ERRATA AND ADDENDA: COMPUTING EUCLIDEAN BELYI MAPS

MATTHEW RADOSEVICH AND JOHN VOIGHT

This note gives errata and addenda for the article *Computing Euclidean Belyi* maps [1].

1. Errata

(1) Remark 4.2.4: the map should be

$$\varphi(x) = 36(\zeta_6 - 1) \frac{(x - 2)(x - 2\zeta_6 - 1)^2(x^2 + 2x - 11)}{(x + 2\zeta_6 - 3)^6}$$

(so $z = \zeta = \zeta_6$).

2. Addenda

The addenda is summarized in the following additional remark.

Remark 3.2.10. If in Algorithm 2.4.4 we compute instead the Smith normal form (SNF) of A as $\begin{pmatrix} n & 0 \\ 0 & m \end{pmatrix} = PAQ$ (with $n \mid m$), the result gives a basis for Λ_{Γ} relative to a basis for Λ_{Δ} such that $\Lambda_{\Gamma} = \langle n\omega'_1, m\omega'_2 \rangle$ with $\Lambda_{\Delta} = \langle \omega'_1, \omega'_2 \rangle$. Accordingly, we adjust Step 4 in Algorithm 3.2.5 by replacing the occurrences of ω_1 and ω_2 respectively with $\omega'_1 = a\omega_1 + b\omega_2$ and $\omega'_2 = c\omega_1 + d\omega_2$ where $Q^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$.

Incorporating Remark 3.2.9, we may further simplify by factoring n from each entry in our basis matrix (corresponding to factoring the multiplication by n map from $\hat{\psi}$). This reduces us to the case n = 1 in Algorithm 3.2.5.

In more detail, computing the map $\psi: E(\Gamma) \to E(\Delta)$ is the most complicated and costly step in Algorithm 3.5.1. To do so, we must first determine a basis for the lattice Λ_{Γ} relative to a basis for the lattice Λ_{Δ} . In Corollary 2.2.7, we make a "standard" choice for the basis vectors ω_1 and ω_2 for Λ_{Δ} that coincide with the periods **Magma** assigns to our canonical curves E_{\bigcirc} and E_{\square} . Algorithm 2.4.4 then produces a two column matrix A whose rows, taken as coordinates relative to the basis vectors ω_1 and ω_2 , give a set of vectors that span Λ_{Γ} .

Reducing A to Hermite normal form and taking its first two rows gives a basis matrix

$$B_H := \begin{pmatrix} n_1 & n_2 \\ 0 & m_2 \end{pmatrix}$$

such that $\Lambda_{\Gamma} = \langle n_1 \omega_1 + n_2 \omega_2, m_2 \omega_2 \rangle$.

If, instead, we reduce A to *Smith* normal form and take its first two rows, we obtain a matrix of the form

$$B_S := \begin{pmatrix} n & 0\\ 0 & m \end{pmatrix}$$

where *n* divides *m*. Like with B_H , the matrix B_S describes a basis for Λ_{Γ} relative to a basis for Λ_{Δ} such that $\Lambda_{\Gamma} = \langle n\omega'_1, m\omega'_2 \rangle$ with $\Lambda_{\Delta} = \langle \omega'_1, \omega'_2 \rangle$. We note that the basis vectors ω'_1 and ω'_2 need not be the same as ω_1 and ω_2 .

Because Magma's implementation of the Weierstrass \wp -function takes inputs relative to ω_1 and ω_2 , it is then necessary to relate ω'_1 and ω'_2 back to the "standard" basis vectors. Let $P, Q \in \operatorname{GL}_2(\mathbb{Z})$ be such that $B_S = PB_HQ$. Then the matrices P and Q correspond, respectively, to elementary row and column operations performed on B_H that transform it to B_S . As each elementary column operation corresponds to an invertible change to the choice of basis for Λ_{Δ} , we can recover the relationship between each ω'_i and ω_i from the matrix Q indicated above. Specifically, if

$$Q^{-1} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

then $\omega'_1 = a\omega_1 + b\omega_2$ and $\omega'_2 = c\omega_1 + d\omega_2$.

Working with B_S rather than B_H simplifies our computation of the isogeny $\psi: E(\Gamma) \to E(\Delta)$. Algorithm 3.2.5 describes a procedure for computing ψ (by first computing its dual, $\hat{\psi}$) that assumes the Hermite basis matrix B_H . If we instead work with the Smith matrix B_S , we may assume that $n_2 = 0$ and let $n_1 = n$ and $m_2 = m$. Incorporating remark 3.2.9 and recalling that n divides m, we may further simplify by factoring n from each entry in our basis matrix (corresponding to factoring the multiplication by n map from $\hat{\psi}$), leaving us with the matrix

$$\frac{1}{n}B_S = \begin{pmatrix} 1 & 0\\ 0 & m/n \end{pmatrix}$$

where $m/n \in \mathbb{Z}$.

The combined effect of Remark 3.2.9 and this Smith simplification allows us to always assume in Algorithm 3.2.5 a basis matrix B of particularly simple form:

$$B := \begin{pmatrix} 1 & 0 \\ 0 & d \end{pmatrix}$$

This basis matrix gives coordinates relative to ω'_1 and ω'_2 rather than ω_1 and ω_2 . Accordingly, we adjust the implementation of step 4 in Algorithm 3.2.5 by replacing the occurrences of ω_1 and ω_2 respectively with $\omega'_1 = a\omega_1 + b\omega_2$ and $\omega'_2 = c\omega_1 + d\omega_2$ as obtained above.

References

 Matt Radosevich and John Voight, Computing Euclidean Belyi maps, accepted to J. Théorie Nombres Bordeaux.

Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA

Email address: matt.j.radosevich@gmail.com

Department of Mathematics, Dartmouth College, 6188 Kemeny Hall, Hanover, NH 03755, USA

Email address: jvoight@gmail.com