AN ORTHOGONAL PERSPECTIVE ON GAUSS COMPOSITION

JOHN VOIGHT AND HAOCHEN WU

ABSTRACT. We revisit Gauss composition over a general base scheme, with a focus on
orthogonal groups. We show that the Clifford and norm functors provide a discriminant-
preserving equivalence of categories between binary quadratic modules and pseudoregular
modules over quadratic algebras. This perspective synthesizes the constructions of Kneser
and Wood, reconciling algebraic and geometric approaches and clarifying the role of orien-
tations and the natural emergence of narrow class groups. As an application, we restrict to
lattices and show that binary orthogonal eigenforms correspond to Hecke characters.
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1. INTRODUCTION

1.1. Motivation. Gauss composition is the term commonly employed for the bijection be-
tween equivalence classes of binary quadratic forms over Z and class groups of quadratic
orders. Many papers have been written providing generalizations of this all important re-
sult: we provide in section 7.3 an overview of recent work.

In this paper, we view Gauss composition within the framework of orthogonal groups, syn-
thesizing and extending previous work. We show that Gauss composition over an arbitrary
base can be understood through Clifford algebras with inverse given by the norm, recovering
both the classical approach of Kneser [Kne82] and the more geometric approach of Wood
[Wool1]. Organized by orthogonal groups, this perspective also naturally reconciles notions
of orientations and morphisms, thereby providing a general composition law (including for
narrow class groups) as well as applications to spaces of binary orthogonal modular forms.
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1.2. Setup. To state our results, we will first need some definitions and notation; for further
details in the setup, see section 2.

Let X be a scheme. A quadratic Ox-module is a locally free 'x-module .# of finite rank
equipped with a quadratic map Q: .#Z — £ taking values in an invertible &x-module,
which we call the value line bundle. The quadratic map is equivalently specified by a global
section of (Sym, .Z)" ® £. A similarity between two quadratic &x-modules is the natural
commutative square (2.1.2).

The Clifford functor associates to a quadratic Ox-module Q: .#Z — £ the odd Clifford
bimodule CIf*(Q) over the even Clifford &x-algebra CIf°(Q). When .# is binary, CIf°(Q) is
a locally free quadratic Ox-algebra and the Clifford functor fibers over the category Quad
of locally free quadratic algebras (itself fibered over Sch, the category of schemes).

The Clifford bimodule inherits the following key structural property. Let ¥ — X be a
locally free morphism of degree n > 1 and let .# be an Oy-module which is locally free of
rank n as an Ox-module. Recall that the regular Oy-module is Oy itself (considered as an
Oy-module). Accordingly, we say that .# is pseudoregular if for all open U C X and all
a € Oy (U), the characteristic polynomial of v acting by multiplication on 0y (U) and .# (U)
are equal. When Y — X has degree n = 2, it is enough to check traces (Equation (3.2.3)),
and so .# is also called traceable by Wood [Wooll, p. 1758].

Let Q: A4 — £ be a binary quadratic &'x-module and let 0y be a quadratic &'x-algebra.
An Oy-orientation of () is an O'x-algebra isomorphism CIf°(Q) = Oy. A similarity preserving
orientations is called an oriented similarity. For further discussion on orientations, see below
and section 1.7.

Norms furnish an inverse to the Clifford functor, as follows. Let .# be a y-module which
is locally free of rank 2 as an 0x-module. We define a canonical norm map

Ny: I — N (F) (1.2.1)
where
N(I) = NI @ (Oy)Ox); (1.2.2)
it earns its name from the property that
Ny (yz) = Nm(7)Ns(z) (1.2.3)

for all z € #(U) and v € Oy (U) on open U C X, matching Kneser [Kne82, section 4]. The
norm map arises from a twist of the canonical exterior form, the unique quadratic map

E,ﬂiﬂ@ﬁy/ﬁx—)/\zcﬂ(gﬁy/ﬁx (124)

such that Ey(x ® v) = (yz Ax) ® v for all z € F(U) and v € (Oy/Ox)(U). After
appropriate identifications and (perhaps a bit surprisingly) a duality, we show this agrees
with the construction of Wood [Wooll, Theorem 2.1} in section 5.3.

1.3. Similarity classes. Our first theorem corresponds to the reductive group GSO.
Theorem 1.3.1. The Clifford and norm functors define a discriminant-preserving equiva-
lence of categories fibered over Quad between

Oy -oriented binary quadratic Ox-modules under oriented similarities
and

pseudoreqular Oy -modules under Oy -module isomorphisms.
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In particular, the Clifford and norm are quasi-inverse functors; and if .# < .# in the
equivalence then we have an isomorphism of group schemes GSO(.#Z) ~ Autg, (#) over X.
Note that free objects correspond to each other in the two categories above, indeed there are
universal framed objects.

We say a quadratic &x-module is primitive if the values of () generate .Z on every open.
The restriction to primitive Oy-oriented binary quadratic &'x-modules under oriented sim-
ilarities gives an equivalence to invertible (i.e., locally principal) Oy-modules under Oy-
module isomorphisms (Equation (6.2.2)): in particular, the isomorphism class of CIf'(Q) as
a Oy-module gives a well-defined element of Pic(Y"). We obtain following corollary.

Corollary 1.3.2. Let Oy be a quadratic Ox-algebra. Then the Clifford and norm functors
define mutually inverse bijections between the set of oriented similarity classes of primitive
Oy -oriented binary quadratic Ox-modules and the group PicY .

Equation (1.3.2) provides, for each Oy, a composition law on the set of oriented similarity
classes of primitive binary quadratic modules. Gauss composition becomes the special case
X = SpecZ: the choice of orientation is implicit in the ordered choice of basis in which the
binary quadratic form is expressed, and treats the real and imaginary cases uniformly (see
Equation (6.2.3)).

Although Wood [Wooll] did not make it explicit, other authors [O’Do16, Dal24, MB2025]
have adapted her equivalence of categories to provide a composition law as in Equation (1.3.2)
using a notion of orientation that differs from ours: see the next section and section 1.7 for
a comparison.

Forgetting orientations, we have the following theorem, corresponding to the reductive
group GO.

Corollary 1.3.3. The Clifford and norm functors define a discriminant-preserving equiva-
lence of categories between

binary quadratic Ox-modules under similarities
and
pseudoregqular modules over quadratic Ox-algebras under isomorphisms.

In particular, they furnish mutually inverse bijections between the set of similarity classes
of primitive binary quadratic Ox-modules and Pic(Y')/ Autg, (Oy).

Mondal-Venkata Balaji [MB2025, Theorem 3.1, Theorem 5.11] also prove a version of
Equation (1.3.3) (bijections without the equivalence of categories), and instead of construct-
ing an explicit norm functor they apply the theory of universal norms. Classically, Equa-
tion (1.3.3) describes GLs(Z)-equivalence, whose classes correspond to the quotient of the
class group by inversion. Unfortunately, having lost the orientation, we lose the group struc-
ture and therefore the composition law.

1.4. Similitude classes. In the study of quadratic modules, often the value line bundle is
fixed. For example, the more basic notion of a quadratic form corresponds to the case where
the value line bundle is trivial, . = 0.

Accordingly, we define a similitude between Q: # — £ and Q': A4 — £ to be a
similarity with .& = £; its similitude factor is A € Ox(X)*. In this way, the similitude class

of a binary quadratic module remembers the value line bundle (not just up to isomorphism);
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therefore the category of binary quadratic modules under similitudes is fibered over Pic, the
category of invertible modules over schemes under isomorphisms.

The rigidification provided by this additional data is accounted for in the Clifford functor,
as follows: a (Z-)rigidification of . is an isomorphism r: A (&) = £. Wood [Wooll,
section 5] calls this an .Z-type orientation, but we avoid that name to distinguish it from
the orientation defined above. Since A (F) = N*.F ® (Oy/Ox)", given an Oy-orientation,
a Z-rigidification of .# canonically determines an isomorphism A\*.¢ = ¥ @ (Oy/Ox) and
conversely. From a rigidification r of .#, we define the modified norm map by r o N 4.

Theorem 1.4.1. The Clifford and modified norm functors define a discriminant-preserving
equivalence of categories fibered over Quad Xsq, Pic between

Oy -oriented binary quadratic Ox-modules under oriented similitudes
and

rigidified pseudoreqular Oy -modules under Oy -module isomorphisms

Corollary 1.4.2. The Clifford and modified norm functors furnish mutually inverse bijec-
tions between the set of similitude classes of primitive binary quadratic Ox-modules with
value line bundle £ and the fiber of the map

PicY — Pic X

s H () (1.4.3)

over [£] € Pic X.

Similarly, as in Equation (1.3.3) we may forget orientations, corresponding to the further
quotient by Autg, (Oy) in Equation (1.4.1).

1.5. Isometry classes. Having fixed the line bundle, we may now restrict similarities ac-
cording to their similitude factor; this opens the door to generalizing a key aspect of Gauss
composition, where SLq(Z)-classes of indefinite binary quadratic forms are in bijection with
the narrow class group of a real quadratic field. This is nicely explained by restricting the
group of similitude factors, leading to the orthogonal groups SO and O.

An isometry is a similitude with similitude factor A = 1. If .Z ¢’ are rigidified Oy-
modules, we say that an Oy-module isomorphism ¢: ¢ — ¥’ is rigidified if the induced
isomorphism A (.#) — A (#’) commutes with the rigidifications.

Theorem 1.5.1. The Clifford and norm functors define a discriminant-preserving equiva-
lence of categories fibered over Quad X s, Pic between

Oy -oriented binary quadratic Ox-modules under oriented isometries
and

rigidified pseudoreqular Oy -modules under rigidified Oy -module isomorphisms.

These similarly yield corollaries in the vein of Gauss composition, as follows. Over a fixed
base, we may work a bit more generally. More generally, let H < &x(X)* be a subgroup;
an H-similitude is a similitude whose similitude factor lies in H. There is a canonical iso-
morphism PicY = HY(Y, 05). Let Oy := ker(Nm: Oy — 0%). Considering H < Ox(X)*
as a constant subsheaf, let ﬁx(/H) := Nm~!(H) and define Pic Y := H'(Y, ﬁx(/H)). The map

ﬁ)(/H) — 0 induces a natural map Pic™Y — PicY.
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Corollary 1.5.2. Let Oy be a quadratic Ox-algebra. Then for all H < Ox(X)*, the
Clifford and norm functors define bijections between the set of oriented H -similitude classes
of primitive Oy -oriented binary quadratic Ox-modules and the group Pic) Y .

For example, if K O F'is a quadratic extension of number fields with corresponding maps
on integral spectra Y = SpecZyg — X = SpecZp, then we may take H = Zg,, to be the

subgroup of units that are positive at all real places of F, and then Pic# )(Y) is the narrow
class group of Zg. In particular, if F' = Q and K is real quadratic, then we recover Gauss
composition for the narrow class group (see eq. (6.2.4)).

Of course we have similar notions where we forget &y-orientations, corresponding to the
group O.

1.6. Lattices. An important special case of the above theorems arises as follows. Take
X = Spec R with R a Dedekind domain in the above (for example, R = Z). Let F := Frac R
be the field of fractions of R. Let (): V — F be a nondegenerate binary quadratic form and
let K := CIf°(Q) be its even Clifford algebra, a quadratic F-algebra. Then Equation (1.3.1)
and Equation (1.3.2) specialize to the following statement.

Corollary 1.6.1. Clifford and norm define mutually inverse discriminant-preserving bijec-
tions between the set of similarity classes of R-lattices in V and the set of invertible ideal
classes for quadratic orders S C K. In particular, there is a bijection between the set of
similarity classes of R-lattices M C 'V with multiplicator ring S and the group Pic S.

This corollary bears mention first because the orientations have disappeared: this is be-
cause every R-lattice has a canonical S-orientation, obtained by restricting the tautological
orientation Clf’(Q) = K on V. The value line bundle has also disappeared, taken to be the
fractional ideal generated by the values of the quadratic form on the lattice (so by construc-
tion, every quadratic module is primitive). And if we restrict to isometries then we obtain a
bijection with the infinite group Pic!) S, the group of fractional ideals of S modulo principal
ideals of norm 1 (from K to F').

1.7. Contribution. The first contribution of this paper is to synthesize the work of Kneser
[Kne82] and Wood [Wooll]. Kneser approaches composition laws via the even Clifford
algebra and the norm without a categorical equivalence, whereas Wood provides a categorical
equivalence and geometric approach without a composition law and without Clifford and
the norm. Our theorems combine and recover their results. In particular, we show that
the functor defined by Wood is naturally isomorphic to the norm functor composed with
a duality by showing there is a unique such functor which restricts to the usual norm.
For further context on other related work, see section 7.3. As a consequence, by viewing
Gauss composition over an arbitrary base through the Clifford functor, we can see it as
just one instance of the beautiful exceptional isomorphisms of Lie groups in low rank n
[KMRT98, §15]: indeed this paper fills in a gap in the cases n = 1 and n = 3 considered by
Voight [Voil6, Voilla).

Our second contribution is to center the quartet of orthogonal groups GSO, GO, SO, O.
This identifies Wood’s linear binary quadratic forms under the action of GL; x GL, as binary
quadratic forms under similarity. Previous work does not address the role of the narrow class

group in Gauss composition; we see it here as arising from oriented isometries.
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Third, this paper reconciles notions of orientation. Our approach follows Kneser who
calls it C-type [Kne82, section 4]; this notion also appears in Knus—-Merkurjev—Rost—Tignol
[KMRT98, Definition (12.40)] in the case of odd dimension over a field and in Auel [Auell,
1.10] in the étale case. This solves the problems caused by the standard involution on the
quadratic algebra necessary to get a composition law, noticed by other authors. This notion
of orientation seems particularly well-suited to this task: the set of Oy-orientations on a
binary quadratic module form a torsor under Autg, (Oy), so for example if Y — X is étale
and X is connected, then Autg, (Oy) ~ Z/27. By contrast, the set of rigidifications (or
equivalently the set of determinant structures) is a torsor for G,,(X) = Ox(X)*, and this is
a bit of overengineering in resolving the ambiguity caused by the standard involution. We
view the role of the even Clifford algebra (and more generally the universal Clifford center)
as a refinement of the discriminant and therefore a natural invariant to isolate.

Next, we generalize Wood’s notion of traceable to pseudoregular; this notion (but without
the name) was also studied in the work of Voight [Voilla, following Gross—Lucianovic [GLO09]
and Bhargava [Bha04b]. We identify pseudoregularity as a general property of the Clifford
functor in arbitrary rank via the formation of the universal Clifford center: see section 4.1.

Finally, the elaboration of the theory in the case of lattices over a domain makes it espe-
cially well-suited for our intended application: to understand (and compute with) spaces of
orthogonal modular forms as algebraic modular forms as well as their relationship to Hecke
quasicharacters (and then Hilbert modular forms), see section 7.2.

1.8. Contents. In section 2, we give terminology and notation for quadratic modules, uni-
versal framed objects, Clifford algebras. In section 3, we explore pseudoregular modules
and show functorial properties of the Clfford map. In section 4, we discuss discriminants,
orientations via the universal Clifford center, and rigidifications (and compare to determi-
nant structures). In section 5, we define a norm functor and compare to Wood’s result. In
section 6, we prove the main theorem and derive its corollaries. Finally, in section 7, we
discuss the application to orthogonal modular forms, derive the connections to genera and
class sets, and review recent work generalizing Gauss composition.

1.9. Acknowledgements. The authors would like to thank Eran Assaf, Asher Auel, and
Melanie Matchett Wood for helpful conversations. Voight was supported by Simons Foun-
dation grants 550029 and SFI-MPS-Infrastructure-00008650. Wu was partially supported by
National Science Foundation DMS-2200845 and DMS-2401601.

2. BACKGROUND

We begin with a bit of background and setup. For further reading, see Voight [Voil6],
Bischel-Knus [BK94], and Auel [Auel5].

2.1. Quadratic modules and algebras. Let X be a scheme. A quadratic O'x-module is
a triple (A ,Z,Q) where .# is a locally free Ox-module of finite rank, £ is an invertible
Ox-module, and Q: .# — £ is a quadratic map: for all open sets U C X, we have

(i) Q(rz) = r*Q(x) for all r € Ox(U) and = € .#(U); and
(ii) The map T: A (U) x A (U) — Z(U) defined by T(x,y) = Q(z +y) — Q(z) — Q(y)
for x,y € A (U) is Ox(U)-bilinear.
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We call T: A x # — £ the associated bilinear form; we often just write Q): .# — £ for
the triple (Z, %, Q) and refer to it as a quadratic module.

By Sym” .# we mean the usual quotient of .Z®* and by Sym,, .# we mean the usual
submodule. By definition, a quadratic &'x-module is a global section of the sheaf

(Symy, )" ®@ £ = Sym*( M) ® £ . (2.1.1)

Concisely put, the isomorphism is defined by pullback under the natural projection Sym, .#Z —
Sym? A .

A similarity between two quadratic modules Q: .# — £ and Q': A" — £’ is a pair of
O x-module isomorphisms ¢: .# — .#' and \: £ — £’ such that Q' o p = Ao Q, i.e., the
diagram

ML 7
% P (2.1.2)
N

commutes. A similitude is a similarity with £ = ¢’, and an isometry is a similitude with
A=id, ie.,

% T, (2.1.3)

When @ = @', then the self-similitudes and self-isometries form groups (indeed group
schemes).

A quadratic Ox-algebra is an Ox-algebra (with 1) that is locally free of rank 2 as an Ox-
module. Equivalently, a quadratic &x-algebra is given by 0y where Y — X is a locally free
morphism of degree 2. Let Oy be a quadratic Ox-algebra. Then there is a unique standard
involution o on Oy . The discriminant of Oy is the quadratic map d: (A*0y)®? — Ox defined
by d((z Ay) @ (z Aw)) = (zo(y) — o(z)y)(zo(w) — o(z)w) for all x,y, z,w € Oy(U) with
U C X open [Voil6, Proposition 3.13].

Since the objects (e.g., quadratic modules or algebras) we work with are usually locally
free, we usually choose trivilizations so that we can work in coordinates. We will often
consider universal framed objects over the universal coordinate ring R which represents the
moduli of framed data.

A framed O x-module of rank m over Oy is a tuple (A, ) where # = Oxe;®---BOxe,, is
a free Ox-module with (ordered) basis 8 = {e1,...,en}. A framed quadratic Ox-module is a
quadratic module Q: # — £ where .4 and £ are framed (of ranks m and 1, respectively).
An isomorphism of framed quadratic &x-modules is a similarity which preserves the framing.
The automorphism group of a framed quadratic &'x-module is therefore trivial.

We define a functor QF: Sch®® — Set which assigns to each scheme X the set of isomor-
phism classes of framed quadratic &x-modules of rank m under isometries preserving the
framing and assigns to a morphism of schemes f: X’ — X the pullback along f.
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Lemma 2.1.4. Let R := Z[a;;]1<i<j<m be a polynomial ring in m(m + 1)/2 variables over
Z. Then functor Q is represented by Z = Spec(R), with universal object is

Q: 07 — Oy
Q(Ila s 7xm> - Z Qi LT (215)
I<i<jsm

Proof. Over any scheme X, a framed quadratic form Q: .# — £ with = ey,... ey
an Ox-basis for 4 and £ = Oxg is uniquely determined by the values a; = Q(e;)g for
i=1,...,mand a; = (Q(e; +e;) —Qe;) —Q(e;j))g with 1 <1i < j <m, O

In particular, framed binary quadratic modules are parametrized by A3 in the familiar

way.

2.2. Clifford map. For an invertible &x-module .Z (equivalently, locally free &x-module
of rank 1), we define £V := Home, (L, Ox).
Let Q: A — £ be a quadratic Ox-module. We define the even tensor O'x-algebra by

Ten®( M+ L) = DM & M & L) (2.2.1)

d=0
Let _7°(Q) be the two-sided ideal of Ten"(.#;.£) defined over U C X open by
(t@ref—f(Q): xe.#U) feLU))
+trRyeyesafeg—f(QW)r@z0g:x,y,2€.4(U), f,g€ L))
We define the even Clifford algebra of () to be the quotient
Clt(Q) == Ten®(M; L)) 7°(Q). (2.2.3)
Proposition 2.2.4. The even Clifford map defines a functor between

(2.2.2)

quadratic Ox-module under similarities
and
Ox-algebras under Ox-algebra isomorphisms.

Proof. See Auel [Auelb, Proposition 1.2] and for a slightly different but equivalent construc-
tion using the Rees algebra, see Bichsel-Knus [BK94, §3]. O

Example 2.2.5. In the binary case, we have a canonical isomorphism
Cl(Q)/Ox = N2tt @ L

as Ox-modules.
If X = Spec R is affine with S = CIf’(Q), then we get a noncanonical splitting

S~R®S/R~R& (N°M ® LY).
See Voight [Vo0il6, Lemma 3.2, Remark 3.3] for further freeness comments.

Let
Ten'(M; L) = @ M @ (LV)CL2. (2.2.6)

d=1
d odd
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Then Ten' (M ; L) is a graded Ten’ (.#'; £)-bimodule under the tensor multiplication law.
Let _71(Q) be the Ten’(.#; £)-sub-bimodule of Ten'(.#; %) defined over U C X open
by

toreyef-f(QE)yyerer® f - f(QE)y:xye.#U)feL'U). (227)
We define the odd Clifford bimodule of () to be the quotient
CIf'(Q) := Ten' (M; L) ] Q). (2.2.8)

Then under the natural multiplication, CIf'(Q) has the structure of a CIf°(Q)-bimodule. Its
formation is also functorial, but we first characterize a key property in the next section.

3. PSEUDOREGULARITY

In this section, we explore modules which from the point of view of characteristic polyno-
mials look like the regular module (affording the regular representation). We then show this
holds for the odd Clifford bimodule over the even Clifford algebra.

3.1. Pseudoregular modules. We first work locally. Let R be a commutative ring (with
1). Let A be an R-algebra (with 1, not necessarily commutative) that is free of rank n as an
R-module. Left multiplication defines an R-algebra homomorphism As: A — Endgr(A) ~
M, (R), called the (left) regular representation of A (over R). We obtain for each v € A a
(left) characteristic polynomial c4(a;T) = det(T — Aa(«)) € R[T].

Now let I be a left A-module. We say that I is R-rank balanced if I is also free of rank n
as an R-module.

Suppose that I is R-rank balanced. Then again the left A-module structure on [ yields
an R-algebra homomorphism A\;: A — Endg(I) ~ M, (R) and ¢;(«; T) € R[T].

Definition 3.1.1. We say [ is (R, A)-pseudoregular if I is R-rank balanced and for all « € A
we have ca(o; T) = ¢f(a; T).

The name is justified as I looks like the regular representation of A from the point of
view of the numerical data encoded in characteristic polynomials over R. When clear from
context, we will often drop the prefix (R, A) and say simply that I is pseudoregular.

Remark 3.1.2. One could extend Equation (3.1.1) to the case where M is a left A-module
that is free R-module of rank nd with d > 1 and ask that cy(z;T) = ca(z; T)%

Lemma 3.1.3. The following statements hold.
(a) If I is free as an A-module, then I is pseudoreqular.
(b) If R — R’ is a flat ring homomorphism and I ®r R' is (R, A @ R')-pseudoreqular,
then I is (R, A)-pseudoregular.
(c) If A is a (commutative) domain, then I is pseudoregular.

Proof. For part (a), writing I = Ae, an R-basis § for A yields fe an R-basis for I, and
accordingly [Aa(a)]s = [Ar(e)]ge so in particular ca(o; T) = ¢;(a; T).
For (b), let I' :== 1 ®zr R’ and A’ := A®gr R'. For a € A, since R — R’ is flat, then
cr(o;T) =det(T — Ap(«)) = det(T — Ay () ®p 1)

= det(T — )\[/(Oé)) KR 1= C[(iL‘;T) QR 1e R/[T]
9
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Similarly, we have ca(a;T) = ca(o;T) ®g 1. By pseudoregularity we have cp(a;T) =
ca(a;T), and we conclude that I is (R, A)-pseudoregular by flatness.
For (c), apply (b) with the map R — F', we see that A®g F is a field so I @ F'is free. [

Example 3.1.5. Let A == Rx R, let p = Rx {0} and let [ := A/p® A/p ~ RS R.
Then rankr A = rankg [ = 2, but [ is not pseudoregular because a = (a,b) has cs(a;T) =
(T —a)(T —b), but ¢;(a;T) = (T — b)?. Indeed, I is not faithful as an A-module, as (1,0)
annihilates 1.

Example 3.1.6. Let A = My(R) and I = R* @ R?, with action « - (v,w) = (av,0). Then
cala;T) = det(T — )? but c;(a;T) = det(T — a)T?, so I is not pseudoregular and I is
faithful as an A-module.

We now define the global notion. First, if A is a locally free R-algebra of rank n and I is
an S-module which is locally free of rank n as an R-module, then we again have (uniquely
defined) characteristic polynomials, so we just repeat Equation (3.1.1).

Finally, let X be a scheme, let &7 be a locally free Ox-algebra. Let .# be an &/-module
which is locally free of rank n as a @'xy-module.

Definition 3.1.7. We say .# is (Ox, o )-pseudoregular if there exists an affine open cover
X = U; U; such that #(U;) is (Ox(U;), <7 (U;))-pseudoregular for all i.

It is straightforward to check that .# is pseudoregular if and only if for all affine open
U C X we have .#(U) is pseudoregular.

We make similar definitions for right modules and for bimodules (pseudoregular as both
a left and right module).

Proposition 3.1.8. CIf'(Q) is pseudoreqular as a CIf°(Q)-bimodule.

Proof. We first work universally, using the universal framed quadratic module @ (2.1.5). Let
S := Clf’(Q) and I := CIf'(Q) be the resulting (universal) framed even Clifford algebra and
odd Clifford bimodule. Let § := Y;<;<;<, zijeie; € R' = R[z;;];; be the universal element
of S. Let 8" := S®pg R and similarly I’. We claim that I’ is (R', S")-pseudoregular. Indeed,
since R’ is a domain, by Equation (3.1.3)(b) it is enough to check this over F’ := Frac R'.
But then I’ is free over S’ with basis e; (essentially since €? = ay; € (F)*), so the claim
follows from Equation (3.1.3)(a). In particular, we get that

esi(&T) = en(&;T) € RT). (3.1.9)

Now for the general case. As the notion is local, we reduce to the case of an affine
cover where the objects are free. So let @Q: M — L be a quadratic module with M = R"
and L = R. Let S := CIf°(Q) and I := CIf'(Q), and let o € S; we want to show that
cs(a;T) = ¢;(a; T). But @ and « are specializations of the universal quadratic form and &
under a unique ring homomorphism by Equation (2.1.4), so the result follows by specializing

(3.1.9). [
Proposition 3.1.10. The association of the odd Clifford bimodule over the even Clifford
algebra defines a functor between

quadratic Ox-modules under similarities
and

pseudoregular bimodules over Ox-algebras under semilinear module isomorphisms.
10



Proof. See [Auelb, Proposition 1.5] together with Equation (3.1.8). O

Proposition 3.1.11. The association Q — (CIf°(Q), CIf'(Q)) gives a functor fibered over
Sch from the category

quadratic Ox-modules under similarities
to the category

pairs (o , ) where o7 is a locally free Ox-algebra and & is a pseudoreqular < -bimodule
under semilinear module isomorphisms.

Proof. 1t is clear from the Clifford construction that objects go to objects in the above, with
pseudoregularity implied by Equation (3.1.8). The functorial properties in [Auell, Section
4] shows the fact that similarites associate to similinear module isomorphisms between pairs
(o, .7). O

3.2. Quadratic pseudoregular modules. We now specialize to the quadratic case, first
exhibiting a universal object.

Indeed, we similarly consider framed objects for O'x-algebras and pseudoregular modules
over them. A framed unital O'x-algebra is an Ox-algebra with a framing 8 such that §; = 1.

A Ox-rank balanced Oy-module . is framed if both 0y and . are framed. An iso-
morphism of &x-rank balanced modules is an isomorphism of modules which preserves the
framing: more precisely, a pair (p,1) where ¢: Oy — Oy is an Ox-algebra isomorphism
preserving framings and ¢ : ¢ — ¢’ a p-semilinear module isomorphism that also preserves
framings.

Let . be a framed quadratic Ox-rank balanced module, with 1, an &'x-basis for 0y and
e1, ey a Ox-basis for #. Then v2 —ty+n = 0 with t,n € Ox(X) and the matrix of v in the

given basis is of the form (Z ;) with a,b,¢,d € Ox(X). Following Wood [Wooll, proof of

Theorem 2.1], replacing v <— v — d, we see that we can arrange d = 0. But then following
Gross—Lucianovic [GL09] and Voight [Voilla], we say that eq, es is a good basis for .# (over
Oy) and altogether they give a good frame.

Example 3.2.1. For a framed binary quadratic module with form ax? + bxy + cy?, we have
Clif’(Q) = Ox @ Oxeies and CUf'(Q) = Oxe; ® Oxey, and this is a good frame: we have

(e1e9)e; = e1(b — e1ez) = bey — aey and (ejeq)ey = cey S0 [eres] = (ZC) —Oa>‘

We define a functor P: Sch®® — Set which assigns to each scheme X the set of iso-
morphism classes of good framed quadratic &'x-rank balanced modules, and to a morphism
assigns the pullback.

Lemma 3.2.2. Let R := Z[a,b,c,t,n]/(t — a,n + be) ~ Zla,b,c]. Then the functor P¥ is
represented by Z = Spec(R), with universal object & = Oxey ® Oxey over Oy = Ox & Oxa
satisfying o* — ta +mn = 0 and acting by [a] = (Z 8)

Proof. As in the setup of Wood [Wool1, Proof of Theorem 1.4], there are no automorphisms
of a good framed quadratic rank-balanced quadratic module, and it is uniquely determined
by the data t,n,a, b, c by linearity; the relations come from the fact that the characteristic

polynomial matches, so a =t and n = —bc. 0]
11



Indeed, in the quadratic case one only needs to check traces, as follows.

Lemma 3.2.3. Let Oy be a quadratic Ox-algebra and let & be an Oy-module which is
locally free of rank 2 as an Ox-module. Then ¥ is pseudoreqular if and only if for all open
UCX and all a« € Oy (U) we have Trg, (y(a) = Try ().

Therefore .# is pseudoregular if and only if .# is traceable in the language of Wood [Wool1].

Proof. We immediately reduce to the local case, so we may suppose that S, [ are free over
R of rank 2.

If .7 is pseudoregular, then reading the coefficient of T" in cg(c; T) = ¢;(a; T) we have
Trg(a) = Try(«) for all a € S.

Conversely, suppose that Trg(«) = Try(«) for all @ € S. It suffices to show that Nmg(a) =
Nm;(«) for all @ € S. Let 1,7, e1, e be a good basis for S and I. Then as in the universal
case, we have 2 —ty+n = 0 with t,n € R and ye; = ae, +bey and yey = cey with a,b,c € R.
Since Trg(y) = Try(7), then t = a. Also, we have

tecey —neg = (ty — n)es = ey = ace; + beey (3.2.4)

and thus Nmg(v) = n = —bc = Nmy(v). Finally, given a« = z + yy € S with z,y € R and

o] = (:p +ay by

- _ 2 b2
ey x) having det([a]) = 2° 4+ axy — bey?, we have

Nmg(a) = (x +yy)(x + y(t — 7)) = 2° + tay + ny® = 2* + azy — bey® = Nmy(a) (3.2.5)
and hence cg(a;T) = ¢;(o; T') as desired. O

4. DISCRIMINANTS, ORIENTATIONS, AND RIGIDIFICATIONS

4.1. Universal Clifford center. In this section, we explain how to associate a quadratic
algebra to every quadratic module in a discriminant-preserving way.

Recall the universal framed quadratic module and its even Clifford algebra in the proof
of Equation (3.1.8). Given a quadratic &x-module Q: .# — £, the center of the universal
even Clifford algebra specializes to the even Clifford algebra of ), which we call the universal
Clifford center of ), denoted Z°(Q). By construction, the formation of the universal Clifford
center is functorial for similarities and commutes with base change.

Proposition 4.1.1. If # is a locally free Ox-module of even rank, then Z(Q) is a quadratic
O'x-algebra.

Proof. 1t is enough to check this for the center of the universal even Clifford algebra: for
details, see [Auel5, Proposition 1.2]. d

Example 4.1.2. When @ is binary, we have 2°(Q) = CIf*(Q).

4.2. Discriminants. In this section, we define the discriminant of () intrinsically and show
that it agrees with the discriminant of Z(Q).

Let T be the associated bilinear form of ). On each open set U = Spec R with .# (U) = M
free of rank n and Z(U) = L, we define the discriminant disc(Q) of @ to be the determinant
det(T) of T with respect to a basis of M ~ R", which is a section of L®" ®@ (A*M)®2.
The collection of local discriminants on an affine open cover glue to the (global) discriminant

disc(Q) of Q.

12



Suppose that ) is binary. Let M = Re; @ Res and L = RI. Suppose that Q(e;) = al,
Q(es) = cl, and T(ey,ez) = bl. Then disc(Q) = det(T) = (b* — 4ac)l®. our definition of
discriminate agrees with Wood [Wooll, p. 1760]. Let CIf°(Q)(U) = S = R® Reje; and o
be the standard involution on CIf°(Q) and d: (A? Clf°(Q))®? — €x be the discriminant of
CIf°(Q). Locally on U, we have d((1Ae1exl”)@(1Ae1esl")) = (o (e1eal”) —eresl¥)? = b> —4ac.
Hence, we can instead define the discriminant of @ to be the discriminant ds gy of Z(Q)
which is a refinement of disc(Q).

4.3. Orientations. We now organize quadratic modules according to the invariant provided
by the universal Clifford center, as follows. For more details of orientations, see the discussion
and references in section 1.7.

Definition 4.3.1. Let 0y be a quadratic Ox-algebra. An Oy-orientation of Q: # — £ is
an Ox-algebra isomorphism ¢: Z(Q) = Oy. An orientation of ) is an Oy-orientation for
some Y.

Let Q': A’ — &' be another quadratic Ox-module with Oy-orientation /': Z(Q’) = Oy.
We say that a similarity (¢, A) between @) and Q' is Oy -oriented if the diagram
Z(Q')

ff(@)\ ﬁ / (4.3.2)

Clf°(p,\)

commutes.
Lemma 4.3.3. The set of Oy -orientations is a torsor under Autg, (Oy) by postcompositions.

Proof. Given an Oy-orientation ¢: Z(Q) — Oy, uor = 1 with u € Autg, (Oy) forces u = id,
and thus this implies the freeness. Given another Oy-orientation //: Z(Q) — Oy, then
uotr =1 with U = 07!, and thus this implies the transitivity. O

Every @ has a canonical 27(Q)-orientation given by the identity. If @) admits an Oy-
orientation, then the set of possibly y-orientations is a torsor for Autg, (Oy) (under post-
composition). In particular,

Example 4.3.4. If Y is an integral scheme (hence X is also integral) and Y — X is gener-
ically separable, then Auty, (Oy) ~ Cy with the nontrivial element given by the standard
involution. Now let X = Spec I’ where F is a field and (V, Q) be a quadratic space over F.
Consider the case when Clf°(Q) ~ F(v/d). Then an orientation of @ is a choice of generator

for F(\/d).
Corollary 4.3.5. The association Q — (CIf°(Q), CIf'(Q)) gives a functor fibered over Quad
from the category
Oy -oriented quadratic Ox-modules under oriented similarities
to the category
pseudoreqular Oy -modules under Oy -module isomorphisms.

Proof. By Equation (3.1.11), we only need to check that morphisms match. Let (¢, \) be an

Oy-oriented similarity between quadratic Ox-modules Q: .# — £ and Q': .#' — £’ with
13



respect to the orientations ¢t: Clf*(Q) — Oy and //: Clf°(Q') — Oy. Then we define the Oy-
actions on CIf'(Q) = .# and CIf'(Q') = .#' by ro = 1~ (r)z and ra’ = /~(r)a’ for all r €
Oy,and x € 4 ,and 2’ € .#'. Then we have p(rz) = p(1=1(r)z) = CUf (0, \)(t71(r))p(z) =
U r)p(r) = re(). m

4.4. Rigidifications. The orientation in the previous section is quite different from that
given by Wood [Wool1], O’Dorney [O’Do16], and Dallaporta [Dal24], as we now explain and
put to a different purpose.

Let Oy be a quadratic Ox-algebra, .# be a Oy-module which is locally free as an Ox-
module of rank 2, and .Z, & be invertible &'x-modules.

Definition 4.4.1. We define the (.Z-)rigidification of .# to be an Ox-module isomorphism
r: N(I) = L.

With the duality in Section 5.3 in mind, the ((Z-)rigidification agrees with the .Z-type
orientation of (Oy,.#) in [Wooll, section 5]. Given an Oy-moduel isomorphisms ¢: . —
S where #, 7" are equipped with (.Z-)rigidificaitons r and ' respectively, we say that ¢
is rigidified if the induced isomorphism (A%p) @ id: A (F) — A (F") commutes with the
rigidifications, i.e., the diagram

(A2peid)

N (F) N (I

. - (4.4.2)
\ P /

commutes.

Definition 4.4.3. We define a &?-determinant structure on a locally free Ox-module & of
finite rank n to be an &'y module isomorphism w: A"& — Z2.

We note that a (.£-)rigidification of .# is equivalent to a £ ® (Oy / Ox)-determinant struc-
ture of .. Given an @x-module isomorphism ¢: & — &’ where &, & have &-determinant
structures w,w’, we define det p € Ox(X) by w' o (A"p) = (det p)w.

Lemma 4.4.4. The set of (£ -)rigidifications of .7 is a torsor under G,,(X) := Ox(X)*.

Proof. The action of u € G,,(X) on a (Z-)rigidification r: A () — £ is induced by the
left multiplication m, by v on .Z, i.e., u-r = myor. Then m, or = r forces u = 1, and thus
this implies freeness. Given another (Z-)rigidification r': A (&) — Z, let v=1"0r"t €
Autg, (Z) ~ G, (X) (because .Z is a line bundle). Then v = m; for a unique ¢t € G,,(2)
and " = my o r. This implies transitivity. OJ

Remark 4.4.5. A (Z-)rigidification of #V agrees with the Z-type orientation defined by
Wood [Wooll, section 5|; over a Dedekind domain (where we consider a frational ideal a
instead of ), this also agrees with the type a orientation defined by O’Dorney [O’Dol6,
section 2.2]. Dallaporta [Dal24, section 3.1] defines an orientation of &y to be an &x-module
isomorphism Oy /Ox = £V which recovers the orientation in [Wooll, Theorem 5.2] by
setting . = 0. The choice of dual is to deal with discriminant and parities. We note
that the &'x-module isomorphism A?0y ~ Oy /O induces the ZY-determinant structure
N Oy = £V,
14



5. NORMS

In this section, we define the norm functor and establish its properties, comparing it to
the functor of Wood.

5.1. Norm functor. Let Oy be a quadratic Ox-algebra and let .# be a 0y-module which
is locally free as an Ox-module of rank 2 (not yet pseudoregular).

Proposition 5.1.1. There exists a unique quadratic Ox-module
E=E;: Q0y/0x — NI Q@ Oy/0Ox
with the property that
Ex®y)=(yxAz)®7. (5.1.2)
forallz € Z(U) and v € Oy(U) with U C X open.

Proof. 1t is enough to show this locally, gluing by uniqueness. So let U = Spec R, S =

Oy (U) a free quadratic R-algebra, and I = .#(U) an S-module free of rank 2 over R. Let
I =Rey ®Regand S =R® Ra,and let x € [ and v =ra+ s € S with r, s € R. Since

yr ANz = (r+sa)xr ANx = (sa)r ANz = s(azx Ax) (5.1.3)
the map is indeed well-defined on I ® S/R. Then
I®S/R~ R(e; @ a)® R(es ® ) (5.1.4)

and an arbitrary element is of the form x ® o with x = x1e; + x9e5. In particular, the map
is uniquely defined by (5.1.2). We similarly have

NI®S/R=R((e; Aea) ® ) (5.1.5)
and
Erxz®a)=(ax AN2)®«a
as a map of sets E: [ @ S/R — N\*I ® S/R.
To see it is a quadratic map, let 8 = {e1,e2} and [z = (CCL Z) Identifying standard

bases as usual, we have

ar Az = [a]g[z]s A [z]s = (awl ! bm) : ($1>

cxy + dxg Tg (5.1.6)
= (xo(axy + bxy) — x1(cx1 + da))(e1 A ex) = E(xy,z2)(e1 A e)
where
E(z1,29) := —cx} + (a — d)x179 + b1 (5.1.7)
is indeed a quadratic form, giving
E(x®a) = E(x1,x9)((e1 A ez) ® ) (5.1.8)
and finishing the proof. U
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We call the map E in Equation (5.1.1) the canonical exterior form (associated to ., over
Oy). To restore the domain as .#, we twist; let

J/(j) = /\2j & (ﬁy/ﬁx)v = (/\2j & ﬁy/ﬁx) (29 (ﬁy/ﬁx)\ﬂ. (519)
We define the norm map to be the twist by (Oy/Ox)":

When we deal with similitudes, we often need to match the value line bundles for the norm
maps. Given a ((Z-)regidification r: A (&) — £, we define the modified norm map Ny &
to be the composition Ny ¢ =70 Ny.

Remark 5.1.11. It is interesting to note that the norm functor is defined on all &y-modules .7
that are locally free &'x-modules of rank 2, not necessarily pseudoregular. This is analogous
to the role of the exceptional rings (which are not quaternion rings) in the case of ternary
quadratic forms [GL09, Voillal, and so this suggests a generalization in higher rank.

Lemma 5.1.12. The norm map has
Ny (7z) = Nm(7) Ny () (5.1.13)
forallz € Z(U) and v € Oy (U).

Proof. The twist in N does not affect property (5.1.13), so it is equivalent to show it for £ .
We can check this property locally, so we refer to (5.1.8). Again let v = ra+s withr, s € R,
so that [y]s = r]a]s + s and

s (32) = (et ) - (3) 110

so that
E(yr ® a) = E(z),75)((e1 A ez) ® a)
and then
E(x,23) = —c(21)” + (a — d)ayzy + ()
= ((ad — be)r* + (a + d)rs + s*)(—ca? + (a — d)x 29 + b23) (5.1.15)
= Nm(ra+ s)E(x1, z2)
as claimed. O

Remark 5.1.16. In [Kne82|, a quadratic R-module Q: M — L is called of type C if C' is a
quadratic R-algebra, M is a projective C-module of rank 1, and Q(ca) = nrd(c)Q(«) for
all c € C' and @ € M, where nrd is the reduced norm on C. Kneser shows the following.
Suppose that Ann(Q(M)) := {r € R: rQ(M) = 0} = {0}. Then there is a unique R-algebra
homomorphism 3: CIf°(Q) — C such that 8(c)a = ca for all ¢ € CIf°(Q) and o € M. If
@ is primitive, then [ is an isomorphism. Our notion basically equips the modules with the
type given by the Clifford map.

Example 5.1.17. Suppose . = Oy is trivial. Then A (F) = N°.F @ (Oy/0Ox)" =
N0y @ (Oy]Ox)" = O, the latter under the map (« A7) ® f +— f(avy). Equation (5.1.12)
then implies that N, is just the usual norm Nm: 0y — Ox.

Theorem 5.1.18. The association % — N, gives a functor from the category of
16



Oy -modules under semilinear module isomorphisms
to the category of
quadratic Ox-modules under similarities.

This association is the unique functor from the category of free Oy -modules with the prop-
erty that if & = Oy, then & — (Nmg, : Oy — Ox) maps to the usual norm.

Proof. In Equation (5.1.1), we see that objects correspond to objects. To check morphisms,
let ¥: & — #' be a semilinear Oy-module isomorphism with respect to o € Autg, (Oy);
we need to check that the diagram

g N ()
p [ w0 (5.1.19)
g D ()

commutes so that (¢, A% @ o) defines a similarity. It is enough to check this for E instead,
to do so locally, and confirm

(ANYR0)(BE(r®a)) = (Y(ar) A(r))@a(a) = (o(a)(z) A(r))@c(a) = E'(Y(z)@0(a))
(5.1.20)
as in the proof of Equation (5.1.1).

Our norm functor has the desired property by Equation (5.1.17). To show uniqueness, we
again work with the universal framed object. Take R = Z[a, b, c,d,t,n]/(a+d—t,ad—bc—n)
and S = R® Ry where 72 —ty+n = 0. Let [ = Re; + Rey be an S-module with 8 = {ey, es}
and [y]g = (2 Z) € Ms(R). Then we obtain the norm map N; which is uniquely determined
in Equation (5.1.1). Under a unique ring homomorphism, N, is a specialization of N; by
Equation (3.2.2). O

Corollary 5.1.21. The association in Equation (5.1.18) is the unique functor from the
category of pseudoreqular Oy -modules with the property that & = Oy is associated to the
usual norm map Nmg,, : Oy — Ox.

Proof. Since I is pseudoregular, we can reduce to the free case by tensoring with F' = Q(¢,n).
In particular, I ® F is a free module of rank 2 over S ® F. Then we can conclude by
Equation (5.1.18). O

5.2. Involutions. In this section, we discuss two involutions on the category of pseudoreg-
ular Oy-modules.

We begin with the dual. Let .# be an Oy-module which is locally free of rank 2 as an
Ox-module. Then &V := Home, (I, Ox) is also locally free of rank 2 as an Ox-module.

Lemma 5.2.1. Suppose . is pseudoreqular. Then ZV is pseudoregular.

Proof. Since pseudoregularity is a local property, we may work locally on an affine open

subset. Let R be a commutative ring, S = R & Ra be a quadratic R-algebra, and [ =

Re; @ Rey be a pseudoregular S-module. Then IV = Homg(I, R) = Rej ® Rel where

ei(ej) = 0y Let Ar: S — End(]) >~ M,(R) and Apv: S — Endg(I¥) ~ M,(R). For each

x € S, we have A\;(z) = Al and thus ca(z;T) = ¢;(x;T) = ¢pv(x; T). This implies that 1V

is pseudoregular. O
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Proposition 5.2.2. The map % — ZV is an contravariant autoequivalence of the category
of pseudoregular Oy -modules.

Proof. By Equation (5.2.1), objects are mapped to objects. A given morphism f: . — ¢ of
Oy-modules is mapped to the dual morphism fY: #V — #V given by f¥(¢) = ¢of. There is
a canonical evaluation 0y module isomorphism ev: & — #VY given by ev(x) = (¢ — ¢(x)).
Hence, the map is a contravariant equivalence. 0

Remark 5.2.3. The dual functor is contravariant, so it reverses the direction of the mor-
phisms. However, every morphism (e.g. &y-module isomorphism or similarity) we use is an
isomorphism, and thus this yields compatible morphisms under duality.

Remark 5.2.4. Fix X = SpecZ and Y = Spec S where S is a quadratic order. Let Q(x,y) =
ax®+bry+cy? be a S-oriented primitive binary quadratic form over Z. There are two natural
involutions. Postcomposing the orientation with the standard involution on S sends @ to
the binary form az? —bxy+ cy?. This is the uy-action on orientations. Second, multiplying Q
by the similitude factor —1 yields —axz? — bxy — cy?. However, if we restrict to the subgroup
7%, = {1} as in Equation (6.2.4), this operation is no longer allowed.

5.3. Comparison to Wood. Wood defines a linear binary quadratic form as a global section
f € Sym®> M ® L, and Proposition 6.1 shows that f yields a corresponding quadratic &x-
module Q: .#" — L. The dual ensures to preserve the discriminant between f and its
corresponding quadratic algebra (see [Wooll, Theorem 1.6]). We therefore anticipate, in
comparing to Wood, we will need to replace .# with .#", see (2.1.1).

Let . := (A* %) @ (Oy/Ox)". Wood [Wooll, (1)] defines the map

T: LY — Sym* .7
(5.3.1)
(ZAY) RV 1YRr—7r QY
As in section Section 2.1, we translate this map into our (more classical) notion of bi-
nary quadratic modules. Taking the dual yields a map ¥V: (Sym®.#)" — £V given by
TV()(O) = f(¥(H)) for all f € (Sym?.#)" and § € £Y. The canonical isomorphism
(Sym,(#£Y))Y = (Sym®.#)" yields a binary quadratic Ox-module Q yv: .#V — £. The
map 4 — (v defines a contravariant functor which maps a Oy-module isomorphism
Y I — I to the similarity (¢, (A%9)Y ®id) from Qs to Q sv.

Remark 5.3.2. Equation (5.3.1) allows us to directly obtain the corresponding binary qua-
dratic module without passing through induced linear binary quadratic forms via [Wooll,
Proposition 6.1].

Lemma 5.3.3. The composition of the dual functor and the norm functor is naturally iso-
morphic to the functor & — Q v, both functors being contravariant.

Proof. Let £4: N27Y — (A*.#)Y be the Ox-module isomorphism defined by

Es(0NAD) =unv »—>18¢9(u)77(v) — 6(v)n(u). (5.3.4)



We claim that (id, £ ® id) is a similarity from Nyv to @, i.e. the diagram
N AAEANY VI a0 (ﬁy/ﬁx)v

Jid l&y ®id

IV L (NI @ (6y)0,)

commutes. It is enough to show this locally. Let U = SpecR, S = Oy (U) = R @ Ra
a free quadratic R-algera, I = #(U) = Re; & Res an S-module free of rank 2 over R,

and L = (A’I)Y @ (S/R)Y. Let 8 = {eY,ey}. Then we have [a]z = (Z 2) and thus

Npv(z,y) = (=bx® + (a—d)zy +cy?)(ef Aey) @ by eq. (5.1.7). Applying Equation (5.3.1),
we get the map U|y: LY — Sym® I given by U|y((e1 Aey) ® a) = aey @ e; — ey ® ey =
bey @ ey + (d — a)ey ® ey — cey @ ey. This yields the map UY|y: (Sym® .#)Y — L given
UVip((er ® e2)Y) = bler Nex)¥ @ Y, UWp((er @ ea +ea®e1)Y) = (d—a)(er Aeg)” @ Y,
and UV |y ((ea®e2)Y) = —c(e1 Aey)Y ®@aY. From the isomorphism (Sym,(7V))Y 2 (Sym?* I)V.
we obatin the quadratic module Q: IV — L given by Q(zey + yey) = (bx* + (a — d)xy +
cy*)(e1 A ez)¥ @ @Y. Then we have (£4]p ® id)(Npv(z,y) = Q(z,y).

Next, let .#’ be another 0y-module which is locally free of rank 2 as an &x-module. Let
Y: # — S be an Oy-module isomorphism. By eq. (5.1.18), the pair (v, A%V ®id) defines
a similarity from N v to Nsv. We want to show that the diagram

(id, & »/®id)

Nylv Qf’
@Y, /\2¢V®id)‘ ‘(w, (A2¢)V ®id)
Ny (id, £ 7 @id) Qs

commutes. We have (¢¥ oid)(#"Y) = £V = (idoypV)(H’) and
(A*)" ®@id) o (£ @A) (A (F7)) = (N*)" @A) (N I")" @ (Oy/Ox))
NI) @ (Oy]Ox)"
£r @) (NI @ (Oy/Ox))
(N ®@id) o (£ @1d)) (A (I)).

(
= (
L (5.3.5)
= (

O

Remark 5.3.6. Although the functor defined by Wood is covariant, all categories we work
with are groupoids which are naturally equivalent to their opposite categories. Therefore,
we could recover covariance by reversing isomorphisms.

5.4. Canonical orientations. We have a canonical &'x-module isomorphism
CU'(Ny)/Ox 2N I @ N (I) = NI @ (NI @ (0y]0x)) = 0y)0Ox. (54.1)

Proposition 5.4.2. Suppose that .7 is pseudoregular. Then there exists a unique Ox -algebra
isomorphism
CIf°(N,) = Oy (5.4.3)
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which lifts the canonical Ox-module isomorphism (5.4.1).
We call the isomorphism (5.4.3) the canonical orientation.

Proof. We will exhibit a unique such isomorphism locally. On a open set U = Spec R,
we have S = Oy (U) and I = #(U) with a good basis 1,7, e1,e5. Let N;: I — L where
L = NI ® (S/R)". Then CIf°(N;) ~ R @® Rejey. In the canonical isomorphism (5.4.1),
locally we have CIf’(N;)/R ~ R(eies) = S/R = Ry where the image of ejey is wy with
u € R* and we rescale e; so that u = 1.

The map ejes — v in fact defines an R-algebra isomorphism. It is enough to show
that ejeo and v have the same characteristic polynomial. From the above, using that [ is
pseudoregular, we have Tr;(v) = Trg(y) = a and Nm;(y) = Nmg(y) = —be. We similarly
compute using (5.1.7) that (ejes)e; = e1(a — ejen) = aey + cdy and (e1e)ey = bey giving

leres]s = CCL 8 which indeed matches. It is clear that the isomorphism is independent of
the choice of good basis. O

Corollary 5.4.4. The association % — Ny together with the canonical orientation gives a
functor from the category of

Oy -modules under isomorphisms
to the category of
Oy -oriented quadratic Ox-modules under oriented similarities

which is fibered over Quad.

Proof. The statement follows from Equation (5.1.18) together with the functoriality of the the
association of the canonical orientation (by uniqueness). The fiber structure is immediate,
as both categories map an object to Oy. 0

6. PROOFS OF MAIN RESULTS

In this section, we prove our main theorem and derive corollaries. The proof proceeds
in several steps. We first define a quasi-inverse functor to the Clifford functor called the
norm functor; we justify the name and show it nearly agrees with the construction of Wood
[Wooll, (1)]. Then we show that the composition of the two is naturally isomorphic to the
identity.

6.1. Main theorems. We now conclude the proof of the main theorems.

Proof of Equation (1.3.1). We have a Clifford functor F by Equation (3.1.10) and a norm
functor G by Equation (5.4.4). The discrminant-preserving property is clear from the defi-
nition. We finish by checking that the composition of the two functors in each direction is
naturally isomorphic to the identity.

For each Q: .# — £ be an Oy-oriented binary quadratic &x module, we have (G o
F)(Q) = Ny () which is Oy-oriented. Since CIf°(Q)/0x ~ N2 @ £ as Ox-modules and
A = CIf'(Q), then there is an Ox-module isomorphism ug form A4 (CIf'(Q)) = A (M) =
N2t @ (CIH(Q))Ox) = N2t @ (N> M @LY) to £, and thus (id, ug) is an Oy-oriented
similarity between Ng1 () and Q. On the other hand, for .# be a pseudoregular Oy-module,
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Equation (5.4.2) implies that (FoG)(.#) = Clf'(.#) = .# which is a pseudoregular CIf’(.#)-
module with CIf°(.#) ~ Oy
Next, we check the natural condition on morphisms. Let the pair of &'x-module isomor-

phisms ¢: A4 — A" and u: ¥ — J' be a similarity between quadratic modules Oy -oriented
binary quadratic Ox-modules Q: .# — % and Q': .#' — #'. Then the diagram

(id,uq)

Naie (@) Q
(GoF)(idu) (ou) (6.1.1)
(id,uQ/)
N, CIfH(Q") Q'

commutes. Similarly, given pseudoregular Oy-modules .# and &' let ¢: & — #' be an
Oy-module isomorphism. It is clear that (F o G)(¢)) = 1. O

Proof of Equation (1.4.1). The canonical isomorphism in Equation (2.2.5) and the orien-
tations together give the rigidifications with respect to the value line bundles, and thus
objects map to objects. We show that oriented similitudes correspond to module isomor-
phisms. Let (¢, A) be an Oy-oriented similitude between quadratic &x-modules (.#, %, Q)
and (', £, Q') with respect to orientations t: Z(Q) — Oy and /: Z(Q') — Oy respes-
tively. Let v: A2 @ (CIf°(Q)/Ox)" — £ and ~: N2’ @ (CIf°(Q)/Ox)" — £ be
the Ox-module isomorphisms given by Equation (2.2.5). Then ¢ is an &y-module isomor-
phism, and r: A (A#) — £ given by r = yo (id®t¥) and ' N (A') — £ given by
" =~"o (id®!V) are (Z-)regidifications for .# and .#" respectively.

Conversely, let .# and .#’ be pseudoregular &y -modules equipped with Z-rigidifications
r: N (F) = L andr': N (IF') - £, and let p: S — F’ be an Oy isomorphism. As
shown in the proof of Equation (5.1.18), (¢, A*¢ ® id) is a similarity from N, to N, and
thus (p, 7" o (A2p ® id) o r71) is a similitude, i.e. the diagram

g g —

¥ A2p®id r'o(A2p®id)or—! (612)

g N () T

commutes. A similar proof to the one of Equation (5.4.2) could show that there exist
unique Ox-algebra isomorphisms leo(r oNy) = Oy and leo(r’ o Ny) = Oy, and thus
(o, 7" 0 (A2p ®id) or~t) is Oy-oriented.

For the fibered structure, we map each object in the first category to the pair (Oy, %)
where .Z is its codomain; we map each object in the second one to the pair (Oy,.Z) where
% is the chosen invertible & x-module for the regidification. The discriminant-preserving
property and the fact that the composition of the two functors in each direction is naturally

isomorphic to the identity are immediate from the proof of Equation (1.3.1). O
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Proof of Equation (1.5.1). We restrict the equivalence proven in Equation (1.4.1) to the sub-
categories with the same objects but morphisms restricted to oriented isometries and rigid-
ified isomorphisms, respectively, and claim that this restricts again to an equivalence. It
suffices to check that the Clifford functor carries the condition A = 1 on the similitude factor
to compatibility with rigidification and vice versa. We refer to (6.1.2): the right-hand square
commutes, and so A = 1 corresponds exactly to the condition of a rigidified isomorphism,
and conversely. O

6.2. Primitivity and invertibility. In this section, we restrict our equivalences to nonde-
generate objects to see the resulting restricted equivalences; as applications, taking isomor-
phism classes of objects, we derive relationships to Picard groups.

Definition 6.2.1. We say a quadratic Ox-module (.#,.%, Q) is primitive if for each open
U C X, the sections Q(z) with x € .#(U) generate Z(U) as an Ox(U)-module.

Proposition 6.2.2. A quadratic Ox-module is primitive if and only if it corresponds under
Clifford to an invertible Oy -module.

Proof. Both direction can be proved locally and glued by uniqueness. First, suppose that
a quadratic Ox-module (A, Z,Q) is primitive. Let U = Spec R. Then M = .#Z(U) =
CIf'(Q)(U) and S = CIf°(Q)(U) are free quadratic R-modules, and L = Z(U) is a free
R-module of rank 1. Let M = Re; @ Res, L = Ra, and S = R @ Rejes with Q(e;) =
ac, T(e1,e3) = ba, and Q(ez) = ca. Then there exist z,y € R such that Q(ze; + yey) €
R*a. Let the map ¢: S — M be defined by ¢(s) = (xe; + yes)s. Let B = ey, es5. Since
x  —cy

implies that M = (we; + ye,)S, and thus globally CIf'(Q) is an invertible Clf°(Q)-module.

Conversely, suppose that Clf'(Q) is an invertible C1f’(Q)-module. Then there exists x,y €
R such that the left multiplication map ¢,: S — M is an S-module isomorphism. Since ¢, is
R-linear of quadratic R-modules, then [¢]s € R* and thus Q(v) € R*«. Hence, we conclude
that () is primitive. [l

which has discriminant (ax? + bxy + cy?)a, then ¢ is surjective. This

Now we prove the corollaries with respect to the isomorphism classes.

Proof of Equation (1.3.2). Immediate from taking isomorphism classes on both sides of Equa-
tion (1.3.1) by Equation (6.2.2). O

Example 6.2.3. If X = SpecZ, then Y = Spec S is a quadratic ring with discriminant
d € Z. Then Equation (1.3.2) says that primitive binary quadratic forms of discriminant d
up to SLy(Z)-equivalence and scaling by +1 are in bijection with the class group of S. The
orientation corresponds to a fixed choice of generator of S/Z.

Proof of Equation (1.3.3). By Equation (3.1.10) and Equation (5.1.18), similarities corre-
spond to semilinear module isomorphisms which are determined by Autg, (0y). Taking
isomorphism classes together with Equation (1.3.1) yields the result. U

Example 6.2.4. If Y = Spec S is a real quadratic ring over X = SpecZ with discriminant
d and H = {1}, then Equation (1.5.2) recovers the classical statement of Gauss composition
saying that primitive binary quadratic forms of discriminant d up to SLy(Z)-equivalence are
in bijection with the narrow class group of S, and orientation corresponds to a fixed choice

of generator of S/Z.
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7. APPLICATIONS AND DISCUSSION
We conclude in this section with some applications and further discussion.

7.1. Genera and class sets. In this section, we classify class sets of genera which encode
information about isomorphism of objects locally at all points in X. For primitive binary
forms, we will see that we only need to consider global isomorphism classes.

For a quadratic Ox-module (#Z,.%,Q) and a point x € X, let (A, £, Q) be the base
extension of () with respect to Ox , where A, = M Q¢ Ox, and £, = L Qo Ox . 1 Q
has an Oy-orientation, then the corresponding local orientation for @, is (Oy), for x € X.

Let Oy be an orientation of @ and H < Ox(X)*.

e We define the oriented similarity genus of ) to be the set Gengso(Q) of quadratic
Ox-modules (A', ', Q') such that there is an (Oy ),-oriented similarity between @,
and @, for all z € X.
e We can similarly define the oriented H-similitude genus Genggo (@)
e Forgetting orientations, we can also define the similarity genus Gengo(Q)) and the
H-similitude genus Gengo g (Q).
We define the oriented similarity class set Clsgso(Q) and similarity class set Clsqo(Q), as well
as the oriented H-similitude class set Clsgso, n(Q) and the H-similitude class set Clsgo, u(Q),
to be the sets of global classes in the corresponding genera respectively.

Theorem 7.1.1. All primitive Oy -oriented binary quadratic Ox-modules are in the same
oriented similarity genus.

Proof. 1t is enough to show that for any primitive &y-oriented binary quadratic &'x-module
(A, Z,Q), there is an (Oy ) -oriented similarity between @, and the norm Nm,: (Oy), —
Ox .. Given x € X, we have (Oy), = Ox, ® Ox o, My = Ox 61 S Ox €5 for a good basis
1,a,eq, ey 0f (Oy), and Ax. We also have £, = Ox .l for some | € .Z,. By Equation (5.4.2),
there is a unique Oy ,-algebra isomorphism between Clf'(Q,) and (Oy), given by the map
e1ea — . Suppose that Q,(we; + yes) = (ax? + bry + cy?®)l for a,b,c € Ox,. Then we
have (ej1e9)? = bejes — ac, and thus Nm,(z + ya) = 2% + bry + acy®. Since @, is primitive
and Ox, is a local ring, then there exists some xg, yy such that ard + broyo + cyt € O )Xm,
and we can replace e; by xge; + ypes and extend it to a basis for .#,. Thus, without loss of
generality, we may assume that a is a unit. Let p: 4, — (Oy), and ¢: £, — Ox, be the
O ,-module isomorphisms defined by ¢(ze; + yes) = 2 + a 'ya and ¢ (rl) = a~'r. Then
we have Nm, (¢o(ze; +ye)) = 22+ a bxy +atey? = Y(Q.(we; +yez)), and thus (p, 1) is a
similarity between @), and Nm,. The choice of good basis and Equation (5.4.2) ensure that
the similarity is oriented. 0

Corollary 7.1.2. The oriented similarity classes of primitive Oy -oriented binary quadratic
Ox-modules are exactly the elements of Clsgso(Q) for any primitive Oy -oriented binary
quadratic Ox-module Q).

Proof. Taking global classes in Equation (7.1.1) yields the result. U
Fixing the value line bundle, we have the following corollary with respect to similitude.

Corollary 7.1.3. The oriented similitude classes of primitive Oy -oriented binary quadratic
Ox-modules with a fived value line bundle £ are ezactly the elements of Clsgso,o (x)x (@)

of any primitive Oy -oriented binary quadratic Ox-module with value line bundle £ .
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Proof. We slightly modify the proof of Equation (7.1.1). Given z € X, there is an Ox ,-
isomorphism p: Ox, — %, given by 1 — e. Then we have (p1o Nm,)(z + ya) = (2% + bry +
acy?)e. Tt follows that (¢, o 1)) is a similitude between @, and (o Nm,). O

Next, we consider H-similitude classes with H < Ox(X)*. The approach in the proof
of Equation (7.1.1) does not work anymore because of the restricted choices of similitude
factors. Thus, we will not realize the H-similitude classes exactly as the elements of the
H-similitude class set. Instead, we pass to the side of &y-modules via Clifford.

Corollary 7.1.4. There is a bijection between the oriented H -similitude class set of a prim-
itive Oy -oriented binary quadratic Ox module and Pic™Y .

Proof. We note that the local norm at each x € X of the transition function is in H,. Then
taking global classes yields Pic) Y. O

7.2. Binary orthogonal modular forms. In this section, we will apply the classifications
of class sets in Section 7.1 to understand the space of orthogonal modular forms on binary
lattices.

Let F' be a totally real number field and (): V' — F' be a totally positive definite quadratic
space with dimp V' = r. For a Zp-lattice A C V of rank r, the restriction Q5 of @ to A
yields a quadratic Zp-module. Let 9t be the (signed) discriminant of A. One can consider
the equivalences, which preserve lattices, given by the reductive groups O, SO, GO, or GSO.
The genus Gen(A) of A is the set of lattices in V' which becomes equivalent to A at each
completion. The set of global equivalence classes in the genus defines the class set Cls(A).
The space of orthogonal modular forms for A (of trivial weight) is the C-vector space of
functions on Cls(A), namely M(A) := {Cls(A) — C}.

When the rank r is small, just as in the classification of semisimple Lie groups, we obtain
connections between orthogonal modular forms and classical, Hilbert, and Siegel modular
forms. For r = 3, there is a Hecke-equivariant, functorial association to classical modu-
lar forms, first exhibited by Birch [Bir91] and then generalized by Hein [Heil6] and Hein—
Tornafia—Voight [HTV25]. For r = 4, the association to Hilbert modular forms are made
explicit by Assaf-Fretwell-Ingalls—Logan—Secord—Voight [AFILSV]. For r = 5 and squarefree
M, the association to Siegel paramodular forms are made explicit by Rama-Tornafia [RT20]
and Dummigan—Pacetti-Rama—Tornofia [DPRT21].

The Clifford functor has played a pivotal role in the ternary and quaternary cases. In
the missing binary case, Equation (7.1.2) implies the isomorphism Cls(A) ~ Pic S where
S = CIf°(Qs). Then we can rewrite the space of orthogonal modular forms M(A) with
respect to GSO as the C-vector space M (Pic S) of functions on Pic S

For p t 91 with p = PYP’, we define the Hecke operator

Ty: M(CI(S)) — M(CI(S))
fs (m - f([mm),

and similarly for 8’. Such operators pairwise commute and are self-adjoint with respect to a
natural inner product. Thus, there is a basis of simultaneous eigenvalues, called eigenforms,

which are exactly the multiplicative characters on Pic S.
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Theorem 7.2.1. The Clifford and norm maps induce Hecke equivariant bijections between
the space of orthogonal modular forms for A and the space of functions on PicS where

S = CIf°(Q,).

Proof. The neighboring relation on orthogonal modular forms gives a similarity over the
localization, matching up with the neighboring relation on ideal classes over the quadratic
ring. U

Remark 7.2.2. For a further connection to Hilbert modular forms via theta series, see Wu

[Wu25].

7.3. Recent work. To conclude, we review recent work generalizing Gauss composition.
The history of the composition of binary quadratic forms and the revisit of Gauss composition
in 19th and early 20th centuries can be found in [Dic1923] (see also [Tow80, Introduction]).

Gauss’s original approach in [Gau96] was complicated. Influenced by Legendre, Dirichlet
and Dedekind took another route in [Dir99, Supplement X] (see also [Cox22, Section 3A] or
[Dic1951, Section IX]). Two quadratic forms az? + bry + cy? and a'z? + V'zy + dy* over Z
are called united if they have the same discriminant and ged(a, o/, b+Tb/) = 1. Dirichlet and
Dedekind defined a composition for united forms and realized a group structure for the set
of classes of primitive positive definite forms of the same discriminant. In 1961, following
Dirchilet and Dedekind, Lubelski [Lub61] generalized the composition over Euclidean rings.

In 1968, Butts-Estes [BE1968] introduced C-domains D which are integral domains with
characteristic not 2 and certain structural conditions, and developed explicit composition
laws for binary quadratic forms over D via united forms. They showed that the set of
classes of primitive binary quadratic forms over D with discriminants in a certain set A is
a commutative semigroup. If the discriminant is fixed, then this recovers the classical case.
Moreover, they considered the quadratic algebra R = D[w] and gave a norm condition for an
R-ideal generated by A and b+ w as D-module to be invertible where A is an invertible ideal
of D and b € D. The direct compounds of binary quadratic forms correspond exactly to
products of free rank-two R-modules, and whenever products of free D modules in R remain
free, the classes of primitive form with discriminant d € A form an abelian group G4 under
composition. They also constructed a surjective homomorphism from G, to a subgroup of
the ideal class group of R, identifying the kernel as those classes containing a form that
represents a unit in D.

Also in 1968, Kaplansky [Kap68] extended the theory of composition to Bézout domain of
characteristic not 2 via module multiplication. This recovers the same composition of united
forms.

In 1972, Butts-Dulin [BD1972| studied the connection between Gauss composition and
composition of united forms. They considered the compound and the Gaussian compound of
binary quadratic forms defined by Gauss. Then they gave necessary and sufficient conditions
for existence in each case over a Bézout domain and for existence of composition of united
forms in an integral domain of characteristic not 2 where two primitive binary quadratic
forms of the same discriminant has a Gaussian compound. Furthermore, they showed that
the composition of united forms holds over a Bézout.

In 1980, Towber [Tow80] gave a generalization in which the domain of a quadratic form
Q: M — R where M is a locally free module of rank 2 over a commutative ring R (with

1) such that A2M (equipped with an orientation given by a choice of generator) is a free
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R-module of rank 1. He also introduced a composition law on the set of equivalence classes
under the action of SLy(R) of primitive, oriented binary quadratic forms ax? + bxy + cy?
with a given discriminant and a given residue class of b in R/2R.

In 1982, Kneser [Kne82| considered quadratic forms @: M — R over a commutative
ring R where CIf(Q) is isomorphic to a given type which is an R-algebra C. This C-
module structure ensures the existence and the uniqueness of a composition map. The
isomorphism classes of primitive binary quadratic forms of type C' with the composition law
form an abelian group G(C'). Forgetting the quadratic form on M yields a homomorphism
G(C) — Pic(C) which is in general neither injective nor surjective. To obtain the full Picard
group, he then considered M as invertible C-modules. [Kne82, Proposition 2] gives quadratic
R-modules (also called quadratic maps by Kneser) @Q: M — N where N is invertible R-
module, Q(cz) = Nme/pr(c)Q(X) for all ¢ € C and € m, and @ is primitive. The
isomorphism classes (oriented similarity classes in our notion) of such quadratic modules are
isomorphic to Pic(C'). This is exactly recovered by Equation (1.3.2).

Most of the works above only considered SLs-equivalence of binary quadratic forms. In
2000, Mastropietro [Mas2000] considered equivalences given by matrices of determinants
which are totally positive units over real quadratic number fields of class number one with
totally complex quadratic extensions. He gave the contruction of a correspondence between
ideal class groups and such equivalence classes.

In 2004, Bhargava [BhaO4a] considered the space of 2 x 2 x 2 cubical integer matrices
modulo the natural action of SLy(Z) x SLy(Z) x SLy(Z) and described six composition laws,
including Gauss composition, derived from this approach. He then gave interpretations of
the connection between orbits of the six spaces and ideal classes of quadratic orders. (It
would be interesting to pursue a sheafified version of this approach.) [Bha04b] and [BhaO4c]
in the same year and [Bha08] in 2008 developed analogous laws of composition on forms of
degree k > 2 so that the resulting orbits parametrize orders in number fields of degree k.

In 2011, Wood [Wool1] gave a generalization of Gauss composition over any base scheme.
Her dual point view considers linear binary quadratic forms over a scheme X as global sec-
tions of Sym?*(.#) ®.% where . is a locally free &x-module of rank 2 and . is an invertible
Ox-module (see discussion in section 5.3). The GlLg(Z) x GL;(Z)-equivalences are exactly
our notion of similarities. On the other hand, she considers pairs (Oy, .#) where Oy is a
quadratic Ox-algebra and .# is a traceable Oy-module. Equation (3.2.3) has shown that
being traceable is equivalent to being pseudoregular. Then eq. (1.3.3) recovers [Wooll, The-
orem 1.4], and thus restricting to primitive forms recovers [Wooll, Theorem 1.5] because
primitive forms correspond to invertible modules by Equation (6.2.2). [Wooll, section 5]
further equips an .Z-type orientation corresponding to (Oy, .#), and Equation (1.5.1) recov-
ers [Wooll, Theorem 5.1]. Unfortunately, Wood did not give group laws or isomorphisms
with Picard groups in our style; instead, her results only provide a set-theoretical bijection
with a disjoint union of quotients of Picard groups in the primitive case.

Wood mentions that Lenstra suggested in a talk that Kneser’s approach could yield a
theorem in the style of [Wooll, Theorem 5.1] in the case when the forms are primitive and
nondegenerate. He also suggested a Clifford algebra construction which could provide a
theorem along the lines of [Wooll, Theorem 1.4].

In 2016, O’Dorney [O’Do16] generalized Bhargava’s theory of higher composition law over
arbitrary Dedekind domains. The parametrization of quadratic, cubic, and quartic algebras
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as well as ideal classes in quadratic algebras extended Bhargava’s reinterpretation of Gauss
composition.

In 2021, Zemkové [Zem?21] generalized Mastropietro’s work to the case where the base field
is any number field of narrow class number one and gave explicit correspondence between
the ideal class group and the equivalence classes of binary quadratic forms. She also gave a
short overview of previous works in the introduction section.

In 2024, following Wood’s approach with extra refinements, Dallaporta [Dal24] recovered
from Wood’s bijection an explicit bijection between the Picard group of a given quadratic
algebra and a set of classes of primitive quadratic forms over a scheme. Equation (1.3.2)
recovers [Dal24, Theorem 1.2] where the corresponding quadratic algebra is specified by the
discriminant and parity.

In 2025, Bitan [Bit25] considered Gauss composition for binary quadratic forms over the
ring of regular functions over an affine curve over a finite field of odd characteristic. He
used étale cohomology to describe the bijection between the equivalence classes of binary
quadratic forms and the Picard group of the corresponding quadratic algebra.

Finally and very recently, Mondal-Venkata Balaji [MB2025] shared a preprint which also
adopts the point of view that Gauss composition can be seen through the lens of the Clifford
functor. They prove functorial bijections (but not an equivalence of categories) for simi-
larities and show that for similitude groups one can recover the Picard group when 2 is a
nonzerodivisor. To show that the Clifford map is bijective on classes, they use the method
of universal norms due to Bischel-Knus [BK94].
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