
ERRATA:

COMPUTING FUNDAMENTAL DOMAINS

FOR FUCHSIAN GROUPS

JOHN VOIGHT

This note gives errata for the article Computing fundamental domains for Fuch-
sian groups [4]. The author would like to thank Eran Assaf, Gebhard Boeckle,
Aurel Page, Jeroen Sijsling, and Charles Stibitz for finding these mistakes.

(1) Proposition 1.1 is incorrect as stated. The corrected statement is as follows.
Let D ⊂ H be a hyperbolic polygon. For a vertex v of D, we denote

by ϑD(v) the interior angle of D at v. Let P be a side pairing for D. We
say that P satisfies the cycle condition if for every cycle C of vertices in D
under P there exists e ∈ Z>0 such that∑

v∈C
ϑD(v) =

2π

e
.

Proposition 1.1. The Dirichlet domain D(p) has a side pairing P , and
the set G(P ) generates Γ. Conversely, let D ⊂ H be a hyperbolic polygon
and let P be a side pairing for D which satisfies the cycle condition. Then
D is a fundamental domain for the group generated by G(P ).

Proof. One must verify Beardon’s condition (A6) [1, p. 246] or (A6)’ [1, p.
249], which formalizes the equivalent angle condition (g) given by Maskit
[3, p. 223]. �

This mistake does not affect any other result in the paper; it does however
affect the proof of correctness of Algorithm 4.7. The following should be
added after the second paragraph of the proof.

Proof of correctness, Algorithm 4.7. We must argue that the output D =
ext(U) of Algorithm 4.7 satisfies the cycle condition. Let C be a cycle of
vertices in D. Consider small neighborhoods of each vertex in C in D. If
these neighborhoods are disjoint under the action of Γ, then they glue to
give a neighborhood in the quotient Γ\H, hence the cycle condition holds for
C. Making these neighborhoods smaller, we may assume that each v ∈ C is
an elliptic fixed point. But then by Proposition 5.4 (which applies equally
well to exterior domains) and the accompanying discussion, we may assume
that the elliptic cycle has length 1, and consequently the cycle condition is
trivially satisfied. �

An alternative method would be to ensure that the cycle condition holds,
and modify Algorithm 4.7 as follows.
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5. If all vertices of E = ext(U) are paired, proceed to Step 6. Otherwise,
for each g ∈ G with a vertex v ∈ I(g) which is not paired, compute
g := redG(g; v), where if v is a vertex at infinity we replace v by
a nearby point in I(g−1) \ E ⊂ D. Add the reductions g for each
nonpaired vertex v to G and return to Step 2.

6. Run Algorithm 5.2, and let S be the set of minimal cycles g 6= 1 with a
fixed point in D. If S ⊆ U , return U ; otherwise, set U := U ∪S ∪S−1
and return to Step 2.

Following as in the proof above, in the third paragraph we have checked
explicitly that the elliptic fixed point v ∈ C has a neighborhood of the right
size, with edges contained in I(g) and I(g−1) where g is the minimal cycle
fixing v.

Example. Consider the elements T =

(
1 1
0 1

)
and W =

(
−1 0
1 −1

)
of

SL2(Z). We have W = STS where S =

(
0 −1
1 0

)
and S, T generate SL2(Z).

Since (ST )3 = 1 we conclude that WTW = S so the group generated by
W and T is SL2(Z). The polygon D with vertices at i∞, ρ, 0,−ρ2 where
ρ = (−1+

√
−3)/2 is the union of the usual fundamental domain for SL2(Z)

along with its translate by S. At the same time, P has a side pairing given
by W and T .

The side pairing P does not satisfy the cycle condition, as ρ and −ρ2 are
identified but the sum of the interior angles is 2·2·(2π/6) = 4π/3. However,
this discrepancy is caught in Step 3 of Algorithm 4.7: taking p = 2i for
example, we have G = G′ = {W,T,W−1, T−1} and red{T,W−1,T−1}(W ) =

TW = (TS)2 since Re(Wp) = −4/5 < −1/2. From this, the algorithm
quickly recovers the side pairing elements T and S.

Example. On the other hand, if we start with the point p = i/2 and the
generators S, T , then running through Algorithm 4.7 one makes it to Step
5 with exterior domain the region given by |Re(z)| ≤ 1/2 and |z| ≤ 1 (not
≥ 1!); the vertices are paired, but this region does not have finite hyperbolic
area.

Indeed, the internal angles at the vertices ρ = (−1/2+
√
−3)/2 and ρ+1

are 2π/3 and hence the cycle condition is not satisfied.
However, if in following the amended proof above, one changes the point

p outside the exceptional set (described in Proposition 5.4), then one re-
covers the fundamental domain. For example, consider p = ε + i/2 where
ε > 0. Then the fixed point (1 +

√
−3)/2 is now closer to p, the vertices are

not paired, and running through Algorithm 4.7, we find a new side-pairing
element. Letting ε→ 0, one recovers the fundamental domain above. (The
set of side-pairing elements is discrete, so if you perturb the center p contin-
uously by a small amount, these elements do not change; so to recover the
Dirichlet domain you can just take the exterior domain of the generators
computed using the perturbed center p.)

This case is also caught by the added Step 6 in Algorithm 4.7: we com-
pute that ST−1 fixes ρ but is not in the set U = {S, T}; adding ST−1 and
TS−1 to U and continuing then yields the correct domain.
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(2) Remark 1.5: the result as stated is for g−1, not g: the correct perpendicular

bisector is the half-circle of square radius
a2 + b2 + c2 + d2 − 2

(c2 + d2 − 1)2
centered at

ac+ bd

c2 + d2 − 1
∈ R.

(3) Section 2, “the inital and terminal points are normalized so that the path
along L follows a counterclockwise orientation”: this is to be interpreted as
clockwise around the origin.

(4) Step 2 of Algorithm 2.5 needs to be changed to:
2. For each g ∈ G, compute

θg :=

{
arg(I(g) ∩ L), if I(g) ∩ L 6= ∅;
arg(in(I(g))), if I(g) ∩ L = ∅.

Let

θ′ := min{θg : g ∈ G and θg ≥ θ}
and H := {g ∈ G : θg = θ′}.

a. Suppose (every) g ∈ H has I(g)∩L 6= ∅. If L = [0, 1], let g ∈ H
minimize I(g) ∩ L. Otherwise, let g ∈ H minimize ∠(L, I(g)).

b. Suppose (every) g ∈ H has I(g) ∩ L = ∅. Let g ∈ H maximize
the radius of I(g).

Let U := U ∪ {g} and let L := I(g) ∩D and let θ := θ′.
This deals with the case when more than one g exists, in the first execution
of step 2 (all intersections with L have θ = 0), and to ensure that all
candidate vertices are traversed in counterclockwise order. In the example
in Figure 2.4, after the first iteration where I(g1) is found, to get I(g2)
we need the next vertex to be v2 (improper), not to take the first proper
intersection.

(5) In Step 3 of Algorithm 4.7, it should read “g = redU (g)”, and then it suffices
to loop over g ∈ G such that g−1 6∈ U . Indeed, Steps 3 and 4 use reduction
to eliminate extraneous generators; the only essential fact used in the proof
of correctness is that the group generated by the set G does not change.
(So for that matter, one may in Step 4 always set G := G′ before returning
to Step 3 to avoid duplicate computation.)

(6) In the proof of correctness for Algorithm 4.7, it should say “Proposition
1.1”, not “Theorem 1.1”.

(7) The definition of accidental cycle on page 484 is delayed and logically should
occur before Proposition 5.4.

(8) Proof of Lemma 5.6: Each occurrence of H0 should be H2. The Mayer-
Vietoris sequence [2, Corollary II.7.7] is

0 = H2(A,Z)→ H2(Γ1,Z)⊕H2(Γ2,Z)→ H2(Γ,Z)→ H1(A,Z) = 0

with A the trivial group. We have H2(Γ,Z) ∼= Z and if Γi is nontrivial then
H2(Γi,Z) ∼= Z as well [2, §II.4], so at least one Γi is trivial, which is the
result.

(9) In Step 1 of Algorithm 5.7, replace G by H: “Let H ⊂ G(P ) be such that
g ∈ H implies either g = g−1 or g−1 6∈ H.”

(10) The term “finite coarea” is preferred to “cofinite area” and should be re-
placed everywhere.
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