ERRATA:

HEEGNER POINTS AND SYLVESTER'S CONJECTURE

SAMIT DASGUPTA AND JOHN VOIGHT

This note gives errata and addenda for the article *Heegner points and Sylvester's conjecture* [1]. The authors would like to thank Jeong Keunyoung.

ERRATA

(1) We did not define the action of multiplication by ω in section 3, which on $E:y^2=x^3+1$ we are taking to be

$$\omega(x,y) = (\omega x, y), \quad \text{for } (x,y)inE(K)$$

This is not to be confused with the action of ω on $E_n: x^3 + y^3 = nz^3$ in section 2.3.

(2) At the end of §3.4, we wrote that $E_{\text{tors}}(L) = \{O, (0, \pm 1)\}$, but this is false: in fact, already

$$E_{\text{tors}}(\mathbb{Q}) = \{O, (0, \pm 1), (-1, 0), (2, \pm 3)\} \simeq \mathbb{Z}/6\mathbb{Z}.$$

To fix this, we argue as follows. Let $S \in E[m](L)$ satisfy (7) with $m \in \mathbb{Z}_{\geq 1}$. Multiplying by 3 and noting 3(0,-1) = O gives $3S^{\sigma} = (3S)^{\sigma} = \omega(3S)$, so 3S twists to a point in $E_{2p}[m](K)$. The curve E_{2p} has additive reduction at 3, and so the component group $\#\Phi(\mathbb{F}_3) \leq 4$; thus the twist of 12S belongs to the identity component of the special fiber (isomorphic to \mathbb{F}_3), so 36S = O. Factoring the 4- and 9-division polynomials on E_{2p} gives in fact

$$S \in E_{\text{tors}}(K) = \langle (-\omega, 0), (2, 3) \rangle \simeq \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/6\mathbb{Z}.$$

But then $S^{\sigma} = S$, so from (7) we find $(1 - \omega)S = (0, -1)$, and this is a contradiction: we can check each of the 12 torsion points, or note that (0, -1) is not divisible by $1 - \omega$ in $E_{\text{tors}}(K)$ —the $(1 - \omega)$ -division points of (0, -1) in fact belong to the field $K(\sqrt[3]{2})$.

References

[1] Samit Dasgupta and John Voight, Heegner points and Sylvester's conjecture, Arithmetic Geometry, Clay Math. Proc., vol. 8, Amer. Math. Soc., Providence, 2009, 91–102.

 $Date \hbox{: July 10, 2017}.$

1