
CURVES OVER FINITE FIELDS WITH MANY POINTS:

AN INTRODUCTION

JOHN VOIGHT

Abstract. The number of points on a curve defined over a finite field
is bounded as a function of its genus g. In this introductory article, we
survey what is known about the maximum number of points on a curve
of genus g defined over Fq, including an exposition of upper bounds,
lower bounds, known values of this maximum, and briefly indicate some
methods of constructing curves with many points, providing many ref-
erences to the literature.

By the Hasse-Weil bound (also known as the Riemann hypothesis for
curves over finite fields), the number of points on a smooth, geometrically
integral projective curve X of genus g = gX over a finite field Fq satisfies

#X(Fq) ≤ q + 1 + 2g
√
q

and is therefore bounded as a function of g and q. It is natural to inquire
about the sharpness of this upper bound, and so we consider the quantity

Nq(g) = max
X/Fq
gX=g

#X(Fq)

which is the maximum number of points on a curve of genus g defined over
Fq, as well as the asymptotic quantity

A(q) = lim sup
g→∞

Nq(g)

g
.

Recently, these quantities have seen a great deal of study, motivated in
part by applications in coding theory and cryptography and because it is
an enticing problem. This article surveys the results in this area, including
an exposition of upper bounds, lower bounds, known values of Nq(g), and
methods of constructing curves with many points.

1. Goppa codes

We begin with a brief motivation coming from coding theory. In 1981,
Goppa introduced a way to associate an error-correcting code to a curve
over a finite field [6, 7]—good codes require curves with a large number of
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2 JOHN VOIGHT

points, as we will see. For more information, see [22, §§II.2, VII.4] and [16,
§5.5].

Messages are transmitted using a finite alphabet which we will take to be
the finite field Fq; the entire message is split into words which are blocks of
fixed size and encoded : that is, provided with redundant letters to identify
errors that were introduced during transmission. Therefore encoding is an
injective map E : Fkq → Fnq ; the code is C = img(E), the length of the code
is n.

If no errors occur, then the receiver can recover the original k letters
using knowledge of E. If a word v 6∈ C occurs, an error has occurred and
assuming that the error made was small, the decoder looks for a word ṽ
in C that is as close to v as possible, i.e. such that the distance |ṽ − v|
is minimized, where the metric |w| is defined to be the number of nonzero
coordinates of w, called the Hamming weight. The minimal distance d is
the minimal Hamming distance between distinct words in the code; since
every ball of radius < d/2 contains at most one code word, one can correct
up to b(d − 1)/2c errors in each word. Therefore if possible we would like
to simultaneously maximize k/n (the transmission rate) and d/n for a good
code, and so we identify codes by the array [k, d, n].

Let X be a curve, i.e. a smooth, geometrically integral projective variety
of dimension 1, of genus g, defined over the finite field Fq. Let D be a divisor
on X defined over Fq and let P1, . . . , Pn be a collection of points in X(Fq).
We assume that P1, . . . , Pn do not occur in D, but this assumption can be
removed with a little extra effort. We define the map

θ : L(D)→ Fnq
f 7→ (f(P1), . . . , f(Pn)),

and in this way associate the code C = img θ to the curve X. Note that the
Goppa code defines a linear subspace of Fnq .

We can estimate the parameters of this code using standard facts about
the geometry of curves (see e.g. [22]). The code has length n. If the image of
f ∈ L(D) has weight d, then f vanishes in n−d points, so degD−(n−d) ≥ 0
(a divisor has at least as many poles as zeros), i.e. d ≥ n−degD, and hence
we assume that degD < n so that d is positive. Then ker θ = L(D−

∑n
i=1 Pi)

is trivial (deg (D −
∑n

i=1 Pi) < 0), and the dimension k of the code is by
Riemann-Roch equal to dimL(D) ≥ degD + (1− g). In sum,

d ≥ n− degD and k ≥ degD + 1− g.
In particular, using the Singleton bound k+d ≤ n+ 1 (proved as follows:

a code of dimension k has a codeword with at least k − 1 coordinates equal
to 0 and hence has weight at most n− (k − 1), so d ≤ n+ 1− k), we find

1 +
1− g
n
≤ k

n
+
d

n
≤ 1 +

1

n
;

Therefore a good code (one with k/n and d/n large) is one which arises from
a curve of small genus with a large number of points.
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Example 1.1. As an example, we can consider the Klein quartic X defined
by the equation

x3y + y3z + xz3 = 0

in the projective plane over F2. Since X is smooth and is defined by an
equation of degree 4, the curve X has genus g = (4− 1)(4− 2)/2 = 3. One
has the three points

(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0) ∈ X(F2),

and these are the only points over any field F2k (k ≥ 1) with xyz = 0. Let
us now consider the curve over F8. We can represent F8 = F2(α) where
α3 +α+ 1 = 0; then α generates the multiplicative group F∗8. If (x : y : z) ∈
X(F8) with xyz 6= 0, then we may assume z = 1, y = αi, and x = α3iβ for
some β ∈ F8, so that

(α3iβ)3 + α3i + α3iβ = α3i(β3 + β + 1) = 0

hence β3 + β + 1 = 0, so β ∈ {α, α2, α2 + α}. It follows that #X(F∗8) = 21
and so

#X(F8) = 24.

Let P be a F8-rational point and let D be the divisor D = 10P . If we
take the sum of the other 23 points on X as the rational points divisor, then
this code has length 23, dimension 10 − g + 1 = 8 and minimum distance
≥ 23 − deg(D) = 13. If one adds a parity-check row and views F8 as a
dimension 3 vector space over F2, one obtains a [92, 24,≥ 26]-code which is
very nearly an optimal code with these parameters.

Asymptotically, the quality of these codes came as quite a surprise, ex-
ceeding the so-called Varshamov-Gilbert bound for q ≥ 72—we refer the
reader to [15].

2. Upper bounds

With this as our motivation, we begin by finding upper bounds on Nq(g),
the maximum number of points on a curve of genus g over Fq.

2.1. Hasse-Weil bound. For a motivated introduction to the material in
this section, see [8, Appendix C], and for an elementary proof of the Weil
conjectures for curves, see [22, §V.1] or [16, Chapter 3].

To study the number of points Nr = #X(Fqr), we form the zeta function
of X:

Z(T ) = ZX(T ) = exp

( ∞∑
r=1

#X(Fqr)
T r

r

)
∈ Q[[t]].

Let ad be the number of closed points of degree d of X. Then equivalently,
we claim that we may write Z(T ) as the product

Z(T ) =
∞∏
d=1

1

(1− T d)ad
;
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since Nr =
∑

d|r dad (a closed point of degree d corresponds to a Galois-

orbit of d points defined over Fqd and hence Fqr whenever d | r), taking the
logarithmic derivative we find

d

dT
log

∞∏
d=1

1

(1− T d)ad
=
∞∑
d=1

dadT
d−1

1− T d
=

1

T

∞∑
d=1

dad(T
d + T 2d + . . . )

=
1

T

∞∑
r=1

(∑
d|r

dad

)
T r =

1

T

∞∑
r=1

NrT
r =

d

dT
logZ(T ).

The zeta function satisfies the following properties.

Theorem 2.1 (Weil conjectures for curves). We have

Z(T ) =
P (T )

(1− T )(1− qT )

where

P (T ) =

2g∏
i=1

(1− αiT ) ∈ Z[T ]

is a polynomial of degree 2g with reciprocal roots αi ∈ C that are algebraic
integers satisfying |αi| =

√
q.

The zeta function Z(T ) satisfies the functional equation

Z

(
1

qT

)
=

Z(T )

(qT 2)g−1
.

As a corollary, we have a bound on #X(Fqr).

Corollary 2.2 (Hasse-Weil bound). We have

Nr = #X(Fqr) = qr + 1−
2g∑
i=1

αri ≤ qr + 1 + b2gqr/2c.

Proof. Taking the logarithmic derivative and multiplying by T , we have

∞∑
r=1

NrT
r−1 =

1

1− T
+

q

1− qT
−

2g∑
i=1

αi
1− αiT

=

∞∑
r=0

(1 + qr+1)T r −
∞∑
r=1

(
2g∑
i=1

αr+1
i

)
T r.

Hence

|Nr − (1− qr)| ≤
∣∣∑2g

i=1 α
r
i

∣∣ ≤ 2gqr/2.

�

As a consequence, we know

A(q) = lim sup
g→∞

Nq(g)

g
≤ 2
√
q.
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We will see improvements on this bound in later sections of this article.
There is a large amount of literature which discusses the question of how

one can efficiently compute the zeta function of a curve X given a set of
equations which define X in an ambient projective space. We refer the
reader to [27] and the references therein. We can always recover the zeta
function in very simple cases by counting points over a sufficient number of
extensions of the ground field, as indicated in the following example.

Example 2.3. Consider again the curve X : x3y+x3z+y3z = 0 over F2. We
write

Z(T ) =
P (T )

(1− T )(1− 2T )

where P (T ) ∈ 1 + TZ[T ] is a polynomial of degree 2g = 6 by the Weil
conjectures. We count that X has number of points Ni = 3, 5, 24, 17, 33, 38
for i = 1, . . . , 6, hence

(1− T )(1− 2T ) exp

(
3T +

5

2
T 2 + · · ·+ 38

6
T 6 + . . .

)
= P (T )

and by matching coefficients we find that P (T ) = 1+5T 3+8T 6, and therefore

Z(T ) =
1 + 5T 3 + 8T 6

(1− T )(1− 2T )
.

From this we can calculate the reciprocal roots αi of P (T ); among them are
(1±

√
−7)/2 which indeed have absolute value

√
2.

2.2. Serre bound. For many years after Weil first proved these conjectures,
there was essentially no investigation into how close the bound was to being
sharp. In many cases, the bound can be improved greatly, and in the next
few sections we will discuss the varied techniques which have been used to
obtain improvements in certain cases. The first is due to Serre.

Proposition 2.4 (Serre [18, 19]). We have

Nq(g) ≤ q + 1 + gb2√qc.

Proof. Let βi = b2√q+1c+αi+αi. Then βi ∈ R are algebraic integers stable

under Gal(Q/Q) with βi > 0 (since |αi| =
√
q). Therefore

∏g
i=1 βi > 0 is an

integer, and by the arithmetic-geometric mean

1

g

g∑
i=1

βi ≥

(
g∏
i=1

βi

)1/g

≥ 1

we deduce

g ≤
g∑
i=1

βi = g (b2√qc+ 1) +

g∑
i=1

(αi + αi)

which gives the result. �

As a consequence, we immediately obtain A(q) ≤ b2√qc.
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Example 2.5. Serre’s modification already gives an essential improvement.
For g = 3, q = 8, the Weil bound gives N8(3) ≤ 25, whereas the improved
bound gives N8(3) ≤ 24; but this is exactly the number of points on the
Klein quartic (1.1). We conclude that N8(3) = 24.

2.3. Ihara bound. When the genus is large in comparison to the size of
the field, a significant improvement can be made, due to Ihara.

Theorem 2.6 (Ihara [11]). We have

Nq(g) ≤ 1

2

(√
(8q + 1)g2 + (4q2 − 4q)g − (g − 2q − 2)

)
and asymptotically

A(q) ≤ 1

2

(√
8q + 1− 1

)
.

Proof. Let X be a curve of genus g over Fq. Then by (2.1),

#X(Fqr) = q + 1−
g∑
i=1

(αri + αi
r) .

If we write ai = αi + αi, then

q + 1−
g∑
i=1

ai = #X(Fq) ≤ #X(Fq2) = q2 + 1 + 2qg −
g∑
i=1

a2i

using the fact that αiαi = q.
Let N = #X(Fq). Then by the Cauchy-Schwarz inequality, we have

g
(∑g

i=1 a
2
i

)
≤ (
∑g

i=1 ai)
2
,

hence

N = #X(Fq) ≤ q2 + 1 + 2qg − 1

g

( g∑
i=1

ai

)2
= q2 + 1 + 2qg − 1

g
(q + 1−N)2.

Simplifying, we have

N2 + (g − 2− 2q)N + (q + 1)2 − (q2 + 1)g − 2qg2 ≤ 0;

solving for N we obtain

N ≤ 1

2

(√
(8q + 1)g2 + (4q2 − 4q)g − g + (2q − 2)

)
as claimed. Finally,

N

g
≤ 1

2

(√
(8q + 1) +

4q2 − 4q

g
− 1 +

2q − 2

g

)
→ 1

2

(√
8q + 1− 1

)
as g →∞. �
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Remark 2.7. This bound is better than the Hasse-Weil bound when

2 (q + 1 + 2g
√
q) >

√
(8q + 1)g2 + (4q2 − 4q)g − (g − 2q − 2)

g2(1 + 4
√
q)2 > (8q + 1)g2 + (4q2 − 4q)g

g >
4q2 − 4q

(1 + 4
√
q)2 − 8q − 1

=
4q(q − 1)

8
√
q(
√
q + 1)

=

√
q(
√
q − 1)

2
,

i.e. when the genus is large in comparison to the size of the field. The bound
is already better for q = 4 and g > 1.

Example 2.8. For example, the Weil bound tells us that N2(100) ≤ 285, but
the Ihara bound tells us that N2(100) ≤ 159.

2.4. Drinfel’d-Vlăduţ bound. Generalizing Ihara’s argument, Drinfel’d-
Vlăduţ obtained the following.

Theorem 2.9 (Drinfel’d-Vlăduţ bound [26]). We have

A(q) ≤ √q − 1.

Proof. For every positive integer k, by the Weil conjectures we have

#X(Fqk) = qk + 1−
g∑
i=1

(αki + αi
k)

with αi =
√
qωi where |ωi| = 1. Then

0 ≤
g∑
i=1

|1 + ωi + · · ·+ ωki |2 =

g∑
i=1

(
k∑
r=0

ωri

)(
k∑
r=0

ωi
r

)
;

But

(1 + ωi + · · ·+ ωki )(1 + ωi + · · ·+ ωi
k) =

k∑
r=0

(k + 1− r)(ωri + ωi
r) + (k + 1),

hence

0 ≤ g(k + 1) +

k∑
r=1

(k + 1− r)
g∑
i=1

(ωri + ωi
r)

= g(k + 1) +
k∑
r=1

(k + 1− r)q
r + 1−#X(Fqr)

(
√
q)r

≤ g(k + 1) +

k∑
r=1

(k + 1− r)q
r + 1−N
qr/2

.
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where N = #X(Fq). Solving for N gives

N
k∑
r=1

(k + 1− r) 1

qr/2
≤ g(k + 1) +

k∑
r=1

(k + 1− r)qr/2 +
k∑
r=1

(k + 1− r) 1

qr/2

N ≤ 1 +
g(k + 1) +

∑k
r=1(k + 1− r)qr/2∑k

r=1(k + 1− r)q−r/2
.

Therefore as g →∞ we have

A(q) = lim sup
g→∞

Nq(g)

g
≤ k + 1∑k

r=1(k + 1− r)q−r/2
→ 1∑∞

r=1 q
−r/2

=

(
q−1/2

1− q−1/2

)−1
=
√
q − 1

as claimed. �

Remark 2.10. The argument of Drinfel’d-Vlăduţ also gives upper bounds
for Nq(g) when g is much larger than q. For example, choosing k = 8 in the
above proof we find that N2(100) ≤ 77.

2.5. Oesterlé bound. We would like to modify the preceding argument to
find the best possible minimal bound obtainable by such methods.

As an overview to motivate the method, suppose we start with a set of
complex numbers αi that might feasibly arise as Frobenius eigenvalues of a
curve X, i.e. reciprocal roots of the numerator of the zeta function of X.
Suppose we forget almost all properties of these numbers αi, remembering
only that they occur in complex conjugate pairs and have complex absolute
value |αi| =

√
q. We form a formal collection of these numbers by allowing

them to have multiplicities which are rational numbers. Then from any such
formal collection, if we assume that they in fact arise from a curve X, we
can write down the zeta function of the corresponding curve, and hence the
genus and number of points. The Oesterlé bound we will exhibit below is
the optimal upper bound on Nq(g) for this general type of object.

We carry out this program following Serre [18]. If we let ωj = eiθj for
θj ∈ R in the above notation, then

Nr = #X(Fqr) = qr + 1 +

g∑
j=1

(αrj + αj
r) = qr + 1− qr/2

g∑
j=1

(eirθj + e−irθj )

= qr + 1− 2qr/2
g∑
j=1

cos(rθj).

Therefore if we are given real numbers cr ∈ R, we can multiply the above
equation by cr and divide by qr/2 to obtain

2

g∑
j=1

cr cos(rθj) + crNrq
−r/2 = crq

r/2 + crq
−r/2.
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Define

f(θ) = 1 + 2
∞∑
n=1

cr cos(rθ), Ψd(t) =
∞∑
r=1

crdt
rd,

so after summing over r we obtain

g∑
j=1

2
∞∑
r=1

cr cos(rθj) +
∞∑
r=1

crNrq
−r/2 =

∞∑
r=1

crq
r/2 +

∞∑
r=1

crq
−r/2

g∑
j=1

f(θj) +
∞∑
r=1

crNrq
−r/2 = g + Ψ1(q

1/2) + Ψ1(q
−1/2).

Now from Nr =
∑

d|r dad where ad is the number of closed points of X of

degree d, we have

∞∑
r=1

crNrq
−r/2 =

∞∑
r=1

cr

(∑
d|r

dad

)
q−r/2

=
∞∑
d=1

dad

( ∞∑
m=1

cmdq
−md/2

)
=
∞∑
d=1

dadΨd(q
−1/2).

We have shown the following result.

Proposition 2.11 (Weil’s explicit formulas). With the notation above, we
have

g∑
j=1

f(θj) +
∞∑
d=1

dadΨd(1/
√
q) = g + Ψ1(

√
q) + Ψ1(1/

√
q).

Serre [18] used these formulas to obtain bounds on Nr as follows.

Corollary 2.12. If the cr are chosen such that cr ≥ 0 for all r and f(θ) ≥ 0
for all θ ∈ R, and only finitely many cr are nonzero, then

Nq(g) ≤ g

Ψ(1/
√
q)

+ 1 +
Ψ(
√
q)

Ψ(1/
√
q)
,

where Ψ = Ψ1.

Proof. We have

NΨ1(1/
√
q) = g + Ψ1(

√
q) + Ψ1(1/

√
q)−

∞∑
d=2

dadΨd(1/
√
q)−

g∑
j=1

f(θj)

≤ g + Ψ1(
√
q) + Ψ1(1/

√
q)

since by assumption f(θj) ≥ 0 and cr ≥ 0. �

For every choice of cr satisfying these conditions, we obtain an upper
bound. In particular, the Weil bound corresponds to the choice f(θ) =
1 + cos θ.
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Example 2.13 (Serre [18]). We can, for example, take f of the form

f(θ) =
(1 + 2

∑∞
r=1 ur cos rθ)2

1 + 2
∑∞

r=1 u
2
r

.

It has constant term 1 (just check the Taylor expansion), and using trigono-
metric identities we can write it in the desired form if we take ur ≥ 0. If we
take q = 2, then the choice u1, u2, u3 = 1, 3/4, 1/2 gives

f(θ) = 1 +
31

17
cos θ+

24

17
cos 2θ+

16

17
cos 3θ+

1

2
cos 4θ+

3

17
cos 5θ+

1

34
cos 6θ

and thus

N2(g) ≤ 544

318
√

2 + 227
g +

16(75
√

2 + 86)

318
√

2 + 227
≤ 0.8038g + 4.514.

We find N2(g) ≤ 7, 8, 9 for g = 3, 4, 5. Compare this to the Weil bound,

N2(g) ≤ 3 + 2
√

2g ≤ 2.828g + 3,

which gives N2(g) ≤ 11, 14, 17.
In this case, these upper bounds are in fact best possible. For example,

the curve

X : x3y + y3z + xz3 + x2y2 + x2z2 + y2z2 + x2yz + xy2z = 0

passes through each of the 7 points of the projective plane P2
F2

, and X is
nonsingular and hence has genus 3. We will briefly mention some methods
of constructing curves with many points below (§4).

Corollary 2.14 (Serre [20]). We have

Nq(g) ≤

{
q2 + 1, if g ≤

√
2q(q − 1)/2;

q3 + 1, if g ≤ √q
(√

3(q + 1) +
√
q
)

(q − 1)/2.

Proof. If we take

f(θ) =
1

2
(1 +

√
2 cos θ)2 = 1 +

√
2 cos θ +

1

2
cos 2θ

then

Ψ(1/
√
q) =

1

4q
(2
√

2q + 1), Ψ(
√
q) =

√
q

4
(2
√

2 +
√
q)

and hence

N ≤ 4gq

2
√

2q + 1
+ 1 + q

√
q

(
2
√

2 +
√
q

2
√

2q + 1

)

≤ 2q
√

2q(q − 1) + 2q
√

2q + q2

2
√

2q + 1
+ 1 = q2 + 1.



CURVES OVER FINITE FIELDS 11

The second statement follows from applying the same argument to

f(θ) =
1

3
cos2 θ

(√
3 + 2 cos θ

)2
= 1 +

√
3 cos θ +

7

6
cos 2θ +

√
3

3
cos 3θ +

1

6
cos 4θ.

�

As can be seen from the above, the next problem is to find an optimal
choice of the cr which will minimize this upper bound. Equivalently, given
a fixed number of points N and field q, by (2.12) we have

g ≥ (N − 1)Ψ(1/
√
q)−Ψ(

√
q) = (N − 1)

∞∑
r=1

crq
−r/2 −

∞∑
r=1

crq
r/2

and thus we want the cr that give the best possible lower bound on g.
Oesterlé was able to give an explicit recipe for finding the cr using linear
programming. It is really something of a miracle that one can give a formula
for every q and g as follows.

Theorem 2.15 (Oesterlé). Let λ = N − 1 and m be the integer such that

qm/2 < λ ≤ q(m+1)/2. Let

u =
q(m+1)/2 − λ
λ
√
q − qm/2

.

Then there is a unique solution ϑ ∈ [π/(m+ 1), π/m) to

cos (ϑ(m+ 1)) + u cos (ϑ(m− 1)/2) = 0

and if we let

ar = (m− r) cos(rϑ) sinϑ+ sin((m− r)ϑ)

and cr = ar/a0, then

g ≥
m−1∑
r=1

cr(λq
−r/2 − qr/2) =

(λ− 1)
√
q cos(ϑ) + q − λ

q − 2
√
qϑ+ 1

.

Ingredients of proof. The proof is given in [10], following Serre in an exposi-
tion of Oesterlé’s argument in unpublished notes from a course at Harvard
in 1985.

There exists a measure µ on S1 = {z : C : |z| = 1} such that

1

2

∫
S1
dµ = (N − 1)

∞∑
r=1

crq
−r/2 −

∞∑
r=1

crq
r/2

with the property that equality occurs exactly when the cr are optimal (if
q ≥ 3; one can treat the case q = 2 by different methods). This measure is
given by µ =

∑
t∈T νtδt where δt is the Dirac measure (δt(x) = 1 or 0 as x = t

or x 6= t), the νt are the zeros of the function f(t) = 1 +
∑∞

n=1 cr(t
r + t−r)
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on S1, and T is a symmetric set with #T = m − 1. One then verifies that
ϑ exists and gives rise to the solutions t in the above formula directly. �

Example 2.16. For q = 2, N = 71, we find m = 12,

u =
64
√

2− 70

70
√

2− 64
,

and ϑ = 0.2562, and hence

c1 = 0.9698, c2 = 0.8868, . . . , c11 = 0.004227

hence

g ≥

⌈
66.75

√
2− 68

3− 1.935
√

2

⌉
= 101.

Hence a curve with genus g ≤ 100 has N3(g) ≤ 70 ≤ 77, which is an
improvement on the Drinfel’d-Vlăduţ bound.

In sum, when the genus is small in comparison to the size of the field, the
Serre-Weil bound is minimal, and as the genus becomes larger, one ascends
from the Ihara bound to the Oesterlé bound (which is best possible in the
sense that it minimizes the bound coming from Weil’s explicit formula).

3. Lower bounds

One is also interested in knowing in general a lower bound on Nq(g).
There are two essentially different cases.

3.1. q a square. In the case that q is a square, we can get quite precise
asymptotic information.

Proposition 3.1 (Ihara [11], Tsfasman-Vlăduţ-Zink [24]). If q is a square,
then

A(q) ≥ √q − 1.

Sketch of proof. The curves that give this bound are Shimura curves consid-
ered over Fq. In the case q = p2, the Shimura curves are the modular curves
X0(`) and the proof runs as follows. We can consider the curves X0(`) for
` 6= p, ` ≡ 11 (mod 12) over Fp2 , parametrizing elliptic curves equipped
with an isogeny of degree `.

The genus of this curve is (` + 1)/12 (this can be computed using the
Riemann-Hurwitz formula using the quotient map X0(`) → X0(1), since
ramification happens only at i, ρ, and ∞). There are roughly (p − 1)/12
supersingular j-invariants in characteristic p all defined over Fp2 (with a
slight error due to the cusps and the j-values 0 and 1728). Since there are
`+1 distinct cyclic subgroups of order ` of any elliptic curve defined over Fp,
and when j 6= 0, 1728 the automorphism group of E is 〈±1〉, these give rise
to distinct isogenies. Therefore there are approximately (` + 1)(p − 1)/12
rational points on X0(`), so the ratio to its genus is roughly p−1. One then
verifies that it actually approaches p− 1 as `→∞. �
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Remark 3.2. For a different proof that counts points using Hecke operators,
see [16, §5.6]. These curves exceed the Varshamov-Gilbert bound—see [24].

Theorem 3.3. If q is a square, A(q) =
√
q − 1.

This follows from the theorem and the upper bound (2.9) above.
Garcia and Stichtenoth constructed an explicit tower Xi over Fq2 which

meets this bound.

Theorem 3.4 (Garcia and Stichtenoth [5]). Start with X1 = P1
F2
q

with co-

ordinate x1 and define Artin-Schrier covers Xi by

yqi+1 + yi+1 = (yi/xi−1)
q+1.

Then

#Xi(Fq2)/g(Xi)→ q − 1 (g →∞).

Ingredients of proof. One uses the ramification theory of Artin-Schreier ex-
tensions (see [22, Proposition VI.4.1]) and the Hurwitz genus formula. The
hard steps are determining precisely the places that ramify in each relative
extension K(Xi)/K(Xi−1) and calculating the genus of Xi, which is found
to be approximately qi−1(q − 1). Then one calculates that

#Xi(Fq2) ≥ (q2 − 1)qi−1 + 2q

by counting places that split completely and those that ramify. This implies
the result. �

Such an infinite sequence of distinct curves Xi over Fq satisfying

#Xi(Fq)
g(Xi)

→ √q − 1

as i → ∞ is called an optimal tower. Remarkably, at the time of this
writing, all such optimal towers have been shown to be modular, meaning
they arise as parameter spaces for objects such as elliptic curves, Shimura
curves, or Drinfel’d modules for sufficiently large i. We refer the reader to
[3] for a proof that the tower above is modular and to [2] for more on this
fascinating subject.

3.2. q not a square. In the much more difficult case when q is not a square,
Serre has given the following asymptotic result.

Proposition 3.5 (Serre [18]). There exists a constant c > 0 such that

A(q) ≥ c log q

for all q.

The proof uses an infinite class field tower of the function field of a hy-
perelliptic curve over Fq. We also have the following lower bound.
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Theorem 3.6 (Elkies-Kresch-Poonen-Wetherell-Zieve [28]). For all q and
g,

Nq(g) > gaq

where aq > 0 is a constant that depends only on q (if q is a square, we can
take aq = (

√
q − 1)/6).

Ingredients of proof. The proof combines the following. The first is due to
Ihara-Serre: for any q, there exist curves Xi of strictly increasing genera gi
such that for all i, #Xi(Fq) ≥ bqgi where bq > 0 and limi→∞ gi+1/gi < ∞.
The second is: for any X/Fq and any h > 4gX , there exists a curve X ′/Fq
such that gX′ = h and #X ′(Fq) ≥ #X(Fq). It is clear that these imply the
theorem. To prove the second, one proves only that there exists a degree
two cover X ′ → X with h = gX′ for any h > 4gX . �

4. Determination of Nq(g)

Actual values of Nq(g) for small values of q and g are interesting. Lower
bounds are given by the best curve we know, and with luck, this attains one
of the upper bounds above; otherwise we obtain an interval in which Nq(g)
lies.

4.1. Maximal curves. First, we seek out curves that attain the Weil bound.
A curve X is called maximal if it attains the Weil bound (2.2), i.e.

#X(Fq) = q + 1 + 2g
√
q.

It follows that if X is maximal, then q is a square (so that the right-hand
side is an integer) and g ≤ (q −√q)/2 by Remark 2.7.

Example 4.1. The Hermitian curve

X : xq+1 + yq+1 = zq+1

has genus q(q−1)/2 and has q3 +1 points over Fq2 . (See [22, Lemma VI.4.4]
for the properties of the function field of X.) This curve is also birational
to X : yqz+ yzq = xq+1, which clarifies many of the properties of the curve;
see [22, Example VI.4.3].

We may count points as follows: for any a ∈ F∗q2 , we have aq+1 = N(a) ∈
Fq; the norm map N : F∗q2 → F∗q is surjective and hence

# kerN = (q2 − 1)/(q − 1) = q + 1.

Therefore for a choice of a 6= 0, there are q + 1 choices for b such that
N(a) + N(b) = aq+1 + bq+1 = 0, and there is the unique value c = 0 such
that (a : b : c) ∈ X. A similar count holds when a = 0. Accounting for
scalar multiples, and we find

#X(Fq2) =
2q2(q + 1) + q2

(
q2 − (q + 1)

)
(q + 1)

q2 − 1
= q3 + 1.

Since
q2 + 1 + 2g

√
q2 = q2 + 1 + q2(q − 1) = q3 + 1,
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this curve attains the Hasse-Weil bound.

It can be shown that maximal curves only occur for specific genera.

Theorem 4.2 (Fuhrmann-Garcia-Torres [4]). If X is a maximal curve of
genus g over Fq (where q is a square) then g = (q−√q)/2 or g ≤ (

√
q−1)2/4.

Moreover, if q is odd and

(
√
q − 1)(

√
q − 2)/4 < g ≤ (

√
q − 1)2/4

then g = (
√
q − 1)2/4.

Ingredients of proof. If X is a maximal curve and X ′ a curve dominated by
X then X ′ is also a maximal curve, since the Jacobian of X ′ is an isogeny
factor of the Jacobian of X. For a maximal curve X the action of Frobenius
on the Jacobian is by −√q. Choose a Fq2-rational point P0 on X and map
X to the Jacobian Jac(X) by P 7→ [P −P0]. If F (P ) is the Frobenius image
of P on X then

−√q[P − P0] = [F (P )− P0]

in the Jacobian, so for any point P the divisor
√
qP + F (P ) is linearly

equivalent to (
√
q + 1)P0 and this gives a canonically defined linear system

on such curves. The result then follows by looking at this linear system, as
it gives a bound on g. �

We refer the reader [23] for an introduction to Stöhr-Voloch theory which
concerns the geometric consequences of the arithmetic property of having
many rational points.

4.2. Fixed g. Serre [18] began the systematic study of Nq(g) for small q
and g. For g = 0 (the projective line), we have Nq(0) = q + 1.

For g = 1 (elliptic curves), we have the following classical result.

Proposition 4.3 (Hasse-Deuring). We have

Nq(1) =

{
q + b2√qc, if q = pn, n ≥ 3, n odd, and p | b2√qc;
q + 1 + b2√qc, otherwise.

The smallest exceptional case is q = 128 = 27; we have N128(1) = 150,
b2√qc = 22; other examples are q = 211, 215, 37, 59.

For curves of genus g = 2, Serre proved the following result.

Theorem 4.4 (Serre [19]). If q is a square and q 6= 4, 9 then

Nq(2) = q + 1 + 4
√
q.

Furthermore, we have N4(2) = 10 and N9(2) = 20.
If q is not a square, then

Nq(2) =


q + 1 + 2b2√qc, if q is nonspecial;

q + 2b2√qc, if q is special and, 2
√
q − b2√qc > (

√
5− 1)/2;

q − 1 + 2b2√qc, otherwise.
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We deem q to be special if q = pe and p | b2√qc or if there exist solutions
to one of the equations

q = x2 + 1, q = x2 + x+ 1, q = x2 + x+ 2

with x ∈ Z. For example, if e = 1, i.e. q = p, then p is special iff p = x2 + 1
or p = x2 + x + 1. When e ≥ 3, it can be shown that the Diophantine
condition is satisfied only for q = 73 or q = 23, 25, 213.

Ingredients of proof, [20]. We endeavor to construct a curve of genus 2 hav-
ing many rational points. One begins with an elliptic curve E having
q + 1 + b2√qc points with End(E) = R = Z[π] with π the Frobenius
map. The ring R is an order in a quadratic imaginary field of discrimi-
nant D = b2√qc2 − 4q < 0. Find a nondegenerate Hermitian form P over
R, projective of rank 2, positive definite, and indecomposable (which exists
when D < −7). Then A = P ⊗R E is an abelian variety of dimension 2,
isogeneous to E ×E, equipped with an indecomposable, principal polariza-
tion by P . There is a correspondence between curves of genus 2 and abelian
varieties of dimension 2 equipped with such a polarization, and therefore A
is the Jacobian of a curve of genus 2 with #X(Fq) = q + 1 + 2b2√qc.

The exceptional cases occur when the form is decomposable, which trans-
lates into an occurence of p satisfying one of the three given Diophantine
conditions. �

4.3. Other examples. For small genera, certain values of Nq(g) can be
eliminated by listing all of the possibilities of the zeta function and showing
that zeta functions in this list imply a decomposition of the Jacobian as
a product of principally polarized abelian varieties, which contradicts the
irreducibility of the theta divisor of the curve. Sometimes one can rule out
that Nq(g) meets the Serre bound by arguments like Galois descent, which
works for q = 27, g = 3 and q = 8, g = 4. (For a complete list of references,
see [25].)

Tables of the best lower and upper bounds for g ≤ 50 and q = 2m, 3m for
small m have been collected by van der Geer and van der Vlugt [25]. The
most updated tables can be found at http://www.science.uva.nl/~geer/.
Once one has good upper bounds, one would like to show that these bounds
are met by some curve, therefore one needs good methods of constructing
curves; these methods include using class field theory, quotients and covers of
classical curves (like the Hermitian, Fermat, and modular curves) and other
curves with many rational points, fibre products of Artin-Schreier curves,
rank 1 Drinfel’d modules, Kummer covers, exhaustive computer search, and
many others. We refer the reader to [25] for an overview.
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[13] Kristin Lauter and René Schoof, Using class field theory to construct curves with

many points, Lectures given at Arizona Winter School: Arithmetic of function fields,
February 2000.

[14] F.J. MacWilliams and N.J.A. Sloane, Theory of error-correcting codes, Amsterdam,
North-Holland, 1977.

[15] Yu. I. Manin, What is the maximum number of points on a curve over F2?, J. Fac. Sci.
Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 715–720.

[16] Carlos Moreno, Algebraic curves over finite fields, Cambridge tracts in mathematics,
vol. 97, Cambridge University Press: Cambridge, 1991.

[17] R. Schoof, Algebraic curves and coding theory, UTM 336, Univ. of Trento, 1990.
[18] Jean-Pierre Serre, Sur le nombre des points rationnels d’une courbe algébrique sur un

corps fini, C. R. Acad. Sci. Paris, I 296 (1983), 397–402. (Oeuvres, vol. III, no.128,
658–663.)

[19] Jean-Pierre Serre, Nombres de points des courbes algébriques sur Fq, Sém. de Théorie
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