ADDENDA AND ERRATA:
ON NONDEGENERACY OF CURVES

WOUTER CASTRYCK AND JOHN VOIGHT

This note gives some addenda and errata for the article On nondegeneracy of
curves [6].

(1)

ERRATA

Beginning of Section 5: We write that every genus ¢ hyperelliptic curve
over a perfect field & is birationally equivalent (over k) to a curve of the
form

y* + q(x)y = p(x)
where p(x),q(z) € k[x] satisfy 2degq(z) < degp(zr) and degp(x) € {29 +
1,2g + 2}. This is false for (and only for) k = Fa.

Namely, this will fail for any hyperelliptic curve C' over k = Fy for which
the degree 2 morphism 7 : C — P! splits completely over k, meaning that
above each point 0,1, 00 € P1(k) there are two distinct k-rational points of
C. For any other perfect field, the statement is true. This is easily deduced
from a result of Enge [7, Theorem 7].

In particular, since we assume #k > 17 in this context anyway, this
erratum has no effect on any further statement.

Section 6 (Curve of genus 4, hyperboloidal case),“Then Q = P% x P% and
V can be projected”: Should be “Then Q = P} x PL”.

Proof of Lemma 10.5, “The dual loop PV walks through the normal vectors
of A7 In fact it walks through the direction vectors of the edges of A,
The same conclusion follows.

Proof of Theorem 12.1, “More generally, let k,¢ € Zx>o satisfy k < £, let
AWM be the trapezium

k l

and let A = AMED”: We overlooked that AM(1) need not be a lattice
polygon: it may take some of its vertices outside Z2. This does not cause
problems because this paragraph is only applied to the cases £k = ¢ and
k = ¢ — 1, corresponding to (9) and (10), respectively. For these values of
k and ¢ the polygon A1 does take its vertices in Z2.

In fact, using the combinatorial criterion from Lemma 10.2, one can
verify that A(M(=1 is a lattice polygon if and only if £ < (2g — 2)/3, where
g = k+/{+2. This confirms a well-known inequality on the Maroni invariants

Date: September 24, 2017.



WOUTER CASTRYCK AND JOHN VOIGHT

of a trigonal curve (where the inequality is proven using the Riemann-Roch
theorem).

ADDENDA

The bound #k < 17 in our main theorem: Concerning nondegenerate
curves of low genus over small finite fields, we have since proven [5] that
there are exactly two curves of genus at most 3 over a finite field that are
not nondegenerate, one over Fo and one over [F3.

Genus 4 hyperboloidal curves: In our summary in Section 7, we state that
every curve of genus at most 4 over an algebraically closed field k£ can
be modeled by a nondegenerate polynomial having one of the nine listed
figures as Newton polytope. In fact, all genus 4 hyperboloidal curves can be
described by a single polytope. Indeed, if f(x,y) has a Newton polytope of
type (h.1) or (h.2), then applying a change of variables to z3y3 f(z~1,y~1)
of the form (z,y) — (x +a,y +b) for a,b € k yields a square 3 X 3 Newton
polytope. So replacing the two polytopes of class (h) by the single polytope

3

3
(h) genus 4 hyperboloidal
results in a list that is both more condensed and pleasing.

Below the nine figures, we write “Moreover, these classes are disjoint.”
In this phrase, “class” refers to one of the (a), ..., (h), and not necessarily
to a single polytope: this might perhaps not be semantically clear. By
replacing (h.1) and (h.2) by the above polytope, this ambiguity is removed.
Lemma 5.1, Lemma 9.2: We give a criterion for a A-nondegenerate curve
of genus g > 2 to be hyperelliptic, namely, it is hyperelliptic if and only
if the interior lattice points of A are collinear. Adding a small technical
condition, the converse statement of Lemma 9.2 (characterizing trigonal
curves) holds as well.

Lemma 9.2. Let f € k[z*!, y*!] be nondegenerate and suppose that the

interior lattice points of A(f) are not collinear. Let AM) be the convex hull

of these interior lattice points.

(a) If AWM has no interior lattice points, then V(f) is either trigonal or
isomorphic to a smooth plane quintic.

(b) If V(f) is trigonal or isomorphic to a smooth plane quintic, and A™M)
has at least 4 lattice points on the boundary, then A has no interior
lattice points.

Proof. Part (a) is proved in the original paper. For (b), using the canonical
divisor K from Proposition 1.7, one sees that the canonical embedding of
V(f) in Py is contained in X (AM),. According to a theorem of Koelman
[11], the condition of having at least 4 lattice points on the boundary en-
sures that X (AM) is generated by quadrics. Now since V(f) is trigonal or
isomorphic to a smooth plane quintic, by Petri’s theorem the intersection
of all quadrics containing V' (f) is a surface of sectional genus 0. Hence this
surface must be X (AM); and AM) must have genus 0. O
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The condition that AM) should have at least 4 lattice points on the
boundary is necessary. For example, let k be algebraically closed and let
A = conv{(2,0),(0,2),(—2,—2)}. Then A is a lattice polytope of genus
4, hence all A-nondegenerate curves are trigonal. However, A(Y) contains
(0,0) in its interior. Note that X (A1), C P} is the cubic zyz = w?.

The above lemma has recently been extended to arbitrary gonalities
[4, 9].

Dominance in genus 4: Under the assumption k = k, we proved that every
curve of genus 4 is nondegenerate. If k is any perfect field, one can still
consider the map

|_| M —>M4,

9(A)=4

but now it will no longer be surjective on k-rational points. Indeed, this
follows from our analysis of the conic and hyperboloidal cases. One can
refine this analysis as follows and show that every curve of genus 4 over
k is potentially nondegenerate, i.e., becomes nondegenerate over a finite
extension of k: in fact, a quadratic extension of k will do, as long as #k is
large enough.

In the conical case, we have that the k-rational quadric @ has a singular
point, and so after a linear change of variable is realized as the cone over
a plane conic C. The conic C may have C'(k) = (), but after a quadratic
extension K of k, we have C xj, K = P}, and then the rest of the argument
follows, still assuming #k > 23. (In a manner similar to the one we used
in Addenda (1) above [5], one could determine the set of all conical genus
4 curves that are not nondegenerate.) This argument works even when
chark = 2.

In the hyperboloidal case (the general case), the quadric @ is smooth.

Standard results in the theory of quadratic forms over fields k with char k #
2 imply that @ splits, so that Q = P} x P, if and only if Q(k) # 0 and the
discriminant of @ is a square in k: if Q(k) # () then Q splits a hyperbolic
plane; by scaling, the orthogonal complement is of the form z2 — dy?, so
if d € kX2 then Q splits, and conversely. It follows that any quadric over
k splits over an at most quadratic extension. To proceed, we then project
V to a plane quintic, which requires #k to be sufficiently large: one could
make this explicit, using the Bertini theorem over finite fields due to Poonen
[13] and analyze explicitly the finitely many exceptions. Assuming that V'
has been so projected (extending k further, if necessary), the rest of the
argument holds.
Curves over large fields that are not nondegenerate: Our dimension esti-
mates for ./\/lgd imply that a general curve of genus g > 5 is not nonde-
generate. However, how does one prove that a given curve V over k of
genus g > 5 is not nondegenerate? This question was asked to us by David
Harvey. Here are a couple of possible approaches.

First, there is gonality: nondegenerate curves have low gonality. (In fact,
this gives an easier a priori reason why generic curves of sufficiently large
genus cannot be nondegenerate than the one we mentioned in Remark 2.3,
unirationality of ./\/l‘;d.) Indeed, the gonality of a A-nondegenerate curve is
bounded above by the lattice width lw(A) (typically this bound is sharp;
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this is the content of the results mentioned above [4, 9]). An old estimate
by Téth and Makai Jr. [8] shows that

lw(A)? < g\/ol(A).

Using Pick’s theorem Vol(A) = g+7/2—1 and Scott’s bound r < 2g+7 (for
g > 1), it follows that the gonality of nondegenerate curves is O(y/g). On
the other hand, the generic gonality of a curve of genus g is [¢g/2] + 1. So,
from a sufficiently large lower bound on the gonality of V', this argument
can be used to show that V' cannot be nondegenerate.

Ezxample. The maximal lattice width of a lattice polygon of genus 7 is 4
(can be verified using a case-by-case analysis [4]). So pentagonal genus 7
curves cannot be nondegenerate.
To give an explicit example, the modular curve X;(19) is of genus 7. We
take a defining equation from Sutherland’s tables [15].
> QQ := Ratiomnals(); R<x,y> := PolynomialRing(QQ,2) ;
> X19 = y°5 - (x72 + 2)xy~4 - (2%x"3 + 2*x72 + 2xx - 1)xy~3
+ (x75 + 3*x74 + T*x"3 + 6%x72 + 2%xx)*y~2
- (x75 + 2%x74 + 4*%x"3 + 3*x"2)*y + x"3 + x72;
> C := Curve(AffineSpace(QQ,2),X19);
Let’s prove that it has gonality 5.
> m := CanonicalEmbedding(C) ;

> I := Ideal(Image(m));
> BettiTable(GradedModule(I));
[
[1, 0, O, O, O, O 1,
[ o, 10, 16, 0, 0, O ],
[0, 0, 0, 16, 10, O ],
[0, 0, 0,0,0,1]1]
]

If X1(19) would have gonality 4 (or less), it would have Clifford index 2
(or less) which according to Green’s canonical conjecture (proven for curves
of Clifford index at most 2 by Schreyer [14]) would mean that the number
of leading zeroes on the third row would be at most 2. This contradiction
shows that X7(19) is not nondegenerate.

Proving lower bounds on the gonality is typically very hard, though. A
more practical approach uses the fact that nondegenerate curves have low
rank quadrics in their canonical ideal. Assume that V' is not hyperelliptic,
trigonal, or birational to a smooth plane quintic (cases in which V typically
is nondegenerate). Then by Petri’s theorem the canonical ideal of V is
generated by n = (¢—2)(g—3)/2 quadrics in ]P)g*l, say Q1, - ..,Qn. To each
Q; one can associate a matrix M;. The (possibly reducible) hypersurface
in IP’271 defined by

det(a:lMl + IQMQ —+ -+ InMn) =0
is called the discriminant hypersurface ©(V) of V. The discriminant hy-
persurface is well-defined up to automorphisms of ]P’Z_l and describes the

singular quadrics in the canonical ideal. The singular points of ©(V') cor-
respond to the corank > 2 quadrics. Typically, ©(V) is smooth.
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However, in the nondegenerate case, the discriminant hypersurface D (V)
is never smooth. Indeed, the canonical ideal contains the defining quadrics
of X(AM)g (cf. Khovanskii [10, Proposition 1.7]), which are binomials,
hence of rank at most 4. This proves the claim (except for g = 5, but here
a case-by-case analysis shows that there is always a rank 3 binomial, i.e. one
of the form 2% —yz). So if one can prove that the discriminant hypersurface
is smooth, this shows that V' cannot be nondegenerate.

Ezxample. We begin with an intersection of 3 quadrics in projective 4-space.
QQ := Ratiomnals(); S<X,Y,Z,U,W> := PolynomialRing(QQ,5);
> quadrics := [ X*Z - 2xX«W + Y*U + U"2,

> -X72 + X*Y + Y72 - UxW + 2*xW"2,

> XY = Y2 + Z72 - U"2 + UxW 1;
>
>

\2

C := Scheme(ProjectiveSpace(QQ,4),quadrics);
IsIrreducible(C); Dimension(C);
true
1
> SingularPoints(C); HasSingularPointsOverExtension(C);
{@ @}
false
Since this intersection is a smooth irreducible curve, it must be a canonical
genus 5 curve having gonality 4. Now we construct the discriminant curve.
> T<x1,x2,x3> := PolynomialRing(QQ,3);
> M1 := Matrix(T,5,5,[ 0, 0, 1, 0,-2,

0, 0, 0, 1, 0,
1, 0, 0, 0, 0,
0,1, 0, 2, 0,
-2, 0, 0, 0, 01):

After similarly defining M2 and M3, we can define the discriminant curve:
> disc := Determinant (x1*M1 + x2*M2 + x3*M3);
> SingularPoints(DC); HasSingularPointsOverExtension(DC) ;
{@ @}
false
Since the discriminant curve is non-singular, our curve cannot be nonde-
generate.

Inspired by recent work by Brodsky, Joswig, Morrison, and Sturmfels [2],
we note that for g > 11, if A is a lattice polygon with ¢ interior lattice
points, then A attains the upper bound dim Ma = 2g + 1 if and only if it
corresponds to trigonal curves (which by addendum (3) holds iff A has
no interior lattice points). By Theorem 12.1 and the discussion at the end
of [6, §11] it suffices to prove this for maximal polygons. First, suppose
that ¢V > 0. If g > 14, then Scott’s bound yields g < 3¢(") 4+ 7 and
therefore g > 3. Since dim Ma < 2g + 3 — ¢ by Corollary 10.6, we
obtain dim Ma < 2g + 1. On the other hand, if 11 < g < 13, then one can
exhaustively compute the upper bound dim Ma < #(A NZ?) — ¢(A) — 3
from Corollary 8.4, for all maximal polygouns in this range (using a complete
enumeration of such polygons [3]), each time verifying that it is strictly
smaller than 2¢g 4+ 1. To conclude, suppose that ¢() =0 and g > 7: then
the curves under consideration are either hyperelliptic or trigonal by Lemma
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5.1 and Lemma 9.2; smooth plane quintics (¢ = 6) are excluded because
g > 7. In the hyperelliptic case, we have dim Ma < 2g — 1. So the remark
follows.

Using Koelman'’s classification of polygons for which ¢(!) = 0, a similar
analysis shows that the only maximal polygon attaining the upper bound
has interior polygon

. . ((g9—-3)/2,1)
or \
(9—2)/2 (g—1)/2

depending on the parity of g. (These are the polygons that we used to
prove sharpness of the upper bound dim Ma < 2g+1.)

For g < 10 we can again perform an exhaustive search to list all maximal
polygons A for which Ma > 2g+1. Apart from the above trigonal polygons
we find that

attain dimension 2g + 1, while in genus 7 we also have our exceptional
polygon reaching 2g + 2 = 14 (trinodal sextics).

Let A C A’ be two-dimensional lattice polygons such that A = A’ and
suppose that g = #(A(l) NZ?) > 2. We were led to the following questions
by Ralph Morrison.

(a) Is it true that Ma C Ma- inside M,?

(b) Is it true that every A-nondegenerate curve is also A’-nondegenerate?
These two questions are asking about the ways in which a curve arises as
a hypersurface in a toric surface (in partiular, taking care about the inter-
section with boundary components), but there is one subtlety. The second
question is a priori stronger than the first because of the way we defined
M, Mar, namely as the Zariski closures inside M of the respective non-
degeneracy loci. And indeed, the first question has an affirmative answer,
while the second question in general does not.

The easiest way to answer these questions is by introducing a slight
weakening of the nondegeneracy notion. Namely we call an irreducible
Laurent polynomial f € k[xil,yil] weakly nondegenerate with respect to
a given two-dimensional lattice polytope A if A(f) C A, if for each edge
7 C A we have A(f) € A\ 7, and if the geometric genus of the curve
defined by f equals #(A™M N Z?). Geometrically, a curve that is weakly
nondegenerate but not nondegenerate is allowed to have V(f) tangent to
the one-dimensional toric components of X (A); and for passage through
the nonsingular zero-dimensional toric components. This weaker notion of
nondegeneracy is alluded at in Section 11, in our discussion following the
proof of Theorem 11.1, and was recently studied in more detail [4, §4].
Using the notation and terminology from Section 2, weak nondegeneracy
corresponds to the non-vanishing of the (two-dimensional) face discriminant
Dp, rather than of each factor of E4. This again yields a space MXk -
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Proj Ra, now parameterizing all Laurent polynomials that are weakly A-
nondegenerate. As before this space maps to Mg, and using that Ma is
dense in MY* one sees that the image is contained in Ma. In other words
M not only contains all A-nondegenerate curves, but also all weakly A-
nondegenerate curves!

Returning then to our first question, it is easy to see that every A-
nondegenerate Laurent polynomial is automatically weakly A’-nondegenerate;
by the foregoing discussion, it follows that M C M.

As for the negative answer to the second question, a counterexample
in characteristic 0 is given by the trigonal genus 5 curve defined by f =
1+ 25 4+ y? + 23y?, with A = A(f) = conv{(0,0), (5,0),(2,3),(0,2)} and
A" = conv{(0,0), (5,0),(2,3),(0,3)}. Indeed, it is easy to check that f is
nondegenerate with respect to A, but V(f) is not A’-nondegenerate by [4,
Lemma 4.4].
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