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On a probabilistic local-global principle for

torsion on elliptic curves

par John Cullinan, Meagan Kenney et John Voight

Résumé. Soit m un entier positif et soit E une courbe elliptique
sur Q avec la propriété que m | #E(Fp) pour un ensemble de
densité 1 de nombres premiers p. En nous appuyant sur les travaux
de Katz et Harron–Snowden, nous étudions la probabilité que m |
#E(Q)tor: nous trouvons qu’elle est non nulle pour tout m ∈
{1, 2, . . . , 10} ∪ {12, 16} et nous le calculons exactement quand
m ∈ {1, 2, 3, 4, 5, 7}. En complément, nous donnons un décompte
asymptotique de courbes elliptiques avec une structure de niveau
supplémentaire lorsque la courbe modulaire paramétrable résulte
du quotient par un groupe sans torsion de genre zéro.

Abstract. Let m be a positive integer and let E be an elliptic
curve over Q with the property that m | #E(Fp) for a density 1
set of primes p. Building upon work of Katz and Harron–Snowden,
we study the probability that m | #E(Q)tor: we find it is nonzero
for all m ∈ {1, 2, . . . , 10} ∪ {12, 16} and we compute it exactly
when m ∈ {1, 2, 3, 4, 5, 7}. As a supplement, we give an asymp-
totic count of elliptic curves with extra level structure when the
parametrizing modular curve arises from the quotient by a torsion-
free group of genus zero.

1. Introduction

1.1. Motivation. Let E be an elliptic curve over Q and let E(Q)tor

denote the torsion subgroup of its Mordell–Weil group. If p is a prime
of good reduction for E with p - #E(Q)tor, then we have an injection
E(Q)tor ↪→ E(Fp); consequently, if m | #E(Q)tor then m | #E(Fp) for all
but finitely many p. The converse statement holds only up to isogeny, by
a result of Katz [19, Theorem 2]: if m | #E(Fp) for a set of primes p of
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density 1, then there exists an elliptic curve E′ over Q that is isogenous
over Q to E such that m | #E′(Q)tor.

We say E locally has a subgroup of order m if m | #E(Fp) (equivalently,
m | #E(Qp)tor) for a set of primes p of density 1. With respect to the
property of having a subgroup of order m, the result of Katz is then a
local-global principle for isogeny classes of elliptic curves. In this paper,
we consider a probabilistic refinement for the elliptic curves themselves: if
E locally has a subgroup of order m, what is the probability that E globally
has a subgroup of order m?

1.2. Notation. Every elliptic curve E over Q is defined by a unique equa-
tion of the form y2 = f(x) = x3 + Ax + B with A,B ∈ Z such that
4A3 + 27B2 6= 0 and there is no prime ` such that `4 | A and `6 | B. Let E
be the set of elliptic curves of this form, and define the height of E ∈ E by

(1.2.1) htE := max(|4A3|, |27B2|).
For H > 0, let E≤H := {E ∈ E : htE ≤ H} be the finite set of elliptic
curves of height at most H.

For m ∈ Z≥1, let Em? be the set of E ∈ E such that E locally has a
subgroup of order m. In this notation, our goal is to study the probability

(1.2.2) Pm := lim
H→∞

#{E ∈ E≤H : m | #E(Q)tor}
#{E ∈ Em? ∩ E≤H}

when this limit exists.

1.3. Results. In view of the theorem of Mazur [23] on rational torsion,
we have Em? nonempty if and only if m ∈ {1, 2, . . . , 10, 12, 16}. Our main
result is as follows.

Theorem 1.3.1. For all m ∈ {1, 2, . . . , 10, 12, 16}, the probability Pm de-
fined in (1.2.2) exists and is nonzero. Moreover, Pm is effectively com-
putable.

For m = 1 we have vacuously Pm = 1. For m = 2, we again have
Pm = 1 because if E ∈ E2? then its defining cubic polynomial f(x) ∈ Z[x]
has a root modulo p for a set of primes of density 1, so by the Chebotarev
density theorem it has a root in Q. The cases where m = 3, 4 require
special consideration and will be treated at the end of this section.

For m ≥ 5 in our list, our proof of Theorem 1.3.1 is carried out in the
following way. We show that Pm can be expressed in terms of the number
of points of bounded height on a finite list of explicitly given modular
curves—reducing to the case where m = `n is a prime power, these curves
arise from a careful study of the `-adic Galois representation, refining the
above theorem of Katz (see §2.3). We then apply the principle of Lipschitz,
counting points in a homogeneously expanding region, to count elliptic
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curves by height on these modular curves. Taking the ratio, we then find
a positive probability.

To count elliptic curves by height, we establish a general result of po-
tential independent interest: we extend work of Harron–Snowden [17], who
provide asymptotics for the number of elliptic curves of bounded height in
a universal family, as follows. Let N ∈ Z≥1 and let G ≤ GL2(Z/N) be a
subgroup with det(G) = (Z/N)×. Let πN : SL2(Z) → SL2(Z/N) be the
projection map and let

(1.3.2) ΓG := π−1
N (G ∩ SL2(Z/N)) ≤ SL2(Z).

Let YG be the open modular curve obtained by taking the quotient of the
upper half-plane by the action of ΓG. Let GalQ := Gal(Qal |Q) and let

ρE,N : GalQ → Aut(E[N ](Qal)) ' GL2(Z/N)

be the Galois representation on the N -torsion subgroup of E. We write
ρE,N (GalQ) . G to mean that the image of ρE,N is conjugate in GL2(Z/N)
to a subgroup of G.

Theorem 1.3.3. Let G ≤ GL2(Z/N) be such that detG = (Z/N)×. Sup-
pose that ΓG is torsion free (in particular, −1 6∈ ΓG) and that YG has genus
zero and no irregular cusps. Let

(1.3.4) d(G) := 1
2 [PSL2(Z) : ΓG] = 1

4 [SL2(Z) : ΓG].

Then d(G) ∈ Z≥1, and there exists an effectively computable c(G) ∈ R≥0

such that

(1.3.5) #{E ∈ E≤H : ρE,N (GalQ) . G} = c(G)H1/d(G) +O(H1/e(G))

as H →∞, where e(G) = 2d(G).

In particular, this theorem applies to the groups G that arise in the
proof of Theorem 1.3.1. Moreover, it allows us to count elliptic curves with
(marked) torsion of size at least 5; dealing with the remaining few cases
separately, we have the following corollary.

Corollary 1.3.6. For each T in Table 1.3.8, we have

(1.3.7) #{E ∈ E≤H : E(Q)tor ' T} = c(T )H1/d(T ) +O(H1/e(T )).

In view of Table 1.3.8, the count of curves E ∈ E≤H such that E(Q)tor

merely contains a subgroup isomorphic to T has the same asymptotic as
the count in (1.3.7).
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T 1/d(T ) 1/e(T ) T 1/d(T ) 1/e(T )

{0} 5/6 1/2 Z/9, Z/10 1/18 1/36

Z/2 1/2 1/3 Z/12 1/24 1/48

Z/3 1/3 1/4 Z/2× Z/2 1/3 1/6

Z/4 1/4 1/6 Z/2× Z/4 1/6 1/12

Z/5, Z/6 1/6 1/12 Z/2× Z/6 1/12 1/24

Z/7, Z/8 1/12 1/24 Z/2× Z/8 1/24 1/48

Table 1.3.8: Asymptotic count of elliptic curves with designated torsion

Harron–Snowden [17, Theorem 1.2] proved that #{E ∈ E≤H : E(Q)tor '
T} � H1/d(T ) for the groups T in Table 1.3.8, and gave the power-saving
asymptotic with explicit constant [17, Theorem 5.6] for #T ≤ 3. Indeed,
there has been a recent spate of work on the topic of counting elliptic curves
with certain level structure by height [4, 6, 8, 24, 25]; the theorem above
provides an asymptotic in cases not handled by these other works.

We follow the strategy of Harron–Snowden in the proof of Theorem 1.3.3,
again applying the Principle of Lipschitz. The constant c(G) is given by a
product of an area of a compact region in the plane multiplied by a sieving
factor that includes certain effectively computable local correction factors.
The square-root error term accounts for the boundary of the region. The
hypotheses of Theorem 1.3.3 ensure that the moduli problem defined byG is
fine, so there is a universal elliptic curve over the associated moduli scheme.
(In fact, there are only finitely many torsion-free, genus zero congruence
subgroups ΓG ≤ SL2(Z)—a list first compiled by Sebbar [26].)

Remark 1.3.9. Although the above result suffices for our purposes, echoing
Harron–Snowden [17, §1.5], it would be desirable to establish a statement
generalizing Theorem 1.3.3 to an arbitrary group G with ΓG of genus zero.
See work of Ellenberg–Satriano–Zureick-Brown [14, §4] for a conjecture of
Batyrev–Manin–Malle type which predicts an estimate for the number of
rational points of bounded height on stacky curves.

Returning to our main result, Theorem 1.3.3 applies directly to the cases
m ≥ 5: tallying degrees d(G), it is then straightforward to prove Theorem
1.3.1. In fact, we show that even before tallying the degrees d(G), we know
they are all equal for curves arising from “isogenous” moduli problems, as
follows (Theorem 3.2.1).

Theorem 1.3.10. Let ϕ : E → E′ be an isogeny of elliptic curves over Q.
Let N ∈ Z≥1, let G := ρE,N (GalQ) ≤ GL2(Z/N) and similarly G′ for E′.
Then the associated modular curves YG and YG′ are isomorphic over Q,
and d(G) = d(G′).
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The invariance of the index of the adelic Galois representation under
isogeny was proven by Greenberg [16, Proposition 2.1.1] using a beautiful
but very different argument; we view the isomorphism of modular curves
as a refinement.

Finally, carrying this out this strategy with an explicit calculation yields
P5 and P7 in section 4.

Theorem 1.3.11. We have P5 = 25/34 ≈ 73.5% and P7 = 4/(4 +
√

7) ≈
60.2%.

For m = 5 and m = 7, and more generally, our investigation reveals that
the curves with torsion have smaller height relative to their counterparts
with just locally a subgroup of order m.

We now return to the remaining values m = 3, 4 are interesting in their
own right and benefit from direct arguments, so we dig deeper. Consider
first the case m = 3. We first recall that every elliptic curve E ∈ E3? either
has a rational 3-torsion point or its quadratic twist by −3 does. With
careful attention to local contributions at 3, we find a matching growth
rate for the quadratic twists, yielding the following result.

Theorem 1.3.12. We have P3 = 1/2.

So Theorem 1.3.12 says that among elliptic curves with 3 | #E(Fp) for
almost all p, there are 50-50 odds that 3 | #E(Q)tor.

When m = 4, the situation is more complicated, due in part to the fact
that E can have 4 | #E(Q)tor in two different ways. We first show that
having full 2-torsion dominates having a point of order 4 among elliptic
curves in E4? in the following sense.

Proposition 1.3.13. We have E ∈ E4? if and only if at least one of the
following holds:

(i) E(Q)[2] ' (Z/2)2, or
(ii) E has a cyclic 4-isogeny defined over Q.

Proposition 1.3.13 can also be rephrased geometrically: if E ∈ E4?, then
since E4? ⊆ E2? the elliptic curve E arises from a Q-rational point on the
classical modular curve Y0(2) = Y1(2), and this point lifts to a Q-rational
point under at least one of the natural projection maps Y (2) → Y0(2) or
Y0(4)→ Y0(2), each of degree 2.

The fact that 4 | #E(Fp) for all good odd p in case (ii) can be explained
by a governing field that is biquadratic: for half of the good primes we
have E(Fp)[2] ' (Z/2)2 whereas for the complementary half E(Fp) has an
element of order 4. See Proposition 5.1.4 for details.

We then count the number of elliptic curves in case (i) and (ii) with a
direct argument: we find they have the same asymptotic rate of growth,
with explicit constants. Next, we show that among curves satisfying (ii),
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those with 4 | #E(Q)tor are asymptotically negligible. Therefore, P4 is
equal to the probability that E belongs to case (i) among those curves
belonging to (i) and (ii), giving the following result.

Theorem 1.3.14. There exists a constant c4 ∈ R>0 such that as H →∞,

#{E ∈ E≤H : E has a cyclic 4-isogeny defined over Q}

= c4H
1/3 +O(H1/6).

Moreover, we have c4 ≈ 0.9574 and P4 ≈ 27.2% effectively computable.

The exact value of c4 is given in Proposition 5.3.10 and for P4 in Propo-
sition 5.3.12. For both m = 3, 4, these theorems match experimental data
(Remarks 5.2.6, 5.3.15).

Remark 1.3.15. We choose to normalize our height function including the
constants in the discriminant function, following Bhargava–Shankar [3].
Alternatively, one can order the elliptic curves by defining

ht′(E) := max(|A3|, |B2|)
(without the scalars 4, 27). The probability for m = 3 is again 1/2 in this
height; see Remark 5.3.17 for the probability for m = 4 computed in this
way instead.

1.4. Organization. Our paper is organized as follows. In Section 2, we
collect relevant facts about Galois representations attached to elliptic curves
as a way to reformulate our main question in terms of Galois image, re-
fining work of Katz [19]. With these images in hand, it then becomes a
computation with universal curves to obtain the order of growth of curves
in Em? ordered by height. In section 4, we use this to prove our main result
for m ≥ 5 and carry this out explicitly for P5, P7. In section 5, we treat
the remaining cases m = 3, 4 in detail, computing the asymptotics and the
relevant constants.

2. Galois representations and divisibility

In this section, we characterize the image of the Galois representation
under the condition of local m-divisibility. The main results of this section
are Corollary 2.3.13 and Theorem 2.3.14: we bound the degree of an isogeny
(guaranteed by the theorem of Katz [19, Theorem 1]) from any elliptic curve
E with locally a subgroup of order m to an elliptic curve E′ with a subgroup
of order m.

2.1. Setup. We reset our notation, working in more generality to start.
Let K be a number field with ring of integers ZK and algebraic closure Kal.
Let E be an elliptic curve over K with origin ∞ ∈ E(K). By a prime of
K we mean a nonzero prime ideal p ⊂ ZK , and we write Fp := ZK/p for
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the residue field of p; we say a prime p is good (for E) if p is prime of good
reduction for E.

Let ` ∈ Z be prime and let T`E := lim←−nE[`n](Kal) ' Z2
` be the `-

adic Tate module, writing P = (Pn)n ∈ T`E with each Pn ∈ E[`n](Kal)
satisfying `Pn = Pn−1. The absolute Galois group GalK := Gal(Kal |K)
acts continuously on T`E giving a Galois representation

(2.1.1) ρE,` : GalK → AutZ`
(T`E) ' GL2(Z`)

with det ρE,` : GalK → Z×` equal to the `-adic cyclotomic character. In the
above, we follow the convention that matrices act on the left on column
vectors.

We write

(2.1.2) ρE,`n : GalK → Aut(E[`n](Kal))

for just the action on E[`n](Kal), alternatively obtained as the composition
of ρE,` with reduction modulo `n. We also define V`E := T`E ⊗Q`.

If E′ is another elliptic curve over K, by an isogeny ϕ : E → E′ we mean
an isogeny defined over K. (If we have need to consider isogenies defined
over an extension, we will indicate this explicitly.)

For a good prime p of K coprime to `, we have

(2.1.3) #E(Fp) = det(1− ρE,`(Frobp))

where Frobp is the conjugacy class of the Frobenius automorphism at p
in GalK , and recall that the point counts #E(Fp) are well-defined on the
isogeny class of E. Moreover, by the Chebotarev density theorem, the
condition `n | #E(Fp) for a set of primes p of density 1 is equivalent to the
group-theoretic condition

(2.1.4) det(1− ρE,`(σ)) ≡ 0 (mod `n)

for all σ ∈ GalK , and further `n | #E(Fp) for primes p in a set of density
1 if and only if `n | #E(Fp) for all but finitely many p.

2.2. Galois images. Both to motivate what follows and because we will
make use of it, we begin with the following lemma.

Definition 2.2.1. A basis P1, P2 for T`E is clean if there exist r, s ∈ Z≥0

such that (in coordinates) P1,r, P2,s generate E[`∞](K).

Choosing generators, we see that T`E always has a clean basis. Moreover,
if P1, P2 is a clean basis, then the integers r, s are unique and E[`∞](K) '
Z/`r × Z/`s.

Lemma 2.2.2. The following statements hold.
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(a) In a clean basis for T`E, we have

(2.2.3) ρE,`(GalK) ≤
(

1 + `rZ` `sZ`
`rZ` 1 + `sZ`

)
where by convention 1 + `0Z` := Z×` .

(b) If (2.2.3) holds in a basis for T`E, then P1,r, P2,s generate a subgroup
of E[`∞](K) isomorphic to Z/`r×Z/`s; if moreover equality holds in
(2.2.3), then this basis is clean.

Proof. Straightforward. �

Now let n ≥ 1, and for integers 0 ≤ r, s ≤ n, define the subgroup

(2.2.4) G`(n; r, s) :=

(
1 + `rZ` `sZ`
`n−sZ` 1 + `n−rZ`

)
≤ GL2(Z`)

with the same convention as in (2.2.3). Indeed, the group on the right-hand
side of (2.2.3) isG`(r+s; r, s), i.e., corresponds to n = r+s. When the prime
` is clear, we will drop the subscript and abbreviate G(n; r, s) = G`(n; r, s).

Our motivation for studying these groups is indicated by the following
lemma.

Lemma 2.2.5. If ρE,`(GalK) ≤ G(n; r, s) for some 0 ≤ r, s ≤ n, then
`n | #E(Fp) for all but finitely many p.

Proof. We see directly that det(1 − g) ≡ 0 (mod `n) for all g ∈ G(n; r, s),
so the result follows from (2.1.4). �

Example 2.2.6. If ` = 2, then G2(1; 0, 0) = G2(1; 1, 0).

Example 2.2.7. Suppose that ρE,`(GalK) = G(n; r, s) as above, with n ≥ 1.

If r = n and s = 0, then ρE,`n =

(
1 ∗
0 ∗

)
and so if P1, P2 ∈ E[`n](Kal) are

the nth coordinates of the chosen basis for T`E, then E[`∞](K) = 〈P1〉 '
Z/`n.

Similarly, if r = s = 0 and ` 6= 2, then ρE,`n =

(
∗ ∗
0 1

)
; thus E[`∞](K) =

{∞} and E has a unique cyclic isogeny over K of order `n whose kernel is
generated by P1.

In both cases, we have `n | #E(Fp) for all but finitely many p.

Interchanging the basis elements made in the identification (2.1.1) gives
an isomorphism

(2.2.8) G(n; r, s)
∼−→ G(n;n− r, n− s)

so without loss of generality we may suppose that r+ s ≤ n (and still that
0 ≤ r, s ≤ n). If n = r + s, we have G(n; r, n− r) ' G(n;n− r, r).

Lemma 2.2.9. The following statements hold.
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(a) The group G`(n; r, s) is equal to the preimage of its reduction modulo

`max(r,s,n−s,n−r).
(b) We have detG`(n; r, s) = 1 + `min(r,n−r)Z`.
(c) We have

[GL2(Z`) : G`(n; r, s)] =

{
`2n−3(`2 − 1)(`− 1), if min(r, n− r) ≥ 1;

`2n−2(`2 − 1), if min(r, n− r) = 0.

(d) If `n ≥ 5, then G`(n; r, s) ∩ SL2(Z) is torsion free.

Proof. Parts (a) and (b) follow from a direct calculation. For part (c), we
reduce modulo n (using (a)) and count the size of the reduction in each
coordinate: we find

φ(`n)

φ(`r)
`n−s`s

φ(`n)

φ(`n−r)
= `3n−2(`− 1)2 ·

{
(`n−2(`− 1)2)−1, if r, n− r ≥ 1;

(`n−1(`− 1))−1, if r = 0, n.

Simplifying and noting # GL2(Z/`n) = `4(n−1)# GL2(Z/`) = `4n−3(` −
1)(`2 − 1), the result follows.

For part (d), as in Lemma 2.2.5 we have det(g− 1) ≡ 0 (mod `n) for all
g ∈ G(n; r, s). If g ∈ SL2(Z) is torsion, then its characteristic polynomial
matches that of a root of unity of order dividing 6, and if g 6= 1 then
det(g − 1) = 1, 2, 3, 4, a contradiction. �

The groups G(n; r, s) arise from curves isogenous to the ones studied in
Lemma 2.2.2, as follows.

Proposition 2.2.10. Suppose in a (clean) basis for T`E that we have

ρE,`(GalK) = G(n; r, n− r).
Then the following statements hold.

(a) Any cyclic subgroup C ≤ E[`∞](Kal) stable under GalK in fact has
C ≤ E[`∞](K).

(b) If ϕ : E → E′ is a cyclic isogeny with degϕ = `k, then k ≤ max(r, n−
r). Moreover, there exists a clean basis for E′ such that

(2.2.11) ρE′,`(GalK) =

{
G(n; r, n− r − k), only if k ≤ n− r;
G(n;n− r, r − k), only if k ≤ r.

In (2.2.11), we mean that if r < k ≤ n− r then the first case must occur,
and symmetrically if n − r < k ≤ r then the second case must occur; if
k ≤ min(r, n − r), then either case can arise. The proof will show that all
possibilities do arise.

Proof. We first prove (a). Interchanging basis elements as in (2.2.8), we may
suppose without loss of generality that r ≤ n−r. Let #C = `k. A generator
for C is of the form P = x1P1,k + x2P2,k with (x1 : x2) ∈ P1(Z/`k).
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• If k ≤ r, then we have full `k-torsion E[`k](Kal) = E[`k](K) and so
certainly (a) holds.
• Suppose r < k ≤ n− r. Then by hypothesis,

ρE,`k(GalK) =

{(
1 + `ra 0
`rc 1

)
: a, c ∈ Z/`k−r

}
.

Taking a ∈ Z/`k−r, we see that the only stable lines (eigenvectors)
in the action on column vectors are generated by elements (x : 1) ∈
P1(Z/`k) with `k−r | x, so P = xP1,k + P2,k = (x/`k−r)P1,r + P2,k ∈
E[`k](K) as desired.
• Finally, if k > s := n− r, then `k−sC is Galois stable, so (x1 : x2) ≡

(0 : 1) (mod `s) by the previous case. Applying upper-triangular
unipotent matrices in ρE,`k(GalK) then gives a contradiction.

Next, part (b). Lemma 2.2.2(b) and the preceding part (a) imply k ≤
max(r, n− r). We now change convention for convenience, supposing that
n − r ≤ r. Let P1, P2 be the given clean basis for T`E. As in (a), let
C = kerϕ be generated by P = x1P1,k + x2P2,k with (x1 : x2) ∈ P1(Z/`k).
We consider two cases.

First, suppose x1 = 0. Then (x1 : x2) = (0 : 1) and C is generated by
P2,k. A basis for T`E

′ (in V`E) is then given by P1, `
−kP2. In this basis,

we have
(2.2.12)

ρE′,`(GalK) =

(
1 0
0 `k

)
G(n; r, n− r)

(
1 0
0 `−k

)
= G(n; r, n− r − k)

as claimed.
Otherwise, we have x1 6= 0; then (x1 : x2) = (1 : x) for x ∈ Z/`k; we lift

to x ∈ Z×` . Let

U :=

(
0 1
1 x

)
∈ GL2(Z`).

Let Qi = UPi for i = 1, 2, so Q1, Q2 is a (no longer necessarily clean) basis
for T`E in which kerϕ = 〈Q2,k〉. Nevertheless, we calculate:
(2.2.13)(

`k 0
0 1

)
U =

(
`k 0
0 1

)(
0 1
1 x

)
=

(
0 `k

1 x

)
=

(
0 1
1 0

)(
1 x
0 `k

)
= U ′A.

A basis for T`E
′ (in V`E) is given by Q1, `

−kQ2, so the same is true after
applying (U ′)−1 = U ′ which just swaps basis vectors to give `−kQ2, Q1. In
this basis, the image of ρE′,`(GalK) is

U ′
(
`k 0
0 1

)
UG(n; r, n− r)U−1

(
`−k 0
0 1

)
U ′ = AG(n; r, n− r)A−1



A probabilistic local-global principle for torsion 11

and we then compute:

(2.2.14)

(
1 x
0 `k

)(
1 + `ra `n−rb
`rc 1 + `n−rd

)(
1 −x`−k
0 `−k

)
=

(
1 + `r(a+ cx) −(a+ cx)(x`r−k) + (b+ dx)`n−r−k

c`k+r 1 + d`n−r − cx`r
)
.

We are free to reparametrize, replacing a, b← a+ cx, b+ dx to get

(2.2.15) =

(
1 + `ra b`n−r−k − ax`r−k
c`k+r 1 + d`n−r − cx`r

)
.

Since n − r ≤ r, then we recognize the group G(n; r, n − r − k). Putting
these together gives the result. �

Recall that the `-isogeny graph of E has as vertices the set of curves
`-power isogenous to E up to isomorphism and (undirected) edges are `-
isogenies. Proposition 2.2.10 provides a description of the `-isogeny graph
of E when ρE,`(GalK) = G(n; r, n− r) (depending essentially only on n)—
a nontrivial path in the graph is a cyclic `-power isogeny. Here are a few
illustrative examples.

Example 2.2.16. Suppose ρE,`(GalK) = G(n; r, n − r) with n ≥ 1, and
without loss of generality suppose r ≤ n− r.

If r = 0, then E has Galois image G(n; 0, n), and the isogeny graph con-
sists of a chain of n + 1 vertices with Galois images G(n; 0, n), G(n; 0, n −
1), . . . , G(n; 0, 0); the kernels of these isogenies are cyclic subgroups of
E[`∞](K) ' Z/`n.

For Galois image G(2; 1, 1) (n = 2 and r = 1), there are ` + 1 vertices
adjacent to E with Galois image G(2; 1, 0).

We conclude this section by a study of curves with Galois image (con-
tained in) G(n; r, s), building on Lemma 2.2.2.

Lemma 2.2.17. Suppose ρE,`(GalK) ≤ G(n; r, s) with 0 ≤ r, s, r + s ≤ n,
and if ` = 2 suppose that (r, s) 6= (0, 0). Then the following statements
hold.

(a) If ρE,`(GalK) = G(n; r, s), then P1,r, P2,s generate E[`∞](K); in par-
ticular, we have E[`∞](K) ' Z/`r × Z/`s.

(b) Suppose ρE,`(GalK) ≤ G(n; r, s). Then, for all t such that s ≤ t ≤
n − r, there exists a cyclic `t−s isogeny E → E′ over K such that if
P1, P2 is a basis for T`E, then

ρE′,`(GalK) ≤ G(n; r, t)

in the basis `s−tP1, P2 for T`E
′ (in V`E).

(c) The elliptic curve E admits a cyclic `n−(r+s)-isogeny E → E′ over K
with `n | #E′(K)tor.
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Proof. We prove (a), and let P1,n, P2,n ∈ E[`n](Kal) be the nth coordinates
of the chosen basis for T`E, and consider a point P := x1P1,n + x2P2,n ∈
E[`n](Kal) with x1, x2 ∈ Z/`n. Of course P ∈ E[`n](K) if and only if
(g − 1)(P ) ≡ 0 (mod `n) for all g ∈ G(n; r, s). If P ∈ E[`n](K), then
taking diagonal matrices shows that `n−r | x1 and `r | x2; since r + s ≤ n,
we have s ≤ n− r so `s | x1 and similarly `n−s | x2. Conversely,

(2.2.18)

(
`ra `sb
`n−sc `n−rd

)(
`n−r

`n−s

)
≡ 0 (mod `n)

so E[`n](K) = 〈`n−rP1, `
n−sP2〉 ' Z/`r × Z/`s, proving (a).

Next, part (b). Let u ∈ Z satisfy s ≤ u ≤ n. A similar argument in
coordinates as in the previous paragraph shows `uP1,n generates a Galois-
stable subgroup of E(K). Let E′ := E/〈`uP1,n〉, so that the quotient map
E → E′ defines a cyclic `n−u-isogeny. Conjugating as in (2.2.12) shows that
ρE′,`(GalK) = G(n; r, s+n−u). Restricting u to range over r+ s ≤ u ≤ n,
the image ρE′,`(GalK) ranges over G(n; r, t) with for s ≤ t ≤ n − r, with
n− u = t− s.

Finally, for (c), take t = n− r in part (b). �

2.3. Refining the theorem of Katz. In this section, we refine the result
of Katz (mentioned in the introduction), which we now recall.

Theorem 2.3.1 (Katz [19]). Let n ≥ 1. Suppose that `n | #E(Fp) for a
set of good primes of K of density 1. Then there exists an elliptic curve E′

over K that is K-isogenous to E and a Z`-basis of T`E
′ ' Z2

` such that

(2.3.2) ρE′,`(GalK) ≤ G(n; r, n− r)

for some integer 0 ≤ r ≤ n. In particular, `n | #E′(K)tor.

Proof. We briefly review the method of proof for the reader’s convenience.
(Some details of the argument are explained in the next section.) Let V be
a 2-dimensional Q`-vector space and let G ≤ Aut(V ) be a compact open
subgroup. By an inductive group-theoretic argument, Katz [19, Theorem
1] shows that if

det(1− g) ≡ 0 (mod `n)

holds for all g ∈ G, then there exist G-stable lattices L′ ⊆ L ⊆ V such
that the quotient L/L′ has order `n and trivial G-action; equivalently,
there exists a Q`-basis of V such that G ≤ G(n; r, n − r) for some integer
0 ≤ r ≤ n.

We then apply the preceding paragraph to elliptic curves [19, Theorem
2]. We take V = T`E ⊗ Q` and G = GalK ; then L′ = T`(E

′) for some
elliptic curve E′ over K that is K-isogenous to E, and

(2.3.3) L/L′ ⊆ `−nL′/L′ ' L′/`nL′ ' E′[`n]
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is a subgroup of K-rational torsion points of E′ (see [19, Introduction] for
a review of Galois-stable lattices of the Tate module). �

Lemma 2.3.4. Under the hypotheses of Theorem 2.3.1, the isogeny ϕ : E →
E′ may be taken to be a cyclic `-power isogeny.

Proof. Given any isogeny ϕ : E → E′, we may factor ϕ into first an isogeny
of `-power degree then an isogeny of degree coprime to `. The latter isogeny
preserves the image of ρE′,`, so we may assume ϕ has `-power degree. The
resulting isogeny factors as a cyclic `-power isogeny followed by multiplica-
tion by a power of `, and again the latter preserves the image of ρE′,`, so
the conclusion follows. �

To refine Theorem 2.3.1, we identify the image of ρE,` by following the
isogeny guaranteed by Lemma 2.3.4. In general, one can say little more
than E is isogenous to E′! The following lemma is the starting point for
Katz, as it is for us.

Lemma 2.3.5. Let k be a field, let V be a k-vector space with dimk V = 2,
and let G ≤ GL(V ) be a subgroup. Suppose that det(1 − g) = 0 for all
g ∈ G. Then there exists a basis of V ' k2 such that G ≤ GL2(k) is
contained one of the subgroups(

1 k
0 k×

)
or

(
k× k
0 1

)
.

Proof. See Serre [28, p. I-2, Exercise 1]; when k is perfect, see the proof by
Katz [19, Lemma 1, p. 484] using the Brauer–Nesbitt theorem. �

Corollary 2.3.6. If ` | #E(Fp) for a set of primes of K of density 1, then
at least one of the following holds:

(i) E(K)[`] 6= {∞}; or
(ii) there is a cyclic `-isogeny E → E′ over K where E′(K)[`] 6= {∞}.

Proof. Apply Lemma 2.3.5 with k = F` and V = E[`], and G = ρE,`(GalK).
For the first subgroup we are in case (i); for the second, the basis P1, P2

provided by the lemma gives an `-isogenous curve E′ := E/〈P1〉 over K
with the image of 〈P2〉 invariant under G, so we are in case (ii). �

In other words, Corollary 2.3.6 says that when n = 1, we may take the
isogeny ϕ : E → E′ provided by Lemma 2.3.4 to have degree dividing `; in
particular, this proves a refinement of Theorem 2.3.1 for n = 1.

We now seek to generalize Corollary 2.3.6 to the prime power case m =
`n. We start by considering the case where the degree of the isogeny ϕ : E →
E′ provided by Lemma 2.3.4 is large.
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Lemma 2.3.7. Let ϕ : E → E′ be a cyclic `k-isogeny over K such that
`n | #E′(K)tor. Suppose that k ≥ n. Then there is a Z`-basis for T`E ' Z2

`
such that

(2.3.8) ρE,`(GalK) ≤ G(n; r, 0) =

(
1 + `rZ` Z`
`nZ` 1 + `n−rZ`

)
for some integer 0 ≤ r ≤ n. In particular, there exists a cyclic `n−r-isogeny
ψ : E → E′′ such that `n | #E′′(K)tor and ρE′′,`(GalK) ≤ G(n; r, n− r).

Proof. By hypothesis, there is a cyclic subgroup Ck ≤ E(Kal) stable under
GalK of order `k. Since k ≥ n, the subgroup `k−nCk ≤ E(Kal) is also
GalK-stable and order `n. Extending to a basis for E[`n](Kal), we have

(2.3.9) G := ρE,`n(GalK) ≤
(
∗ ∗
0 ∗

)
.

The containment (2.3.8) is determined by reduction modulo `n, so equiva-
lently we show

(2.3.10) G ≤
(

1 + `rZ/`n ∗
0 1 + `n−rZ/`n

)
for some r.

Since `n | #E′(K)tor, as in (2.1.4) we conclude that det(1 − g) ≡

0 (mod `n) for all g ∈ G. Let g =

(
a b
0 d

)
∈ G be such that r := ord`(1−a)

minimal, so that 0 ≤ r ≤ n. Then

(2.3.11) det(1− g) = (1− a)(1− d) ≡ 0 (mod `n)

gives d ≡ 1 (mod `n−r), which is a start. To finish, let g′ =

(
a′ b′

0 d′

)
∈ G

be any element, and let r′ := ord`(1 − a) ≥ r. Then ord`(1 − d′) ≥ n − r′
as in (2.3.11), so if r′ = r we are done. So suppose r′ > r. Consider the
determinant condition on gg′, which reads

(2.3.12) det(1− gg′) = (1− aa′)(1− dd′) ≡ 0 (mod `n).

Then aa′ ≡ a 6≡ 1 (mod `r+1), so ord`(1−aa′) = r, and thus ord`(1−dd′) ≥
n− r, i.e., dd′ ≡ 1 (mod `n−r). But we already have d ≡ 1 (mod `n−r), so
d′ ≡ 1 (mod `n−r), proving (2.3.10).

The final statement then follows from Lemma 2.2.17(b), with s = 0. �

Corollary 2.3.13. For m ≥ 1, suppose that m | #E(Fp) for a set of
primes of K of density 1. Then there exists a cyclic isogeny ϕ : E → E′ of
degree d | m such that m | #E′(K)tor. Moreover, for every `n ‖ m, there
exists 0 ≤ r ≤ n (depending on `) such that

ρE′,`(GalK) ≤ G`(n; r, n− r).
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Proof. For each prime power `n ‖ m, apply the theorem of Katz (Theorem
2.3.1), the refinements of Lemmas 2.3.4 and 2.3.7; and then combine these
isogenies (taking the sum of the kernels). �

By Corollary 2.3.13, the possible elliptic curves E that locally have a
subgroup of order m = `n arise (dually) from cyclic isogenies from curves
with `-adic Galois images contained in G`(n; r, n − r) for some r. To con-
clude, we add the hypothesis that this latter containment is an equality ;
when we calculate probabilities, we will see this fullness condition holds
outside of a negligible set.

Theorem 2.3.14. For m ≥ 1, suppose that m | #E(Fp) for a set of
primes of K of density 1, and let ϕ : E → E′ be a cyclic `-power isogeny
over K such that ρE′,`(GalK) = G(n; r, n − r) (in a choice of basis for
T`E

′) for some 0 ≤ r ≤ n. Then there exists s with 0 ≤ s ≤ n such that
ρE,`(GalK) = G(n; r, s) (in a basis for T`E).

Proof. We have degϕ = `k for some k ≥ 0. We apply Proposition 2.2.10(b)
to the dual isogeny ϕ∨ : E′ → E (with, alas, the roles of E and E′ inter-
changed): we conclude that ρE,`(GalK) = G(n; r, s) with 0 ≤ s ≤ n−r ≤ n
or ρE,`(GalK) = G(n;n− r, s′) with s′ ≤ r ≤ n. In the latter case, recalling
(2.2.8), we have equivalently ρE,`(GalK) = G(n; r, s) with 0 ≤ s = n− s′ ≤
n. �

3. Counting elliptic curves

In this section, we count by height elliptic curves parametrized by a mod-
ular curve of genus zero uniformized by a torsion free congruence subgroup.

3.1. Moduli of elliptic curves. We quickly set up the necessary theory
concerning moduli of elliptic curves.

Let G ≤ GL2(Z/N) be a subgroup. If G arises as the image of the mod
N Galois representation of an elliptic curve over Q, then its determinant is
the cyclotomic character and thus surjective, so we suppose that detG =
(Z/N)×. Let πN : SL2(Z)→ SL2(Z/N) be the projection and as in (1.3.2)
let

ΓG := π−1
N (G ∩ SL2(Z/N)) ≤ SL2(Z).

The group ΓG is a discrete group acting properly on the upper half-plane
H2, and the quotient ΓG\H2 can be given the structure of a Riemann surface
(compact minus finitely many points). Attached to G is the moduli problem
of elliptic curves with G-level structure, as in the following proposition.

Proposition 3.1.1. Suppose that detG = (Z/N)×. Then there exists an
affine, smooth, geometrically integral curve YG defined over Q, unique up
to isomorphism, with the following properties.

(i) There is an isomorphism of Riemann surfaces ΓG\H2 ∼−→ YG(C).
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(ii) For every number field K, there is a (functorial) bijection between
the set YG(K) and the set of Kal-isomorphism classes of GalK-stable
G-equivalence classes of pairs (E, ι), where E is an elliptic curve over
K and ι : E[N ](Kal)→ (Z/N)2 is an isomorphism of groups.

(iii) For every elliptic curve E over K, there exists ι such that the isomor-
phism class of (E, ι) lies in YG(K) if ρE,N (GalK) . G is contained
in a subgroup conjugate to G; the converse holds if j(E) 6= 0, 1728.

(iv) If ΓG is torsion free (in particular −1 6∈ G), then (ii) holds but for K-
isomorphism classes, and there is a universal elliptic curve EG,univ →
YG, unique up to isomorphism.

In (iv), in particular, EG,univ is an elliptic curve over (the affine coordi-
nate ring of) YG, and the bijection in (iv) is defined by the map that sends
P ∈ YG(K) to the fiber of EG,univ → YG over P .

Proof. The curve YG can be constructed as the quotient of the (connected
but geometrically disconnected) modular curve Y (N) defined over Q by G.
For more details, see Deligne–Rapoport [12, Chapters IV, VI] or the tome
of Katz–Mazur [20, Chapter 4]; for property (iii), see Baran [2, §4] and
Zywina [33, Proposition 3.2]. �

We recall also here the notion of an irregular cusp (see e.g., Diamond–
Shurman [13, (3.3), p. 75], Shimura [29, §2.1, p. 29]), primarily to show it
is only a minor nuisance. Let Γ ≤ SL2(Z) be a subgroup of finite index.
If −1 ∈ Γ, then every cusp of Γ is regular; so suppose −1 6∈ Γ. Then the
stabilizer of the cusp ∞ under Γ is an infinite cyclic group generated by

±
(

1 h
0 1

)
for some h ∈ Z>0, and we accordingly say that ∞ is regular or

irregular as the sign of this generator is + or −. For any cusp s, we choose
a matrix α ∈ SL2(Z) such that α(∞) = s and conjugate the preceding
definition.

The groups G`(n; r, s) ≤ GL2(Z`) of Section 2 naturally define subgroups
G`n(n; r, s) ≤ GL2(Z/`n) by reduction modulo `n.

Lemma 3.1.2. Let ` be prime, let n ≥ 1, and for integers 0 ≤ r, s ≤ n
with r + s ≤ n, let G = G`n(n; r, s) ≤ GL2(Z/`n) be the reduction modulo
`n of G`(n; r, s). Then the group ΓG has no irregular cusps except when
`n = 22 = 4 and rs = 0.

Proof. If γ ∈ ΓG, then γ =

(
1 + `ra0 `sb0
`n−sc0 1 + `n−rd0

)
with a0, b0, c0, d0 ∈ Z

and

(3.1.3)
det(γ) = (1 + `ra0)(1 + `n−rd0)− `nb0c0

= 1 + `ra0 + `n−rd0 + `n(a0d0 − b0c0) = 1,



A probabilistic local-global principle for torsion 17

so expanding we find

(3.1.4) tr(γ) = 2 + `ra0 + `n−rd0 ≡ 2 (mod `n).

Let s be a cusp of ΓG and α ∈ SL2(Z) be such that α(∞) = s, and

consider the group α−1ΓGα. Let α−1γα = ±
(

1 h
0 1

)
∈ α−1ΓGα generate

the stabilizer of ∞. Then tr(α−1γα) = tr(γ) = ±2 ≡ 2 (mod `n). Suppose
s is irregular. Then −2 ≡ 2 (mod `n) so `n = 21, 22. If `n = 21 then
−1 ∈ ΓG and s is regular by definition. So suppose `n = 22. We have
the cases (r, s) = (0, 0), (1, 0), (1, 1), (2, 0). If r = 1 then again −1 ∈ ΓG.
Otherwise, (r, s) = (2, 0), (0, 0) then by Example 2.2.7 we see ΓG = Γ1(4),
and 1/2 is indeed an irregular cusp [13, Exercise 3.8.7]. �

Lemma 3.1.5. We have

ΓG`n (n;r,s) = ΓG`n (n;r′,s)

where r′ := max(r, n− r).

Proof. Looking back at (3.1.3), we see that e.g. if r ≤ n−r then 1+`ra0 ≡ 1
(mod `n−r), so `n−r | `ra0. �

Lemma 3.1.5 indicates one of the ways in which different moduli problems
can have the same underlying uniformizing congruence subgroup.

To complete our setup for our main result (Theorem 3.3.1), we must
decide how to count our elliptic curves. Specifically, we need to distin-
guish between counting elliptic curves E for which there exists a rational
G-structure, versus counting equivalence classes of pairs (E, ι) of elliptic
curves E equipped with rational G-structures ι. Ultimately, we will see
that these two counts differ by a simple multiple (on the main term, and
with square root error term).

To this end, for an elliptic curve E over Q, let rG(E) be the number
of Kal-isomorphism classes of GalK-stable G-equivalence classes of pairs
(E, ι) as in Proposition 3.1.1(b), equivalently the number of isomorphism
classes [(E, ι)] ∈ YG(Q). Let

(3.1.6) r(G) := [NGL2(Z/N)(G) : G]

be the index of G in its normalizer in GL2(Z/N). Write

±G := G〈−1〉 = G ∪ −G,
so ±G = G if and only if −1 ∈ G. Then NGL2(Z/N)(±G) = NGL2(Z/N)(G),
so r(G) = 2r(±G) if −1 6∈ G.

Example 3.1.7. If G =

(
1 ∗
0 ∗

)
, then NGL2(Z/N)(G) =

(
∗ ∗
0 ∗

)
and so

r(G) = φ(N) = [Γ0(N) : Γ1(N)] and r(±G) = φ(N)/2 when N ≥ 3.
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Lemma 3.1.8. Let E be an elliptic curve over Q with j(E) 6= {0, 1728}.
Then the following statements hold.

(a) If rG(E) ≥ 1, then rG(E) ≥ r(±G).
(b) If rG(E) > r(±G), then there exists a proper subgroup G′ < G such

that rG′(E) ≥ 1.

Proof. First, part (a). By the description in Proposition 3.1.1(ii), the group
NGL2(Z/N)(G) acts functorially on moduli points (postcomposing after ι), so
it acts by automorphisms of YG defined over Q. In particular, this group
acts on the set of isomorphism classes [(E, ι)] ∈ YG(Q) that counted by
rG(E). We claim that the stabilizer of this action is ±G. Indeed, let u ∈
NGL2(Z/N)(G) and suppose that [(E, ι)] = [(E, uι)]. Then there exists an
automorphism α ∈ Aut(E) such that Gι = Guια. Since j(E) 6= {0, 1728}
we have Aut(E) = {±1}, hence Gι = Guια = Guαι so ±Gu = ±G, i.e.,
u ∈ ±G. This proves (a).

We now prove (b). In view of Proposition 3.1.1(iii), we may prove the
contrapositive: if the image ρE,N (GalQ) . G ≤ GL2(Z/N) is onto G (up
to conjugacy), then in fact rG(E) = r(±G). Indeed, let [(E, ι)], [(E, ι′)] ∈
YG(Q). Then the isomorphisms ι, ι′ : E(Kal)[N ] → (Z/N)2 may be cho-
sen such that the two representations ρE,N , ρ

′
E,N : GalQ → GL2(Z/N) are

subgroups of G. Let u := ι′ι−1 ∈ GL2(Z/N); then the matrix u conjugates
the image of ρE,N into ρ′E,N . But since ρE,N (GalQ) = G by hypothesis and

ρ′E,N (GalQ) ≤ G, we must have u ∈ NGL2(Z/N)(G). Thus rG(E) ≤ r(±G),

so by (a) equality holds. �

3.2. Isogeny invariance. In this section, having in section 2 understood
our probability as a condition relating isogenous elliptic curves, we are led
to the following theorem which relates the image of Galois for isogenous
curves.

Theorem 3.2.1. Let ϕ : E → E′ be an isogeny of elliptic curves over a
number field K. Let N ∈ Z≥1, let G := ρE,N (GalK) ≤ GL2(Z/N) and
similarly G′ for E′. Then the groups ΓG,ΓG′ ≤ GL2(Q) are conjugate in
GL2(Q), the associated modular curves YG and YG′ are isomorphic over Q,
and

[SL2(Z) : ΓG] = [SL2(Z) : ΓG′ ].

As mentioned in the introduction, the invariance of the index of the p-
adic Galois representation under isogeny was already proven by Greenberg
[16, Proposition 2.1.1], by a different argument.

Proof. Without loss of generality, we may assume that ϕ : E → E′ is given
by a cyclic N -isogeny, so that the Galois image G has

(3.2.2) G ≤
(
∗ ∗
0 ∗

)
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It follows from this group-theoretic statement that for every elliptic curve A
over K whose mod N -Galois image is (conjugate to a) subgroup of G, there
is an isogeny ϕ : A → A′ (over K, with cyclic kernel of order N generated
by the point corresponding basis vector) such that the mod N -Galois image
of A′ is a subgroup of G′. Moreover, detG = detG′, since the determinant
is the cyclotomic character and so its image only depends on (the roots of
unity in) K. Finally, the dual isogeny maps ϕ∨ : E′ → E, and similarly
maps G′ to G. In other words, the moduli problems attached to G and
to G′ are naturally equivalent, which gives an isomorphism YG

∼−→ YG′ of
curves over their common field of definition Q(ζN )detG = Q(ζN )detG′

.
From (3.2.2) we have

(3.2.3) [SL2(Z) : ΓG] = [SL2(Z) : Γ0(N)][Γ0(N) : ΓG].

Applying the isogeny ϕ and swapping basis vectors acts by conjugation by

the element ν =

(
0 1
N 0

)
so that νΓGν

−1 = ΓG′ . Since ν normalizes the

group Γ0(N), we have

(3.2.4) [Γ0(N) : ΓG] = [νΓ0(N)ν−1 : νΓGν
−1] = [Γ0(N) : ΓG′ ].

Plugging this into (3.2.3) gives the result on indices. �

Remark 3.2.5. We believe that Theorem 3.2.1 should also follow more gen-
erally from the natural compatibilities satisfied by Shimura’s theory of
canonical models [29, §6.7]. The argument above gives a bit more infor-
mation, namely that ΓG′ is obtained from ΓG under conjugation by the
Atkin–Lehner involution of Γ0(N).

In the next section, we will prove that for modular curves YG such that
ΓG is torsion free of genus zero, the asymptotic point count depends only on
the index [SL2(Z) : ΓG]; together with Theorem 3.2.1 and the theorem of
Katz (as refined in the previous section), this provides a concise explanation
and ultimately a proof that the probability Pm is positive for m ≥ 5.

3.3. Asymptotics. In this section, we prove Theorem 1.3.3. We recall
notation from section 1.2, and we prove the following weaker version first.

Theorem 3.3.1. Let G ≤ GL2(Z/N) have detG = (Z/N)×, and suppose
that ΓG is torsion free of genus zero and has no irregular cusps. Let

d(G) := 1
2 [PSL2(Z) : ΓG] = 1

4 [SL2(Z) : ΓG].

Then d(G) ∈ 6Z≥1, and there exists c(G) ∈ R≥0 such that

NG(H) := #{E ∈ E≤H : ρE,N (GalQ) . G} = c(G)H1/d(G) +O(H1/e(G))

as H →∞, where e(G) = 2d(G).
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As mentioned in the introduction, we follow an approach outlined in
Harron–Snowden [17, §5].

Proof. Our proof proceeds in four steps.
Step 1: universal curve. Let YG be the curve over Q given by Proposition

3.1.1. We are given that ΓG (equivalently YG) has genus zero. If YG(Q) = ∅,
then the theorem is trivially true taking c(G) = 0. So we may suppose
#YG(Q) = ∞, in which case by choosing a coordinate t we have YG =
Spec Q[t]rS ⊆ A1

Q = Spec Q[t] where S ⊆ YG is a finite set of closed points

(stable under GalQ). Since ΓG is torsion free, by Proposition 3.1.1(iv), there
is a universal curve of the form

(3.3.2) EG,univ : y2 = x3 + f(t)x+ g(t)

where f(t), g(t) ∈ Q(t) (and regular away from S). In particular, for every
elliptic curve E over Q such that ρE,N (GalQ) . G, there exists t0 ∈ QrS

such that E is isomorphic to the curve y2 = x3 + f(t0)x+ g(t0).
Repeating carefully the argument of Harron–Snowden [17, Proposition

3.2, second proof of Lemma 3.3] (given under more restrictive hypothesis,
but using the fact that ΓG has no irregular cusps by hypothesis), after mini-
mally clearing denominators we have f(t), g(t) ∈ Q[t] with gcd(f(t), g(t)) =
1, and

(3.3.3) 3 deg f(t) = 2 deg g(t) = deg(j) = [PSL2(Z) : ΓG] = 2d(G)

and moreover 12 | [PSL2(Z) : ΓG]. In particular, d(G) = 1
2 [PSL2(Z) : ΓG] ∈

6Z≥1. We now homogenize, letting t = a/b and clearing denominators,
giving

(3.3.4) EA,B : y2 = x3 +A(a, b)x+B(a, b)

with A(a, b), B(a, b) ∈ Z[a, b] satisfying

(3.3.5)
degA(a, b) = deg f(t) = 2

3d(G)

degB(a, b) = deg g(t) = d(G)

Step 2: principle of Lipschitz. In view of (3.3.4), as a first step we count
the number of integer points in the region

R(H) := {(a, b) ∈ R2 : |A(a, b)| ≤ (H/4)1/3 and |B(a, b)| ≤ (H/27)1/2}
(3.3.6)

as H →∞.
We claim that the region R(H) is bounded. By the above, the polyno-

mials f(t), g(t) are coprime, so

(3.3.7) max(|f(x)|3, |g(x)|2) ≥ µ > 0
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is bounded below for all x ∈ R. From (3.3.5), we have

(3.3.8)
|A(a, b)| = |b2d(G)/3f(a/b)|

|B(a, b)| = |bd(G)g(a/b)|

we conclude that

H ≥ max
a,b∈R

(|4A(a, b)3|, |27B(a, b)2|) ≥ µ|bd(G)|

so b is bounded; a symmetric argument shows that a is bounded.
Being closed and bounded, the region R(H) is compact. Moreover, R(H)

has rectifiable boundary (defined by polynomials). By the Principle of
Lipschitz [11], the number of integral points in the region (3.3.6) is given
by its area up to an error proportional to the length of its boundary.

Conveniently, the region R(H) is homogeneous in H: dropping paren-

theses to write H1/2d(G) = H1/(2d(G)), again from (3.3.5) we have

(3.3.9) H1/d(G)R(1) = R(H).

Indeed, if (a′, b′) = (H1/2d(G)a,H1/2d(G)b), then from

|A(a′, b′)| = (H1/2d(G))2d(G)/3|A(a, b)| = H1/3|A(a, b)|

and similarly with B, we have (a′, b′) ∈ R(H) if and only if (a, b) ∈ R(1).
Therefore,

(3.3.10)
#(R(H) ∩ Z2) = area(R(H)) +O(len(bd(R(H))))

= area(R(1))H1/d(G) +O(H1/2d(G))

where the exponent on the error term follows from being the arclength of
a 2-dimensional compact region with polynomial boundary.

We will use a slight refinement of this estimate which improves the error
term, due to Huxley [18] (and applied in our setting by Pomerance–Schaefer
[25, §4])—our boundary is defined by nonlinear polynomials, so the error
term in (3.3.10) arising from lattice points on the boundary can be improved

to O(H1/2d(G)−δ) for some δ > 0.
Step 3: sieving. We now apply a sieve to take care of local conditions:

among the lattice points counted in the previous step, we want exactly
those with E ∈ E . We first restrict the count of lattice points, then adjust
the constant by finitely many local factors.

First, the points (a, b) ∈ Z2 such that 4A(a, b)3 + 27B(a, b)2 = 0 lie

on a curve, which by standard estimates is O(H1/2d(G)) so applying this
condition does not change (3.3.10). Second, for the points (a, b) ∈ Z2

such that p | a and p | b, we have overcounted and we need to apply the
correction factor 1 − 1/p2 for all primes p. We say (a, b) ∈ Z2 is groomed
if 4A(a, b)3 + 27B(a, b)2 6= 0 and gcd(a, b) = 1. A standard Möbius sieve
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argument (see e.g. Harron-Snowden [17, Proof of Theorem 5.5]) with the

improved error term O(H1/2d(G)−δ), together with (3.3.10), gives

(3.3.11)

#{(a, b) ∈ R(H) ∩ Z2 : (a, b) groomed}

=
area(R(1))

ζ(2)
H1/d(G) +O(H1/2d(G)).

We now consider local conditions imposed by minimal models. Suppose
that q is a power of a prime p such that q4 | A(a, b) and q6 | B(a, b) with
gcd(a, b) = 1. Recall A(t, 1) = f(t) and B(t, 1) = g(t) are coprime. If p - b,
then f(t) and g(t) have a common root a/b ∈ Z/q, so q divides the nonzero
resultant Rest(f(t), g(t)) ∈ Z of f(t) and g(t) with respect to t [9, Chapter
3]; similarly, if p - a then q divides the resultant of A(1, u) = udeg ff(1/u)
and B(1, u). Let m be the least common multiple of these two resultants.
Applying the Sun Zu Theorem (CRT), we have shown that if e ∈ Z≥1

satisfies e4 | A(a, b) and e6 | B(a, b), then in fact e | m.
So let E be an elliptic curve over Q, and suppose E has a G-level struc-

ture defined over Q in the sense of Proposition 3.1.1(iv). By (3.3.4), we
have E : y2 = x3 + Ax + B where A = A(a, b) and B = B(a, b) for some
a, b ∈ Z with gcd(a, b) = 1 (coming from t = a/b ∈ Q in lowest terms).
Then there exists a unique integer e ∈ Z≥1 such that the unique represen-
tative of E in E is given by y2 = x3 +A′x+B′ where A′ = e−4A(a, b) ∈ Z
and B′ = e−6B(a, b) ∈ Z: namely, the largest positive integer e such that
e12 | gcd(A(a, b)3, B(a, b)2). We call e the minimality defect of (a, b). By
the previous paragraph, we have e | m. Moreover,

e12 htE = max(|4A3|, |27B2|)

so (A,B) ∈ R(e12H). Recalling the discussion at the end of section §3.1,
let

N�G (H) := #{(E,Gι) : E ∈ E≤H and ρE,N (GalQ) .ι G}
count the number of pairs (E,Gι) where E ∈ E≤H and Gι is a GalQ-stable

G-equivalence class of isomorphism E[N ](Kal) → (Z/N)2. Running this
argument in the other direction, we conclude that the count

(3.3.12)

N�G (H) =
∑
e|m

#{(a, b) ∈ R(e12H) ∩ Z2

: (a, b) groomed, minimality defect e}.

Of course, the condition that (a, b) has minimality defect e is determined
by congruence conditions on a and b. Let δe be the proportion of integers
(congruence classes) satisfying this condition, so 0 ≤ δe ≤ 1 and

∑
e|m δe =

1. For each e and each such congruence class, the principle of Lipschitz
applies; summing of congruences classes then multiplies the asymptotic by
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the factor δe. Applying (3.3.11), from (3.3.12) we conclude

(3.3.13) N�G (H) =
area(R(1))

ζ(2)

(∑
e|m

δee
12/d(G)

)
H1/d(G) +O(H1/2d(G))

so in particular

(3.3.14) c�(G) =
area(R(1))

ζ(2)

(∑
e|m

δee
12/d(G)

)
.

Step 4: automorphisms. Finally, to count the number of curves (rather
than curves equipped with level structure), we apply Lemma 3.1.8. For the
curves with Galois image exactly G (up to conjugacy) and j(E) 6= 0, 1728,
we have overcounted by the factor 2r(±G) = r(G), the additional factor
2 coming from t = a/b = a′/b′ ∈ Q is in lowest terms if and only if
(a′, b′) = ±(a, b). The curves with j(E) = 0, 1728 have A = 0 or B = 0, so
are negligible (comparing to the length of the boundary). For the remaining
curves, suppose that E has ρE,N (GalQ) = G′ < G a proper subgroup (up
to conjugation). If ΓG′ has genus ≥ 1, then NG′(H) is either finite or grows
slower than any power of H (see Serre [27, p. 133]), so in particular is

O(H1/d(G)). Otherwise, ΓG′ has genus zero and is still torsion free without
irregular cusps. Since detG′ = detG = (Z/N)×, we have

[G : G′] = [ΓG : ΓG′ ] ∈ Z≥2

so d(G′) ≥ 2d(G). Applying Step 3 then shows that the count of these
curves is negligible.

Thus from (3.3.13) we get that

(3.3.15) #{E ∈ E≤H : ρE,N (GalQ) . G} = c(G)H1/d(G) +O(H1/2d(G))

where

(3.3.16) c(G) =
c�(G)

r(G)
=

area(R(1))

r(G)ζ(2)

(∑
e|m

δee
12/d(G)

)
as claimed. �

Corollary 3.3.17. With notation as in Theorem 3.3.1, we have

NG(H) = #{E ∈ E≤H : ρE,N (GalQ) ∼ G}+O(H1/2d(G)).

In other words, counting curves with image contained in G is asymptotic
to the count of curves with image equal to G.

Proof. Proven in Step 4 of the proof of Theorem 3.3.1. �

Proposition 3.3.18. The constant c(G) in Theorem 3.3.1 is effectively
computable.
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Proof. We first claim that the universal curve is effectively computable, in
the sense that there is a Turing machine (effective procedure) that, given
input G, outputs f(t), g(t) ∈ Q(t) such that (3.3.2) is universal. We com-
pactify YG by adding cusps XG := YG ∪∆; the set ∆ (naturally identified
with the set of G-orbits of P1(Z/N)) is effectively computable. By Voight–
Zureick-Brown [32, Chapter 4], the canonical ring of YG is the log canonical
ring of XG; this graded ring has a simple, explicit description [32, §4.2] in
terms of #∆. Moreover [32, §6.2], the log canonical ring is isomorphic to
the graded ring of modular forms of even weight for ΓG; by linear algebra
with q-expansions computed via modular symbols as explained by Assaf
[1], we obtain explicit equations for this canonical ring, realizing XG as
a subvariety of weighted projective space. Next, we can effectively deter-
mine if XG(Q) = ∅ and, if XG(Q) 6= ∅, compute P0 ∈ XG(Q): briefly,
we compute a canonical divisor, embed XG → P2 as a conic, and either
find that XG(Qp) = ∅ for some prime p or we find a point in XG(Q), after
which we may parametrize the entire set XG(Q) in terms of a parameter
t, giving a computable isomorphism between the field of fractions of the
log canonical ring and Q(t). Finally, using linear algebra we recognize the
Eisenstein series E4, E6 first as elements of the graded ring and then as
rational functions in t.

The remaining quantities are also effectively computable. We compute
the degree as

4d(G) = [SL2(Z) : ΓG] = [SL2(Z/N) : G ∩ SL2(Z/N)]φ(N).

For the constant c(G), we note that the area area(R(1)) can be computed to
any desired precision by numerical integration, and r(G) can be determined
by finite exhaustion. The integer m is effectively computable as the least
common multiple of resultants, and we can find the set of divisors of m and
then for each e | m, compute the proportion δe by exhaustive enumeration.

�

Remark 3.3.19. Actually, by work of Sebbar [26] there are exactly 33
torsion-free, genus zero subgroups of PSL2(Z), all of which lift to torsion-
free subgroups of SL2(Z) by Kra [22, Theorem, p. 181]. Up to twist, there
are only finitely many G that can give each ΓG, so the set of groups G that
satisfy the hypotheses of Theorem 1.3.3 is finite (again, up to twist). So
it would be desirable to carry out the proof of Proposition 3.3.18 in every
case, and to just compute these constants (keeping track of the effect of
the twist)—but such a task lies outside of the motivation and scope of this
paper.

Nevertheless, many of the curves in Sebbar’s list arise in our analysis, as
follows. By (1.3.2) and the natural projection SL2(Z)→ PSL2(Z), we can
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associate to every G`(n; r, s) a subgroup ΓG of PSL2(Z) via

G`(n; r, s)↔ ΓG`n (n;r,s),

(though of course a given group may not have genus 0). Of the 33 genus zero
subgroups of PSL2(Z), some can be written as ΓG with G = G`n(n; r, s).
In particular, we have

(3.3.20)

Γ(`n) = ΓG`n (2n;n,n)

Γ1(`n) = ΓG`n (n;n,0) = ΓG`n (n;0,0)

Γ0(4) = ΓG4(2;1,0),

with functorial intersections. In this way, the 16 groups

Γ(2) Γ(3) Γ(4) Γ(5) Γ1(5) Γ1(7)
Γ1(8) Γ1(9) Γ1(10) Γ1(12) Γ0(4) Γ0(6)
Γ0(4) ∩ Γ(2) Γ1(8) ∩ Γ(2) Γ0(2) ∩ Γ(3) Γ0(3) ∩ Γ(2)

in [26] can be each realized as (intersections of) the ΓG`(n;r,s). Of the

remaining 17 torsion-free genus zero groups, 9 can be realized as ΓH , where
H is a proper subgroup of some G`(n; r, s). The remaining 8 torsion-free
genus zero groups

Γ0(8), Γ0(9), Γ0(8) ∩ Γ(2), Γ0(12),

Γ0(16), Γ0(18), Γ0(16) ∩ Γ1(8), Γ0(25) ∩ Γ1(5)

do not correspond to a G`(n; r, s) (or to an intersection).

We now officially conclude the proof.

Proof of Theorem 1.3.3. Combine Theorem 3.3.1 with Proposition 3.3.18.
�

4. The probabilities Pm for m ≥ 5

In this section, we prove Theorem 1.3.1, and we obtain an explicit result
for the cases m = 5 and m = 7. Although we do not do so, one can apply
the arguments of this section to similarly compute Pm for the remaining
values of m ≥ 5.

4.1. Proof of main result. Let m ∈ {1, 2, . . . , 10, 12, 16}. As in section
1.2, we seek to refine our understanding of the subset

(4.1.1) Em? := {E ∈ E : m | #E(Fp) for a set of primes p of density 1}
by considering the probability

(4.1.2) Pm := lim
H→∞

#{E ∈ E≤H : m | #E(Q)tor}
#{E ∈ Em? ∩ E≤H}

;

in particular, we want to show Pm is defined. (Until we do, we may take
Pm to be the lim sup.)
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We now proceed to prove Theorem 1.3.1 for m ≥ 5. Our strategy is as
follows. First, building on section 2, we show that 100% of curves in the
numerator and denominator of Pm are obtained from curves whose `-adic
Galois image in a clean basis is equal to G`(n; r, s) for every ` | m (in
particular, the mod m image is the full preimage of the reductions modulo
`n ‖ m). Second, using Theorem 3.3.1, we give an asymptotic count for
these curves; we find a positive proportion, as predicted by Theorem 3.2.1.

Definition 4.1.3. We say that an elliptic curve E over Q is m-full if for
all `n ‖ m, there exist r, s ∈ Z≥0 with r, s ≤ n such that ρE,`(GalQ) =
G`(n; r, s) (in a basis for T`(E)).

As in (2.2.8), in Definition 4.1.3 we may without loss of generality further
suppose that r + s ≤ n. By Lemma 2.2.5, if E is m-full, then E ∈ Em?.
The following proposition provides a converse sufficient for our purposes.

Proposition 4.1.4. We have

#{E ∈ E≤H : E is m-full} ∼ #(Em? ∩ E≤H)

as H →∞.

Proof. Let E ∈ Em?. By Corollary 2.3.13, there exists a cyclic isogeny
ϕ : E → E′ of degree d | m such that for all `n | m, we have ρE′,`(GalQ) ≤
G`(n; r, n− r) for some 0 ≤ r ≤ n (with these quantities depending on `).
Moreover, by Theorem 2.3.14, if ρE′,`(GalQ) = G`(n; r, n− r) for all ` | m
(so equality holds), then E is m-full.

Let TmE := lim←−nE[mn](Qal) '
∏
`|m Z2

` be the m-adic Tate module; let

(4.1.5) ρE,m : GalQ → AutZm(TmE) ' GL2(Zm) '
∏
`|m

GL2(Z`)

be the associated Galois representation, and let G := ρE,m(GalQ) be the
image. Repeat this with E′ and G′. Let G′full :=

∏
`|mG`(n; r, n− r), so by

the first paragraph we have G′ ≤ G′full. Suppose that G′ < G′full is a strict
inequality; we will show the count of the curves E obtained in this way is
asymptotically negligible.

We first consider the counts of the target curves E′. We begin by re-
ducing to a finite problem, lifting an argument from Sutherland–Zywina
[30, Proof of Proposition 3.6(i)]. The profinite group G′full, as a product of
compact `-adic Lie groups, satisfies condition (iv) of a proposition of Serre
[27, Proposition, §10.6, p. 148; Example 1, p. 149], so it satisfies condition
(ii): its Frattini subgroup Φ(G′full), the intersection of the maximal closed
proper subgroups, is open. Therefore there are only finitely many maxi-
mal proper open (so finite index) subgroups of G′full. In particular, G′ is
contained in (at least) one of these subgroups.
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Since m ≥ 5, the group ΓG′
full

is torsion free by Lemma 2.2.9(d), and so

by Proposition 3.1.1, there exists a curve YG′
full

that is a fine moduli space

for G′full. Since G′ < G′full, the same holds for G′ and moreover we have a
map YG′ → YG′

full
. Since [G′full : G′] > 1 and det(G′) = det(G′full) = Z×m, we

have
[G′full ∩ SL2(Zm) : G′ ∩ SL2(Zm)] > 1,

and hence [ΓG′
full

: ΓG′ ] > 1. Repeating the argument in Corollary 3.3.17,

the asymptotic count of elliptic curves parametrized by YG′ are negligible
in comparison to those parametrized by YG (the image of YG′(Q) in YG(Q)
is thin). Therefore

(4.1.6)
#{E′ ∈ E≤H : [E′] ∈ YG′(Q)}

= o(#{E′ ∈ E≤H : [E′] ∈ YG′
full

(Q)}).

Repeating this argument with G′ one of the finitely many maximal proper
subgroups and summing, we have

#{E′ ∈ E≤H : G′ < G′full} = o(#{E ∈ E≤H : [(E, ι)] ∈ YG′
full

(Q)}).
To finish, we count the curves E. By Theorem 3.2.1, the groups ΓG is

conjugate in GL2(Q) to ΓG′ and have the same underlying modular curve.
By Theorem 3.3.1, the asymptotics for the count of such E is the same as
that for counting E′; therefore, the result follows from (4.1.6). �

With Proposition 4.1.4 in hand, we just need to count by height the
number of m-full elliptic curves by the choices for the groups G`(n; r, s) for
`n ‖ m subject to (2.2.8), and then to decide the proportion of which have
m-torsion, as follows. We recall the special case `n = 21 in Example 2.2.6.

Corollary 4.1.7. For m ≥ 5, the probability Pm is nonzero for all m.

Proof. By Proposition 4.1.4, in the denominator of Pm we need to count
curves parametrized by groups G ≤ GL2(Z/m) isomorphic (via the CRT)
to the product G`n(n`; r`, s`) (with 0 ≤ r`, s`, r`+s` ≤ n`, where m =

∏
`n` ,

by (2.2.8)), and the numerator consists of the subset of counts with r`+s` =
n`. By Lemma 2.2.9(d), the groups ΓG are torsion free. Only groups G
with detG = (Z/m)× and ΓG of genus zero contribute nonnegligibly. By
Theorem 3.3.1, the asymptotic for such a group is determined by d(G) =
1
4 [SL2(Z) : ΓG].

We compute

(4.1.8) [SL2(Z) : ΓG] = [GL2(Z/m) : G] =
∏
`|m

[GL2(Z`) : G`(n`; r`, s`)]

since the group is a direct product. But we computed these indices in
Lemma 2.2.9: they only depend on whether min(r`, n`− r`) ≥ 1 or not; the
smallest degree d(G) (from the smallest index, giving the largest asymptotic
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H1/d(G)) occurs when min(r`, n`− r`) ≥ 1 for each `. Whatever the largest
asmyptotic, we may always choose s` = n` − r` and by Lemma 2.2.17(a)
such curves have m-torsion, hence arise with positive probability. �

For the sake of explicitness, we indicate the rate of growth for each
group in Table 4.1.9. By a straightforward calculation in Magma [5], we
find Table 4.1.9: the universal elliptic curve for G`(n; r, n− r) is isogenous
to G`(n; r, n−r−k) for k ≤ n−r and G`(n;n−r, r−k) for k ≤ r, so we can
use universal equations for one to get to all others. A list of all universal
polynomials for the m-full groups that occur can be found online [10].

m G d(G) torsion

5 all 6 {0}, Z/5

6 all 6 Z/2, Z/6

7 all 12 {0}, Z/7

8 G2(3; r, 0), r = 1, 2, 3 12 Z/2r

8 G2(3; r, 1), r = 1, 2 6 Z/2r × Z/2

9 all 18 {0}, Z/3, Z/9

10 all 18 Z/2, Z/10

12 G2(4; r, 0)×G3(1; 0, 0), r = 1, 2 24 Z/2r

12 G2(4; 1, 1)×G3(1; 1, 0) 12 Z/6× Z/2

16 all 24 Z/2r × Z/2, r = 0, 1, 2, 3

Table 4.1.9: Data for modular curves parametrizing m-full elliptic curves

We find that for m ∈ {5, 6, 7, 9, 10, 16}, all m-full groups G have the
same index d(G); for m = 8, 12, we distinguish between two cases.

4.2. Setup to compute P` for ` = 5, 7. In the remainder of this section,
we follow the proof of Corollary 4.1.7 and compute P` for ` = 5, 7. The
main simplification in these cases is that, aside from a negligible subset
when ` = 5 (see Lemma 4.3.3), elliptic curves in E`? either have a global
point of order `, or are `-isogenous to one that does.

Let ` ∈ {5, 7}. The Tate normal form of an elliptic curve, which gives a
universal curve with a rational `-torsion point, has Weierstrass model

E(t) : y2 + (1− c)xy − by = x3 − bx2(4.2.1)

with b, c ∈ Z[t] explicitly given; the rational point (0, 0) generates a ra-
tional subgroup of order `, and accordingly the image of the `-adic Galois
representation lies in the group G`(1; 1, 0) as in Example 2.2.7. Applying
Vélu’s formulas [31, (11)] to the isogeny with kernel generated by (0, 0),
one obtains a model:

E′(t) : y2 + (1− c)xy − by = x3 − bx2 + dx+ e,(4.2.2)
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for d, e ∈ Z[t]. The curve E′(t) is the universal elliptic curve for the moduli
problem of elliptic curves with `-adic Galois representation contained in
G`(1; 0, 0), just as in Lemma 2.2.17(b) the property that for any nonsingular
specialization t ∈ Q it locally has a subgroup of order `.

Passing to short Weierstrass form, we write

E(t) : y2 = x3 + f(t)x+ g(t)

E′(t) : y2 = x3 + f ′(t)x+ g′(t),

for explicit polynomials f(t), f ′(t), g(t), g′(t) ∈ Q[t] given in (4.3.2) below.
Let j(t) (resp. j′(t)) be the j-function of E(t) (resp. E′(t)).

Recall the integer r(G) defined in (3.1.6). As in Example (3.1.7), we find
that

(4.2.3) r(G) = 4, 6

for m = 5, 7, so the ratio of the two cancels in each case.
Writing t = a/b and homogenizing, we finally arrive at two-parameter

integral models

(4.2.4)
E(a, b) : y2 = x3 +A(a, b)x+B(a, b)

E′(a, b) : y2 = x3 +A′(a, b)x+B′(a, b),

where A,B ∈ Z[a, b] and A′, B′ ∈ Z[a, b] are coprime pairs.
We can now count integral curves by height and apply the methods of

the previous sections. Before preceding, as a guide to the reader we give
an overview of the calculations in both cases here.

The probability P` will follow from the explicit computation of two
growth constants: c(G`(1; 1, 0)) and c(G`(1; 0, 0)), associated to elliptic
curves with a rational point of order `, and those that admit a rational
`-isogeny (but not a rational point of order `), respectively. Since the main
growth terms have the same degree (see Table 4.1.9), we find

(4.2.5) P` =
c(G`(1; 1, 0))

c(G`(1; 1, 0)) + c(G`(1; 0, 0))
=

(
1 +

c(G`(1; 0, 0))

c(G`(1; 1, 0))

)−1

,

where the constants c(G`(1; 1, 0)) and c(G`(1; 0, 0)) are defined in (3.3.13).
To ease notation, we abbreviate

c := c(G`(1; 1, 0))

c′ := c(G`(1; 0, 0)).

We also define the quantities arising in Step 3 of Theorem 3.3.1, namely

(4.2.6)
m := lcm

(
Rest(f(t), g(t)),Rest(f̆(t), ğ(t))

)
m′ := lcm

(
Rest(f

′(t), g′(t)),Rest(f̆ ′(t), ğ′(t))
)
,
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where h̆(t) := tdeg hh(1/t) is the reciprocal polynomial of h(t) ∈ Q[t], along
with the corresponding correction ratios δe and δ′e measuring the propor-
tion of curves with minimality defect e for e | m,m′, respectively, all as
appearing in (3.3.13).

Therefore, to compute P` we are reduced to computing the ratio

(4.2.7)
c′

c
=

area(R′(1))
∑

e|m′ δ′ee
12/d(G)

area(R(1))
∑

e|m δee
12/d(G)

,

where

(4.2.8)
R(1) := {(a, b) ∈ R2 : |A(a, b)| ≤ 4−1/3 and |B(a, b)| ≤ 27−1/2}

R′(1) := {(a, b) ∈ R2 : |A′(a, b)| ≤ 4−1/3 and |B′(a, b)| ≤ 27−1/2}.

We compute the local corrections by finite search. The ratio of areas
has a remarkably simple expression, as follows. By Lemma 3.1.5, we have
ΓG`(1;0,0) = ΓG`(1;1,0), i.e., the curves E(t) and E′(t) are universal curves

over the same base modular curve. Over Q(ζ`), the determinant of the
mod ` Galois representation (the cyclotomic character) becomes trivial,
so both of these curves solve the same moduli problem over Q(ζ`), and
hence over C. Since these two schemes represent the same functor, there
is an isomorphism between them. Both have base scheme a Zariski open
in P1 (say with variables t and t′, respectively), so there exists a linear
fractional transformation ψ such that t′ = ψ(t). Postcomposing with the j-
function X → X(1) = P1, we conclude that there exists a linear fractional
transformation ψ such that

(4.2.9) j(ψ(t)) = j′(t).

In concrete terms, given the j-invariants j(t) and j′(t) we compare zeroes
and poles to explicitly compute the linear fractional transformation ψ. By
homogenizing t to (a, b) and computing the effect on each variable, we get
a change of variables mapping R(1) bijectively onto R′(1). Therefore, the
ratio

area(R′(1))

area(R(1))

is the determinant of the change of variables matrix! (In particular, this
can be given exactly without needing it for the two areas themselves.)

4.3. The case ` = 5. We now carry out the above strategy for ` = 5. In
the Tate normal form (4.2.1), we compute b = c = t (see also Garćıa-Selfa–
Tornero [15, Thm. 3.1]); applying Vélu’s formulas [31, (11)] gives

(4.3.1)
d = −5t3 − 10t2 + 5t, and

e = −t5 − 10t4 + 5t3 − 15t2 + t
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in (4.2.2). The Weierstrass coefficients and j-invariants of E(t) and E′(t)
are given by

(4.3.2)

f(t) = −27(t4 − 12t3 + 14t2 + 12t+ 1)

g(t) = 54(t6 − 18t5 + 75t4 + 75t2 + 18t+ 1)

j(t) =
f(t)3

t5(t2 − 11t− 1)

f ′(t) = −27(t4 + 228t3 + 494t2 − 228t+ 1)

g′(t) = 54(t6 − 522t5 − 10005t4 − 10005t2 + 522t+ 1)

j′(t) =
f ′(t)3

t(t2 − 11t− 1)5
.

Lemma 4.3.3. The curve E′(t0) defined by (4.2.2) has a rational 5-torsion
point if and only t0 ∈ Q×5.

Proof. The discriminant of E′(t) is t(t2 − 11t− 1)5, so t = 0 is the only ra-
tional singular specialization. By explicitly computing the 5-division poly-
nomial of E′(t) using the expressions in (4.3.2), one can show that the
5-torsion field of E′(t) has Galois group F20 over Q(t) and is the splitting
field of x5 − t over Q(t). For any non-zero specialization t = t0, the mod 5
representation of E′(t0) is a subgroup of(

∗ ∗
0 1

)
.

If, in addition, E′(t0) has a rational 5-torsion point, then the above Galois
representation is diagonal, yet must have surjective determinant. Thus, the
5-torsion field of E′(t0) is Q(ζ5) and so the polynomial x5−t0 has a rational
root, but does not split; i.e. t0 is a rational 5th power.

Conversely, if t0 = s5 then the point

(s8 + s7 + 2s6 − 2s5 + 5s4 − 3s3 + 2s2 − s,
s12 − s11 − s10 + s8 − 10s7 + 13s6 − 11s5 + 5s4 − 3s3 + s2)

is a point of order 5. �

Remark 4.3.4. If t0 ∈ Q, then as in Example 2.2.16, the isogeny class to
which E(t0) belongs typically contains only two curves, E(t0) and E′(t0),
linked by a 5-isogeny, with the two representations in Lemma 2.3.5 (con-
tained in a Borel subgroup); see for example the isogeny class with LMFDB
[21] label 38.b. However, if t0 is a 5th power, then E′(t0) has a rational
5-torsion point, the mod 5 representation of E′(t0) is contained in the split
Cartan subgroup (

1 0
0 ∗

)
≤ GL2(F5),

http://www.lmfdb.org/EllipticCurve/Q/38/b/
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and E′(t0) admits two different rational 5-isogenies: for example, 1342.b.
By the classification of possible images of mod 5 and mod 7 represen-

tations of Zywina [33, Theorems 1.4, 1.5], this is a “worst case scenario”
for the isogeny graph of a curve in E5?. By comparison, for curves in E7?,
all isogeny classes contain two curves linked by a 7-isogeny. See the re-
cent preprint Chiloyan–Lozano-Robledo [7] on the classification of isogeny
graphs of elliptic curves over Q.

We now compute the all-important change of coordinates φ(t) in (4.2.9).
We write

u := (11 + 5
√

5)/2 ≈ 11.09 ∈ R>0

so that u and −1/u are the roots of the quadratic polynomial t2 − 11t− 1.
We define the linear fractional transformation

(4.3.5) ψ(t) :=
ut+ 1

t− u
,

mapping u → ∞, 0 → −1/u, and ∞ → u. It is routine to verify that
j(ψ(t)) = j′(t).

Lemma 4.3.6. With R(1), R′(1) as defined in (4.2.8), we have

(4.3.7)
area(R′(1))

area(R(1))
=

1

5
.

Proof. By the observation following (4.2.9), the ratio of areas is the de-
terminant of the change of variables matrix mapping R(1) bijectively onto
R′(1). There is a pleasant, visible symmetry in this case—one which gave
this entire project momentum—so we are even more explicit in this case.

Define the angle θ := arctan(2/11)/2, so that

cos θ =
1

5

√
25 + 11

√
5

2
and sin θ =

1

5

√
25− 11

√
5

2
.

Direct calculation reveals that

A′(a cos θ − b sin θ, a sin θ + b cos θ) = A(
√

5a,−
√

5b),

B′(a cos θ − b sin θ, a sin θ + b cos θ) = B(
√

5a,−
√

5b).

In other words, a rotation by θ, followed by a reflection and a scaling of a
and b by

√
5 maps R′(1) bijectively onto R(1), as in Figure 4.3.8.

http://www.lmfdb.org/EllipticCurve/Q/1342/b/
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Figure 4.3.8: Symmetry of R(1) and R′(1), m = 5

The ratio area(R′(1))/ area(R(1)) = 1/5 follows from the fact that a
reflection/rotation is area-preserving and the scaling is by

√
5 in both di-

rections a and b. �

Now we calculate the sieve factor in (4.2.7), which is the last ingredient
needed for an exact expression for P5. Because we will perform a similar
sieve for the case P7, we go into some detail here and then proceed more
quickly through this step when ` = 7.

We start by recording the integers m and m′ defined in (4.2.6), computed
by resultants:

m = 2163365,

m′ = 216336525.

We recall that d(G5(1; 1, 0)) = d(G5(1; 0, 0)) = 6. Thus, the local correction
factors for c is ∑

e|m

δee
12/d(G) =

∑
e|2163365

δee
2

and similar for c′. We now compute the δe and δ′e.

Lemma 4.3.9. With all notation as above, we have δ1 = 1 and δe = 0 for
all other divisors e of m.

Proof. Let (a, b) ∈ Z2. One can easily verify by hand or computer that if
p = 2, 3, or 5, then

p4 | A(a, b) and p6 | B(a, b)

if and only if a ≡ b ≡ 0 (mod p). If e > 1 is a possible minimality defect
(recall this means that e is the largest positive integer such that e12 |
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gcd(A(a, b)3, B(a, b)2)), then e is divisible by at least one of 2, 3, or 5 and
so by the previous observation (a, b) is not groomed. Thus δe = 0. Since∑

e|m δe = 1, we have δe = 1. �

Corollary 4.3.10. We have

c = c(G`(1; 1, 0)) =
area(R(1))

ζ(2)
.

Proof. Plug Lemma 4.3.9 and (3.3.16). �

Lemma 4.3.11. We have δ′e = 0 for all divisors e of m′/525.

Proof. A similar calculation as in Lemma 4.3.9 shows that if p = 2, 3, then

p4 | A′(a, b) and p6 | B′(a, b)

if and only if a ≡ b ≡ 0 (mod p), so the same conclusion holds. �

By Lemma 4.3.11, it only remains to compute δ′e for e | 525.

Lemma 4.3.12. We have δ′e = 0 for all e > 5, δ′1 = 29/30, and δ′5 = 1/30,
so that ∑

e|525
δ′ee

2 =
29

30
+

1

30
· 25 =

9

5
.

Proof. We first show that δ′e = 0 for e > 5. Suppose e > 5, so that
e = 5k for 1 ≤ k ≤ 25. Let (a, b) ∈ Z2 have minimality defect e, so
e12 | gcd(A′(a, b)3, B′(a, b)2); then e12 | A′(a, b)3, whence e4 | A′(a, b). Note
that e is divisible by 52.

Suppose further that gcd(a, b) = 1. We will show that there are no
solutions to the congruence

A′(a, b) ≡ 0 (mod 56),(4.3.13)

implying that it is impossible for e4 | A′(a, b) unless gcd(a, b) 6= 1, i.e.,
unless (a, b) is not groomed.

Since gcd(a, b) = 1, either a or b is coprime to 5. By the symmetry of
the coefficients of A′(a, b), it suffices to assume b is coprime to 5, and hence
invertible modulo 56. Multiplying (4.3.13) by (1/b)6, we are left with the
congruence

f ′(t) ≡ 0 (mod 56),

to which there are no solutions. As we sketched above, this is enough to
conclude that δ′e = 0 for e > 5. It remains to calculate δ′5, which we can do
working modulo 25.

Suppose

A′(a, b) ≡ 0 (mod 54) and B′(a, b) ≡ 0 (mod 56).
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If b is invertible modulo 25, then we are left to consider the congruences

f ′(t) ≡ 0 (mod 54) and g′(t) ≡ 0 (mod 56).

which happens if and only if t ≡ 18 (mod 25). Similarly if a is invertible,
then we find t ≡ 7 (mod 25). We also note that 18 and 7 are inverses mod-
ulo 25, reflecting the fact that A′ and B′ are each reciprocal polynomials.
This accounts for 1/30 of the possible ratios (a : b) among groomed (a, b)
modulo 25. (Alternatively, working over P1(Z/25), we find that of the 30
rational points, only [18 : 1] = [1 : 7] solve the above congruences.)

Thus, δ′5 = 1/30, and δ′1 = 1 − 1/30 = 29/30, and the correction factor
of 9/5 follows. �

Corollary 4.3.14. The constant c′ is given by

c′ =
9 area(R(1))

5ζ(2)
.

Proof. This follows immediately from Lemmas 4.3.11 and 4.3.12, as in
Corollary 4.3.10. �

We finally arrive at the exact value of P5.

Corollary 4.3.15. We have P5 = 25/34 ≈ 73.5%.

Proof. Combining Corollaries 4.3.10 and 4.3.14, together with Lemmas
4.3.6 and 4.3.12, we have

c′

c
=

area(R′(1))
∑

e|m′ δ′ee
2

area(R(1))
=

1

5
· 9

5
=

9

25
.

By (4.2.5), we have

P5 =
c

c+ c′
=

1

1 + c′/c
=

1

1 + 9/25
=

25

34
. �

Remark 4.3.16. We perform a count of 5-full elliptic curves E ∈ E5? ∩ E≤H
in Magma of height H ≤ 1036, giving 196772 with a global subgroup of
order 5 and 70784 with only a local, but not global, subgroup of order 5.
These 70784 further decompose as 37944 with e = 1 and 32840 with e = 5.
These proportions are in line with the ones predicted above and altogether
give a ratio of

196772/(196772 + 70784) ≈ 73.5%,

which agrees nicely with our calculations above.
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4.4. The Case ` = 7. Repeating the steps in the previous section, we are
more brief. The universal models for those curves have Weierstrass data:

f(t) = −27t8 + 324t7 − 1134t6 + 1512t5 − 945t4 + 378t2 − 108t− 27

g(t) = 54t12 − 972t11 + 6318t10 − 19116t9 + 30780t8 − 26244t7 + 14742t6

− 11988t5 + 9396t4 − 2484t3 − 810t2 + 324t+ 54

f ′(t) = −27t8 − 6156t7 − 1134t6 + 46872t5 − 91665t4 + 90720t3 − 44982t2

+ 6372t− 27

g′(t) = 54t12 − 28188t11 − 483570t10 + 2049300t9 − 3833892t8 + 7104348t7

− 13674906t6 + 17079660t5 − 11775132t4 + 4324860t3 − 790074t2

+ 27540t+ 54.

As above, we let A,B,A′, B′ denote the homogenizations of f, g, f ′, g′.
The j-invariant j(t) of E(t) is given explicitly by

j(t) =
(t2 − t+ 1)3(t6 − 11t5 + 30t4 − 15t3 − 10t2 + 5t+ 1)3

t7(t− 1)7(t3 − 8t2 + 5t+ 1)

and so has simple poles at the roots of the polynomial h(t) := t3−8t2+5t+1,
and poles of order 7 at 0, 1,∞. Similarly, the j-invariant j′(t) of E′(t) has
simple poles at 0, 1, ∞ and poles of order 7 at the roots of h(t). The roots
of h(t) are real, generate the field Q(ζ7 +ζ−1

7 ), and we label them according
to the ordering ρ1 < ρ2 < ρ3. Under the linear fractional transformation

ψ(t) =
(ρ2 − ρ1)t+ (ρ1 − ρ2)ρ3

(ρ2 − ρ3)t+ (ρ1ρ3 − ρ1ρ2)
,

we have j(ψ(t)) = j′(t). We now proceed exactly as above.

Lemma 4.4.1. With R(1), R′(1) as defined in (4.2.8), we have

(4.4.2)
area(R′(1))

area(R(1))
=

1√
7
.

Proof. The change of variables (a, b) 7→ J(a, b) defined by matrix multipli-
cation (on columns)

J :=

(
u 0
0 u

)(
ρ2 − ρ1 ρ1ρ3 − ρ2ρ3

ρ2 − ρ3 ρ1ρ3 − ρ1ρ2

)
,

and u = 7−3/4 maps R(1) bijectively onto R′(1) by checking that

A(J(a, b)) = A′(a, b) and B(J(a, b)) = B′(a, b).

Then

|det(J)| = |u2(ρ2 − ρ3)(ρ2
1 − ρ1ρ2 − ρ1ρ3 + ρ3ρ2)| =

√
7,

which proves the lemma. �
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Just like in the case ` = 5 we must compute the local correction factors.
We compute m = −2323727 and m′ = −232372749 and check that d(G) = 12
(so that we sum δee

1 and δ′ee
1 over the divisors of m and m′, respectively).

Lemma 4.4.3. We have δe = δ′e = 0 when e is divisible by a power of 2,
and δ7 = 0.

Proof. Similar to our work in the ` = 5 case, one checks that

24 | A(a, b) and 26 | B(a, b)

if and only if a ≡ b ≡ 0 (mod 2) and similarly for A′(a, b) and B′(a, b). An
analogous calculation gives us the same result for the polynomials A(a, b)
and B(a, b) when p = 7.

Thus, none of the groomed pairs (a, b) contribute to the correction factor
in these cases and by the identical argument to the one in Lemma 4.3.9 we
conclude that δe = δ′e = 0 when e is a power of 2 and that δ7 = 0, as
claimed. �

Lemma 4.4.4. With all notation as above, we have

δ′e = 0 if 72 | e.
δe = δ′e = 0 if 32 | e

δ3 = 1/4

δ1 = 3/4

δ′3 = 7/32

δ′7 = 3/32

δ′21 = 1/32

δ′1 = 21/32.

Proof. The reasoning is identical to that in Lemma 4.3.12. Suppose 32 | e.
Let (a, b) ∈ Z2 have minimality defect e, so e12 | gcd(A(a, b)3, B(a, b)2);
then e12 | A(a, b)3, whence e4 | A(a, b). Since e is divisible by 32, we have
that A(a, b) ≡ 0 (mod 38).

If, in addition, gcd(a, b) = 1 we can show that there are no solutions to
the congruence

A(a, b) ≡ 0 (mod 35),(4.4.5)

implying that it is impossible for e4 | A(a, b) unless gcd(a, b) 6= 1, i.e. unless
(a, b) is not groomed.

Since gcd(a, b) = 1, either a or b is coprime to 3. Moreover, since the
coefficients of A(a, b) are not symmetric, we must consider both cases. If
b is coprime to 3, then it is invertible modulo 35 and so we led to the
congruence

f(t) ≡ 0 (mod 35),



38 John Cullinan, Meagan Kenney, John Voight

which has no solutions. Similarly, we can invert a to arrive at the congru-
ence

t8f(1/t) ≡ 0 (mod 35),

which also has no solutions. We can repeat this same argument for the
polynomial A′(a, b) and again for the polynomial A′(a, b) when e is divisible
by 72. In all cases we conclude that there are no groomed pairs (a, b) giving
rise to divisibility by e12 in these cases. This leaves only a handful of cases
left to work out: δ3, δ′3, δ′7, and δ′21. These will, in turn, give us δ1 and δ′1.

For δ3 and δ′3 we work in P1(Z/3) and find

A(a, b) ≡ 0 (mod 34) and B(a, b) ≡ 0 (mod 36)

if and only if

[a : b] ≡ [2 : 1] ≡ [1 : 2] (mod 3)(4.4.6)

This accounts for 1 of the 4 points of P1(Z/3), hence δ3 = 1/4. For δ′3, we
find the exact conditions as (4.4.6).

Turning to δ′7 we find

A′(a, b) ≡ 0 (mod 74) and B′(a, b) ≡ 0 (mod 76)

if and only if

[a : b] ≡ [5 : 1] ≡ [1 : 3] (mod 7).(4.4.7)

This accounts for 1 of the 8 points of P1(Z/7).
For δ′21 we use the CRT combined with the proportions at 3 and 7 above.

We finally arrive at

δ′3 =
1

4
· 7

8
=

7

32

δ′7 =
3

4
· 1

8
=

3

32

δ′21 =
1

4
· 1

8
=

1

32
.

δ′1 = 1− δ′3 − δ′7 − δ′21 =
21

32
. �

Corollary 4.4.8. We have

P7 = 4/(4 +
√

7) ≈ 60.2%

Proof. By (4.2.5) and Lemmas 4.4.1, 4.4.3, and 4.4.4, we have

P7 =
c

c+ c′
=

1

1 + c′/c
,

with

c′

c
=

1√
7
· (21/32) + (7/32) · 3 + (3/32) · 7 + (1/32) · 21

(3/4) + (1/4) · 3
=

√
7

4
,
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from which the exact value of P7 follows. �

Remark 4.4.9. Similar to 4.3.16, we perform a count of elliptic curves in
Magma of height H ≤ 1072. We get 1291676 with a global subgroup of
order 7 (where 645918 correspond to e = 1 and 645758 to e = 3). We also
get 854432 that locally have a subgroup of order 7, but not globally. These
854432 break down as: 213522 with e = 1; 213704 with e = 3; 213714 with
e = 7; and 213492 with e = 21. All of these proportions agree nicely with
the predictions above, and give a ratio of

1291676

1291676 + 854432
≈ 60.2%,

which is very good corroborating evidence for Corollary 4.4.8.

5. The probabilities P3 and P4

In this section, we compute the values of P3 and P4 using similar methods
as in the previous section, but without appealing to the general result
(in particular, there are non-fine moduli spaces). In the case m = 3 we
can evaluate P3 without computing explicit growth constants thanks to a
symmetry argument, while for m = 4 we express P4 as a ratio of growth
constants given explicitly by an integral.

5.1. Universal models. Here we parametrize curves that locally have a
subgroup of order m for m ∈ {3, 4}, working in a bit more generality. Let
F be a global field with charF 6= 2, 3 and let E : y2 = f(x) = x3 +Ax+B
be an elliptic curve over F . For d ∈ F×, let Ed : dy2 = f(x) denote the
quadratic twist by d.

Lemma 5.1.1. Suppose that E locally has a subgroup of order 3, i.e.,
3 | #E(Fp) for a set of primes p of F of density 1. Then the following
statements hold.

(a) Either E(F )[3] 6= {∞} or E−3(F )[3] 6= {∞}.
(b) There exist a, b ∈ F and u ∈ {1,−3} such that E is defined by the

equation

y2 = x3 + u2(6ab+ 27a4)x+ u3(b2 − 27a6).

Proof. Let E ∈ E3? be given by y2 = x3 + Ax + B. By Lemma 2.3.5,
either E(F )[3] 6= {∞} or E admits a 3-isogeny over F to a curve E′ with
E′(F )[3] 6= {∞}. In either case, E has a rational 3-isogeny and the x-
coordinate of a generator of the kernel must be defined over Q. Hence the
3-division polynomial of E has a root a ∈ F .

By Theorem 2.3.14, the semisimplification of the mod 3 Galois represen-
tation attached to E has ρss

E,3 ' 1 ⊕ ε3, where ε3 is the mod 3 cyclotomic
character. If E has a 3-torsion point then

a3 +Aa+B ∈ F×2
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so we interpret F (1) = F (
√
a3 +Aa+B). Since F (ε3) = F (

√
−3), it

follows that

F (ε3) = F (
√
−3(a3 +Aa+B)).

Thus, either E has a rational point of order 3 or its quadratic twist by −3
does, proving (a).

Part (b) is by a routine, universal computation (see e.g. Garćıa-Selfa–
Tornero [15, §2] for a derivation). �

We now turn to m = 4. To set things up, suppose that E has a nontrivial
2-torsion point T ∈ E(F ). Writing T = (−b, 0), we have a model

(5.1.2) E : y2 = x3 +Ax+ b3 +Ab.

Lemma 5.1.3. Let R be a 2-division point of T on E, i.e., 2R = T . Then
the following are equivalent:

(i) x(R) ∈ F ;
(ii) 3b2 +A ∈ F×2; and
(iii) E admits an F -rational cyclic 4-isogeny whose kernel contains T .

Proof. The 2-division points of T form a torsor under E[2] and there are
two x-coordinates. Computing with the group law on a universal curve,
the minimal polynomial of the x-coordinates is exactly

x(R)2 + 2bx(R)− (A+ 2b2).

Thus, x(R) ∈ F if and only if the discriminant 12b2 + 4A is a non-zero
square in F , showing (i) ⇔ (ii).

For (i) ⇒ (iii), if there exists R with x(R) ∈ F , then the subgroup
〈R〉 = {0, R, T, 3R} is stable under Gal(F/F ) since

3R = −R = (x(R),−y(R)).

For (iii) ⇒ (i), if 〈R〉 is Galois stable, then for all σ ∈ Gal(F/F ) we have
σ(R) = ±R so σ(x(R)) = x(R), whence x(R) ∈ F . �

Proposition 5.1.4. The elliptic curve E locally has a subgroup of order 4
if and only if at least one of the following statements hold:

(i) E(F )[2] ' (Z/2)2, or
(ii) E has a cyclic 4-isogeny defined over F .

Moreover, in case (ii), there exist a, b ∈ F such that E is defined by

y2 = x3 + (a2 − 3b2)x+ a2b− 2b3

and the following statements hold:

• E(F )[2] ' (Z/2)2 if and only if 9b2 − 4a2 ∈ F×2, and
• E(F )[4] 6⊆ E(F )[2] if and only if 2a− 3b ∈ F×2 or −2a− 3b ∈ F×2.
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Proof. An elliptic curve E/F admits a rational cyclic 4-isogeny if and only
if it has a Galois-stable cyclic subgroup of order 4; by stability, E has a
rational point of order 2 contained in the cyclic group. Then the 2-adic
representation of E lies in the group(

1 + 2Z2 Z2

4Z2 1 + 2Z2

)
≡
(
∗ ∗
0 ∗

)
(mod 4).

Clearly, det(1− g) ≡ 0 (mod 4) for all elements of this group and so E has
a local subgroup of order 4. Conversely, if det(g − 1) ≡ 0 (mod 4) for all
g ∈ im ρE,2, but E does not have full rational 2-torsion, then it will have
one point of order 2 defined over F . Then any non-trivial g ∈ im ρ2 reduces
modulo 2 to ( 1 1

0 1 ) or ( 1 0
0 1 ) and so can be written in the form(

1 + 2α β
2γ 1 + 2δ

)
, or

(
1 + 2α′ 2β′

2γ′ 1 + 2δ′

)
,

respectively.
In the first case, det(1 − g) ≡ 0 (mod 4) implies 2 | βγ. But then 2 | γ

(or else E(F )[2] = Z/2 × Z/2) and so the mod 4 representation on these
elements has the shape ( ∗ ∗0 ∗ ). If g is of the second form, then multiply by
a matrix h of the first form and compute

det(1− gh) ≡ 2(γ + γ′)β (mod 4).

Since 2 | γ, we must have 2 | βγ′. And similar to the first case we conclude
that 2 | γ′. Thus the lower-triangular entry of any element of im ρE,2 is
divisible by 4 and so E admits a rational cyclic 4-isogeny.

Now suppose we are in Case (ii). In light of Lemma 5.1.3, let a ∈ F be
such that a2 = 3b2 +A, so that

E : y2 = x3 + (a2 − 3b2)x+ a2b− 2b3.

Fix square-roots
√
±2a− 3b ∈ F al. Then E visibly has two F -rational

cyclic 4-isogenies with kernels

〈(a− b, a
√

2a− 3b)〉, and 〈(−a− b, a
√
−2a− 3b)〉,

respectively. Doubling either generator results in the marked 2-torsion
point T ; the other 2-torsion points are then

(b/2±
√

9b2 − 4a2/2, 0).

The splitting field of the preimages of T under duplication is then a bi-
quadratic extension of F with intermediate extensions

F (
√

2a− 3b), F (
√
−2a− 3b), F (

√
9b2 − 4a2).

These quadratic extensions are nontrivial exactly under the conditions
stated in Proposition 5.1.4. �
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5.2. The Probability P3. By Lemma 5.1.1, all curves in E3? either have
global point of order 3 or are a quadratic twist by −3 of one that does.
These are modeled by the Weierstrass equations

y2 = x3 + u2(6ab+ 27a4)x+ u3(b2 − 27a6),(5.2.1)

where u = 1 means the curve has a 3-torsion point and u = −3 is its
quadratic twist.

Denote by Ru(H) the region (3.3.6) attached to the elliptic curve (5.2.1).
Applying the Principle of Lipschitz we see that

areaRu(H) = areaRu(1)H1/3 +O(H1/4).(5.2.2)

In particular, observe that

areaR1(1) = 9 areaR−3(1).(5.2.3)

Remark 5.2.4. As long as #G ≥ 5, we have shown that Lipschitz asymp-
totics give a growth term of 2/d(G) and error of 1/d(G). The degrees of
the polynomials A(a, b) and B(a, b) are not large enough to ensure these
asymptotics when #G = 3 or 4, so we estimate the order of growth of the
error term “by hand” (using the results previously obtained by Harron-
Snowden).

We are now ready to compute P3.

Proposition 5.2.5. We have P3 = 1/2.

Proof. Appealing to the notation of (4.2.5), we write c = c(G3(1; 1, 0)) and
c′ = c(G3(1; 0, 0)) and find

cH1/3 +O(H1/4) and c′H1/3 +O(H1/4)

for the number of minimal elliptic curves of height at most H with a global
3-torsion subgroup and the number of quadratic twists, respectively; note
the exponents come from the Lipschitz estimate of (5.2.2). It remains to
compute c and c′ exactly.

For every prime q 6= 3, we have

q4 | (6ab+ 27a4) and q6 | (b2 − 27a6)

if and only if

q4 | 9(6ab+ 27a4) and q6 | −27(b2 − 27a6).

Therefore, sieving out non-minimal equations away from q = 3 has no effect
on the ratio of the growth constants.

The pairs (a, b) such that

34 | (6ab+ 27a4) and 36 | (b2 − 27a6)

have a ≡ 0 (mod 3) and b ≡ 0 (mod 27), which accounts for a proportion
of 1/81 of the pairs.
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For the twists, observe that

9(6ab+ 27a4) and − 27(b2 − 27a6)

are integral if and only if a, b ∈ (1/3)Z. Among those pairs, similar reason-
ing shows that 1/81 yield non-minimal equations.

Taking a, b ∈ (1/3)Z scales the area of R−3(H) by 9, whence, by (5.2.3)
the number of integral equations parameterizing 3-torsion and local 3-
torsion is the same. Sieving out 1/81 of the pairs from each count does
not affect the ratio and so the proportions are equal. �

Remark 5.2.6. We confirm Proposition 5.2.5 experimentally: in a naive
way, we compute

#{E ∈ E≤1012 : 3 | #E(Q)tor}
#(E3? ∩ E≤1012)

=
3808

7578
≈ 0.503.

5.3. The Probability P4. The strategy here is similar, but we will need
to do more computation to get the growth constants exactly. (The differ-
ence between this case and P3 is that the Weierstrass models of the curves
in E4 are not simply quadratic twists of each other and, moreover, to argue
how the shapes of the regions are transformed by cyclic isogenies is at least
as difficult as computing the areas by calculus.)

First, we reduce our work by observing from Harron–Snowden [17, The-
orem 1.1] that the number of curves up to height H with a rational Z/4-

torsion subgroup is � H1/4 and curves with full 2-torsion are � H1/3. This
shows that as H → ∞, curves with full 2-torsion dominate curves with a
4-torsion point in E4? and so the latter will not contribute to the proba-
bility P4. For completeness, however, we record the quantities d(Z/4) and
e(Z/6) in the following Proposition and fill in the entry for Z/4 in Table
1.3.8. Because we do not need the growth constant, we are content to
sketch a proof.

Proposition 5.3.1. The number NZ/4(H) of elliptic curves over Q of
height ≤ H with a rational point of order 4 is given by

NZ/4(H) = cH1/4 +O(H1/6),

for an explicitly computable constant c.

Proof. By [15, Σ4, p. 93] elliptic curves over Q with a rational point of
order 4 are parameterized by

y2 = x3 − 27(16t2 + 16t+ 1)x− 54(64t3 − 120t2 − 24t− 1).

Homogenizing and clearing denominators across the Weierstrass equation,
shows that the number of integral equations is roughly given by the number
of integral points in the compact region of R2 defined by

(5.3.2) R(H) := {(a, b) : 4|A(a, b)|3 ≤ H and 27|B(a, b)|2 ≤ H}
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where

(5.3.3)
A(a, b) := 27(16a2 + 16ab2 + b4)

B(a, b) := 54(64a3 − 120a2b2 − 24ab4 − b6).

(Here, “roughly” means that A(a, b) and B(a, b) are integral if and only
if (a, b) ∈

(
1
6Z
)
× Z; this can be deduced from congruences. We will not

pursue a finer estimate than this because we do not seek an explicit growth
constant.)

The compactness of R(H) allows for a Lipschitz analysis. A homogene-

ity argument with the Weierstrass coefficients (scale a by H1/6a and b

by H1/12b) shows immediately that area(R(H)) = area(R(1))H1/4 and

O(len(bd(R(H)))) = O(H1/6). The boundary of R(H) is rectifiable (given
by polynomials) and so the area of R(1) is calculable. The constant c is
area(R(1)) scaled by 1/r(Z/4) and a sieve factor, both of which are finite
calculations. �

For G = Z/2×Z/2, our next goal is to show that the number of isomor-
phism classes NG(H) of elliptic curves with global torsion subgroup G of
height ≤ H is given by

NG(H) = c(G)H1/d(G) +O(H1/e(G)).(5.3.4)

Thus, P4 will be given as a weighted ratio of the constant c(Z/2×Z/2) and
the corresponding constant for curves admitting a cyclic 4-isogeny. We first
work out the details for the group Z/2×Z/2 in the following Proposition,
which contributes to the data in Table 1.3.8. After this, we count curves
admitting a cyclic 4-isogeny in Proposition 5.3.10. From there, it is then a
simple matter to fit the pieces together to obtain an exact expression for
P4; this is Corollary 5.3.12.

Proposition 5.3.5. For G = Z/2× Z/2, we have

c(G) =
121π

√
3 3
√

2

360
r(G) = 6

1/d(G) = 1/3

1/e(G) = 1/6.

Proof. We start with a two-variable model parameterizing elliptic curves
with full 2-torsion:

y2 = x3 − (a2 − ab+ b2)

3
x− (a+ b)(2a− b)(a− 2b)

27
,(5.3.6)
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identifying the polynomials A(a, b) and B(a, b) as

A(a, b) = −(a2 − ab+ b2)/3

B(a, b) = −(a+ b)(2a− b)(a− 2b)/27.

It is routine to check that for all H > 0 we have the containment

{(a, b) : |4A(a, b)|3 ≤ H} ⊆ {(a, b) : |27B(a, b)|2 ≤ H}.

(Briefly, rotate by π/4 so that it amounts to checking

4

∣∣∣∣a2

2
+
b2

6

∣∣∣∣3 ≤ H =⇒ 27

(
ba2

3
√

2
− b3

27
√

2

)2

≤ H.(5.3.7)

By symmetry and scaling, it suffices to show (5.3.7) holds for a, b ≥ 0 and
H = 1, which is easily verified.)

We therefore put

R4(H) = {(a, b) ∈ R×R : 4|A(a, b)|3 ≤ H}.(5.3.8)

The constants c(Z/2 × Z/2), d(Z/2 × Z/2), e(Z/2 × Z/2) of the Proposi-
tion will follow from asymptotic analysis of the elliptical region defined by
(5.3.8).

By the homogeneity of A(a, b) of degree 2, it follows from direct calcula-
tion that

area(R4(H)) = area(R4(1))H1/3.

By the Principle of Lipschitz applied to the homogeneously expanding com-
pact region R4(H), we get that the number of integral points in R4(H) is
asymptotically

area(R4(H)) +O(len(bd(R4(H)))).

Therefore, 1/d(Z/2 × Z/2) = 1/3. The fact that R4(H) defines an ellipse
centered at the origin with boundary equation

x2 − xy + y2 = 3

(
H

4

)1/3

,

immediately shows that

len(bd(R4(H))) = O(H1/6).

It remains to remove singular and sieve out non-minimal equations. The
conclusion from the steps will be that 1/e(Z/2×Z/2) = 1/6 and an explicit
expression for c(Z/2× Z/2).

The singular equations of the form (5.3.6) have discriminant 0:

4A(a, b)3 + 27B(a, b)2 = −a2b2(a− b)2 = 0,
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and by algebraic substitution we see that the number of singular equations
up to height H is O(H1/6). Therefore, the singular equations can be ab-
sorbed into the error term and we can now conclude that 1/e(Z/2×Z/2) =
1/6.

The points of R4(H) give a 6-fold overcount of models of the form (5.3.6)
because the points

{(a, b), (b, a), (−a, b− a), (b− a,−a), (a− b,−b), (−b, a− b)}

each give rise to the identical Weierstrass equation with height ≤ H; this
shows r(G) = 6, as claimed. We also note that if both A(a, b) and B(a, b)
are integers, then both a and b are integers, which is routinely verified by
congruences, occurs for 1/3 of all integral pairs (a, b) ∈ Z× Z. Therefore,

areaR4(1)

18
(5.3.9)

is the growth constant for non-singular, integral equations of the form
(5.3.6) of height ≤ H. It remains to sieve non-minimal equations. We
omit the routine computation, which is similar to the ones detailed in Sec-
tion 4 above, and simply observe that

(a) If p 6= 3, then

p4 | A(a, b) and p6 | B(a, b)

if and only if a ≡ b ≡ 0 (mod p2).
(b) If p = 3, then

34 | A(a, b) and 36 | B(a, b)

if and only if (a, b) ≡ (0, 0) or (9, 18) or (18, 9) (mod 27).

Thus, if p 6= 3 then 1/p4 of the equations are non-minimal at p. If p = 3,
then 1/35 equations are non-minimal. Putting together (5.3.9), this sieve,
and the area of the ellipse R4(1), we see that

c(Z/2× Z/2)

r(Z/2× Z/2)
=

1

18
·

(
1− 1

35

1− 1
34

)
π
√

3 3
√

2

ζ(4)
=

121π
√

3 3
√

2

2160ζ(4)
≈ 0.355,

which completes the proof. �

We now perform the analogous computation for curves admitting a cyclic
4-isogeny.

Proposition 5.3.10. The number N(H) of elliptic curves over Q of height
≤ H admitting a cyclic 4-isogeny is given by

N(H) = cH1/d +O(H1/e),
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where

c =
areaR′4(1)

2ζ(4)
≈ 0.9574

1/d = 1/3

1/e = 1/6,

with the exact value of c given in Lemma 5.3.11.

Proof. Appealing to Proposition 5.1.4 we define the region

R′4(H) = {(a, b) ∈ R×R : 4|a2 − 3b2|3 ≤ H and 27|a2b− 2b3|2 ≤ H}

parameterizing curves of height ≤ H that admit a cyclic 4-isogeny. We
follow the same approach as in Proposition 5.3.5 to compute 1/d, and
1/e. We separate the calculation of c into a separate lemma following this
Proposition.

It follows from homogeneity of A(a, b) and B(a, b) that area(R′4(H)) =

area(R′4(1))H1/3 and by applying the Principle of Lipschitz we get 1/d =
1/3. By inspection on the degrees of A(a, b) and B(a, b), and using the fact
that A and B are polynomials (so rectifiable) we see that len bd(R′4(H)) =

O(H1/6).
Next, we calculate the discriminant

4A(a, b)3 + 27B(a, b)2 = a4(4a2 − 9b2)

and see that the number of singular equations is O(H1/6). These singular
equations can be absorbed into the Lipschitz error and we conclude that
1/e = 1/6.

It remains to obtain c. The region R′4(1) has polynomial boundary and
its area can be computed by calculus (see the statement of Lemma 5.3.11
immediately following this proof for an exact value of this area and numer-
ical approximation). We compute that r(G) = 2.

It is straightforward to verify that for every prime p, we have p4 | (a2 −
3b2) and p6 | (a2b − 2b3) if and only if a ≡ b ≡ 0 (mod p2). Sieving, we
scale by ζ(4)−1. Altogether, we arrive at the growth constant

c =
1

2
· 1

ζ(4)
area(R′4(1)) ≈ 0.9574

as claimed. �

Lemma 5.3.11. Let u = 4−1/3, v = 27−1/2, and define the polynomials
F± ∈ R[x] by

F±(x) = x3 ± ux− v.
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Let α± denote the unique positive root of F± and set β± =
√

3α2
± ± u.

Where it is defined, let I(p, q) denote the integral

I(p, q) =

∫ q

p

√
2y3 + v

y
dy.

Then we have

area(R′4(1)) = 4I(α+, α−) + 2(α+β+ − α−β−)

+
2u√

3
log

(
(
√

3α+ + β+)(
√

3α− + β−)

u

)
≈ 2.072.

Proof. Straightforward calculation: for a bit more detail, see Pomerance–
Schaefer [25, §2], where our area is 2i4 ≈ 2(1.036) ≈ 2.072. �

Corollary 5.3.12. We have

P4 =
121 area(R4(1))

121 area(R4(1)) + 1080 area(R′4(1))
≈ 0.270.

Proof. Because both growth rates are O(H1/3), we can express P4 as the
following ratio

P4 =
c(Z/2× Z/2)

c(Z/2× Z/2) + c
.

The exact value and its approximations follow immediately from Proposi-
tions 5.3.5 and 5.3.10. �

Remark 5.3.13. Pomerance–Schaefer [25] count elliptic curves with Galois-
stable cyclic subgroups of order 4 and obtain a finer estimate than our
Proposition 5.3.10, in the case where they count the number of curves with
at least one pair of cyclic subgroups of order 4. In that case they show

N(H) = c1H
1/3 + c2H

1/6 +O(H0.105),

where their c1 is exactly our c in Proposition 5.3.10; they also compute the
area of the same region that we do in Lemma 5.3.11.

Example 5.3.14. Returning to Example 2.2.16, we have shown that 100% of
elliptic curves E ∈ E4? are isogenous to an elliptic curve with full 2-torsion
(and no further torsion structure); the isogeny class of such curves have
isogeny graph which is a tree with three leaves attached to a central root,
for example the isogeny class with LMFDB [21] label 350.b.

Remark 5.3.15. We now give some experimental confirmation of Corollary
5.3.12. Enumerating curves in a naive way, among the curves E ∈ E4? ∩
E≤1013 we count:

http://www.lmfdb.org/EllipticCurve/Q/350/b/
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E(Q)tor[2
∞] count

Z/2 20612
Z/2× Z/2 8126
Z/2× Z/4 8

Z/4 1382
Z/8 2

(It appears that the elliptic curve of smallest height with #E(Q)tor[2
∞] '

Z/2 × Z/8 is the elliptic curve 210.e6 with height ≈ 1019.03.) The curves
with a rational 4-torsion point are, according to the above, a lower-order
term—but this is not so totally apparent in the range of our data! So we
estimate the probability by

(5.3.16)

#{E ∈ E≤1013 : #E(Q)tor[2
∞] ' Z/2× Z/2}

#{E ∈ E4? ∩ E≤1013 : #E(Q)tor[2∞] ≤ Z/2× Z/2}

=
8126

20612 + 8126
=

8126

28738
≈ 0.283

which matches Corollary 5.3.12 reasonably well.

Remark 5.3.17. Alternatively, one can order the elliptic curves by naive
height

ht′(E) := max(|A3|, |B2|)

(without the scaling factors 4, 27) and ask how the explicit probabilities are
affected. This does not affect P3, since the ratio of the areas of the regions
R1(1) and R−3(1) is preserved. However, in the case of P4, the area of the
elliptical region is 2

√
3π and the area of the region R′4(1) is given explicitly

by

4 ·

(
(α+β+ − α−β−)

2
+

log
(
(β+ +

√
3α+)(β− +

√
3α−)

)
2
√

3

+I(α+, α−)) ≈ 4.019,

where α± is the real root of z3 ± z − 1, β± =
√

3α2
± ± 1, and

I(p, q) =

∫ q

p

√
2z3 + 1

z
dz.

No other adjustments to the growth constants are required. Thus, the effect
of ordering by ht′ versus ht gives P4 ≈ 0.233.

http://www.lmfdb.org/EllipticCurve/Q/210/e/6
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