as input a Euclidean, transitive
permutation triple σ = (σa, σb, σc) ∈ S3

d corresponding to a homomorphism
π : ∆ → Sd with π(δs) = σs for s = a, b, c; it gives as output a model for
the corresponding Belyi map from X(Γ) to P1.

1. Apply the preprocessing step by calling Algorithm 2.5.6, with vertex
of maximal rotation vO.

2. Depending on the case of (a, b, c) and vO, look up β using Lemma
3.3.2 and the map α : E(∆) → P1 using Lemma 3.3.6 (referring back
to 3.1.3).
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3. Call Algorithm 2.4.4 to compute a basis η1, η2 for T (Γ) and N =
[T (∆) : T (Γ)].

4. Call Algorithm 3.2.2 to compute ψ : E(Γ) → E(∆).
5. Compute the composition ξ := α ◦ ψ.
6. From ξ = φ ◦ β, compute φ : X(Γ) → P1 by substitution. Return φ.

Theorem 3.5.2. Algorithm 3.5.1 terminates with correct output.

Proof. Correctness follows from our master diagram (1.3.1) and the cor-
rectness of each step, provided by the proof of correctness of the algorithm
used except for Step 6, which is justified in section 3.4. □

Remark 3.5.3. In the above, we assumed throughout a Euclidean triangle
group ∆ with three generators δa, δb, and δc with orders a, b, and c respec-
tively and satisfying δcδbδa = 1. These three generators corresponded to
rotations around the three vertices of a designated triangle in the corre-
sponding tessellation of the plane. We took as input to our algorithm the
set of all permutation triples σ = (σa, σb, σc) such that π : ∆ → Sn taking
δi to σi described a group homomorphism with transitive image. In some
contexts, we might prefer to work with the relation δaδbδc = 1. The change
amounts to a relabeling of vertices so that va, vb, and vc follow each other
counterclockwise around a chosen triangle.

Accordingly, given a permutation triple σ′ with σ′aσ
′
bσ

′
c = 1, we just take

inverses σs := (σ′s)
−1 to obtain σcσbσa = 1, and we call our algorithm above

with this inverted input.

4. Examples and data

We conclude with some examples computed using an implementation of
Algorithm 3.5.1.

4.1. Description of implementation. We implemented Algorithm 3.5.1
using the Magma computer algebra system [4]. In particular, we used the
existing implementation of Vélu’s formula in calculating our isogeny ψ and
the implementation of division polynomials. The construction of these iso-
genies is the most time intensive step in our calculation, as in general it
involves working in a number field of possibly large degree. Even with this
step, most of our example computations take no more than a few seconds
to finish. Some examples in prime degree took as long as 30 minutes; an
example in degree 100 took only 7 seconds.

Remark 4.1.1. Returning to Remark 2.2.11, we see that Magma provides
two periods for E that span its associated lattice, so we are careful to
generate our basis vectors for T (Γ) and to deal with lattice coordinate
points relative to the lattice Magma uses in its computations. As we only
need worry about this for our two canonical elliptic curves, we can see which
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lattice Magma uses, compare it to our own lattices described above, and
convert coordinates between the two by a simple change of basis operation.

4.2. Belyi maps obtained from triples. We give here some examples
to illustrate Algorithm 3.5.1. We list the final Belyi maps from φ : X(Γ) →
P1 and provide factorizations of the numerator, denominator, and their
difference in the case of genus zero maps, confirming the correspondence
between ramification at 0, ∞, and 1 respectively and the cycle structure of
σ. (We provide monic factorizations, ignoring leading coefficients.)

Example 4.2.1. Given the permutation triple σ := ((2 4 3), (1 3 4), (1 2 3)),
we will illustrate the steps in our algorithm and determine the correspond-
ing Belyi map. First, we call Algorithm 2.5.6 and conjugate σ by the
transposition (1 4) to obtain ((2 1 3), (4 3 1), (4 2 3)) where vc is then the
vertex of maximal rotation. Since this conjugate triple gives an isomorphic
Belyi map, we will redefine σ := ((2 1 3), (4 3 1), (4 2 3)). Since ω1 := δbδ

2
c

and ω2 := δ2b δc span the translations in T (∆) by Corollary 2.2.7, we take
σ1 = π(ω1) = (1 3)(2 4) and σ2 = π(ω2) = (1 4)(2 3) and call Algorithm
2.4.4. We find our basis vectors for T (Γ) are η1 = ω2

1 and η2 = ω2
2 so

n1 = 2, n2 = 0,m1 = 0, and m2 = 2.
We obtain the rotation index

r =
cn1m2

d
=

3(2)(2)

4
= 3

and take N = [T (∆) : T (Γ)] = n1m2 = 4, so the points in T (∆)\C in the
kernel of the multiplication by N map from T (∆)\C to T (Γ)\C are

A = {(0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2)}

with coordinates relative to ω1 and ω2, while the points whose images on
E(∆) have distinct x-coordinates are K := {(1/2, 0), (0, 1/2), (1/2, 1/2)} as
in Step 3 of Algorithm 3.2.5 . Letting k1, k2, and k3 be the x-coordinates of
the images of these three points on E(∆), we obtain the kernel polynomial

p(x) = (x− k1)(x− k2)(x− k3) = x3 + 1

which we input to Vélu’s formula and take the dual to obtain the isogeny
ψ : E(Γ) → E(∆) given by

ψ(x, y) =

(
(1/16)x4 − 32x

x3 + 64
,
(1/64)x6y + 20x3y − 512y

x6 + 128x3 + 4096

)
and see that E(Γ) is given by the equation y2 = x3 + 64.
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Since we are in the ∆(3, 3, 3) case, our map α : E(∆) → P1
C is given by

α(x, y) = (y + 1)/2, so the composition ξ = α ◦ ψ : E(Γ) → P1
C is given by

ξ(x, y) = α

(
(1/16)x4 − 32x

x3 + 64
,
(1/64)x6y + 20x3y − 512y

x6 + 128x3 + 4096

)
=

(1/128)x6y + (1/2)x6 + 10x3y + 64x3 − 256y + 2048

x6 + 128x3 + 4096

Finally, since r = 6, the map β : E(Γ) → X(Γ) has β(x, y) = y. So,
we wish to rewrite ξ in terms of only y. Since points on E(Γ) satisfy
x3 = y2 − 64, we may replace each instance of x3 in ξ with y2 − 64; we
obtain a rational function in y, which gives our final Belyi map

φ(x) =
(1/128)x4 + (1/2)x3 + 9x2 − 864

x3

Let N(x) and D(x) be the numerator and denominator of φ respectively.
Note that the preimages under φ of 0,∞, and 1 respectively are the roots
of N,D, and N −D. To confirm the ramification of φ, we note that up to
a constant multiple we have the factorizations

N(x) = (x− 8)(x+ 24)3

D(x) = x3

N(x)−D(x) = (x+ 8)(x− 24)3

where the repeated factors confirm the ramification, and we note the direct
correspondence between the powers of the factors and the cycle structure
of σ.

Example 4.2.2. Given σ := ((1 4)(2 5)(3 6), (1 3 5), (1 4 5 2 3 6)), we deter-
mine that X(Γ) has genus 0 and the corresponding Belyi map φ : X(Γ) →
P1
C is given by

φ(x) =
x6 + 162x5 + 7047x4 + 43740x3 + 413343x2 + 1062882x+ 4782969

x6 − 54x5 + 1215x4 − 14580x3 + 98415x2 − 354294x+ 531441

with numerator, denominator, and difference given by

N(x) = (x3 + 81x2 + 243x+ 2187)2

D(x) = (x− 9)6

N(x)−D(x) = (x2 + 27)(x+ 9)3
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Example 4.2.3. Now given σ := ((1 9)(2 8)(3 7)(4 6), (1 6)(2 9 10 3)(4 5 8 7),
(1 2 5 4)(3 8)(6 7 10 9)) we obtain

φ(x) =

1/625x10 + 1/125(8i+ 44)x8 + 1/25(264i+ 702)x6

+ 1/5(2872i+ 4796)x4 + (10296i+ 11753)x2

x8 + 1/5(152i− 164)x6 + 1/25(−18696i+ 1422)x4

+ 1/125(547048i+ 434764)x2 + 1/625(−1476984i− 9653287)

with numerator x2(x2+10i+55)4, denominator (x2+1/5(38i− 41))4, and
difference

(x−4i+3)(x+4i−3)(x2+(−2i+14)x−24i−7)2(x2+(2i−14)x−24i−7)2

where i2 = −1.

Remark 4.2.4. Unfortunately, our algorithms do not automatically descend
the Belyi map to a minimal field of definition (if such a field exists). For
example, for the permutation triple σ := ((1 4), (1 2 6)(3 4 5), (1 6 2 4 3 5))
we find the map

φ(x) = 36(ζ6 − 1)
(x− 2)(x− 2ζ6 − 1)2(x2 + 2x− 11)

(x+ 2ζ6 − 3)6

defined over Q(ζ6); however, it can be shown that the Belyi map descends
to Q, given more simply by φ(x) = 9(3x6− 3x4+x2). We refer to Sijsling–
Voight [12, §6] and Musty–Schiavone–Sijsling–Voight [11, §4] for further
discussion.
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