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Abstract. Let Γ ⊂ PSL2(R) be a cocompact arithmetic triangle group,
i.e. a Fuchsian triangle group that arises from the unit group of a quater-
nion algebra over a totally real number field. The group Γ acts on the
upper half-plane H; the quotient XC = Γ\H is a Shimura curve, and there
is a map j : XC → P1

C. We algorithmically apply the Shimura reciprocity
law to compute CM points j(zD) ∈ P1

C and their Galois conjugates so
as to recognize them as purported algebraic numbers. We conclude by
giving some examples of how this method works in practice.

To motivate what follows, we begin with a description of the classical sit-
uation. The subgroup Γ0(N) ⊂ SL2(Z) of matrices which are upper triangular
modulo N ∈ Z>0 acts on the completed upper half-plane H∗ by linear fractional
transformations; the quotient X0(N)C = Γ0(N) \ H∗ can be given the structure
of a compact Riemann surface. The complex curve X0(N)C itself is a moduli
space for (generalized) elliptic curves equipped with a cyclic subgroup of or-
der N , and consequently it has a model X0(N)Q defined over Q. There exist
“special” points on X0(N)Q, known as CM points, where the corresponding el-
liptic curves have complex multiplication by quadratic imaginary fields K. CM
points are defined over abelian extensions H of K, and the Shimura reciprocity
law explicitly describes the action of the Galois group Gal(H/K) on them. The
image of a CM point under the elliptic modular j-function is known as a singu-
lar modulus. Gross and Zagier give a formula for the norm of the difference of
two singular moduli [6]; the traces of singular moduli arise as the coefficients of
modular forms (see e.g. [18]).

In this article, we generalize this situation by replacing the modular curve
X0(N) by a Shimura curve X0(N), associated to a quaternion algebra defined
over a totally real number field F . The curves X0(N) we will consider similarly
come equipped with a map j : X0(N) → P1 as well as CM points defined over
abelian extensions H of totally imaginary extensions K of F . Developing ideas
of Elkies [5], we can compute these points to high precision as complex numbers,
and we generalize his methods by using the Shimura reciprocity law to recognize
them as putative algebraic numbers by also computing their conjugates under
Gal(H/K). We may then compute the norms, traces, and other information
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about these CM points, with a view towards a generalized Gross-Zagier formula
in this setting.

In §§1–2, we introduce the basic facts about quaternion algebras, Fuchsian
groups and Shimura curves that we will use in the sequel. In §3, we outline
numerical methods for computing the value of the map j to high precision—this
can safely be skipped for the reader willing to accept Proposition 3.2. In §4, we
treat the problem of principalization of ideals in maximal orders of quaternion
algebras, and in Algorithm 4.4 we solve this problem under hypotheses that
hold in our situation. In §5, we define CM points and show in Algorithm 5.2
how to compute these points as putative algebraic numbers using the Shimura
reciprocity law. In §6, we briefly discuss relevant Galois descent. Finally, in §7,
we give examples of how these algorithms work in practice, and in §8 we tabulate
some of our results.

1 Quaternion algebras

In this section, we introduce quaternion algebras and describe some of their basic
properties. A reference for the material in this section is [15]. Throughout, let F
be a field with charF 6= 2.

A quaternion algebra A over F is a central simple algebra of dimension 4
over F , or equivalently, an F -algebra with generators α, β ∈ A such that

α2 = a, β2 = b, αβ = −βα (1)

with a, b ∈ F ∗.
Example 1.1. The matrix ring M2(F ) is a quaternion algebra over any field F ,
as is the division ring H of Hamiltonians over R.

Let A be a quaternion algebra over F . Then A has a unique involution
: A→ A called conjugation such that θ+θ, θθ ∈ F for all θ ∈ A, and we define

the reduced trace and reduced norm of θ to be respectively trd(θ) = θ + θ and
nrd(θ) = θθ. For A as in (1) and θ = x+ yα+ zβ + wαβ ∈ A, we have

θ = x− (yα+ zβ + wαβ), trd(θ) = 2x, nrd(θ) = x2 − ay2 − bz2 + abw2.

Let K ⊃ F be a field containing F . Then AK = A ⊗F K is a quaternion
algebra over K, and we say K splits A if AK ∼= M2(K). If [K : F ] = 2, then K
splits A if and only if there exists an F -embedding K ↪→ A.

Now let F denote a number field with ring of integers ZF . Let v be a non-
complex place of F , and let Fv denote the completion of F at v. Then there is a
unique quaternion algebra over Fv which is a division ring, up to isomorphism.
We say A is unramified at v if Fv splits A otherwise say A is ramified at v. The
algebra A is ramified at only finitely many places v, and we define the discrimi-
nant of A to be the ideal of ZF given by the product of all finite ramified places
of A.

A ZF -lattice of A is a finitely generated ZF -submodule I of A such that
FI = A. An order of A is a ZF -lattice which is also a subring of A. A maximal
order of A is an order which is not properly contained in any other order.
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2 Shimura curves arising from triangle groups

In this section we introduce Shimura curves and triangle groups; basic references
are [7] and [5].

Let H be the complex upper-half plane, equipped with the hyperbolic metric
d. The group PSL2(R) isometrically acts on H by linear fractional transforma-
tion. Let Γ be a Fuchsian group, a discrete subgroup of PSL2(R) such that the
orbit space XC = Γ\H has finite hyperbolic area. The quotient space XC can be
given the structure of a Riemann surface of genus g.

The stabilizer Γz = {γ ∈ Γ : γ(z) = z} of a point z ∈ H is finite and cyclic;
a point z ∈ H is an elliptic point of order k ≥ 2 if #Γz = k. A maximal finite
subgroup of Γ is known as an elliptic cycle. The set of Γ -orbits with nontrivial
stabilizer is finite and in bijective correspondence with the set of elliptic cycles
up to conjugation. Choosing a point z0 ∈ H not fixed by any element of Γ \ {1},
we obtain a fundamental domain for Γ given by

D = {z ∈ H : d(z, z0) ≤ d(z, γ(z0)) for all γ ∈ Γ}. (2)

The domain D is a hyperbolic polygon, a connected, closed hyperbolically convex
region bounded by a union of geodesics.

Now let F be a totally real number field with [F : Q] = n and let A be a
quaternion algebra over F such that A⊗QR ∼= M2(R)×Hn−1. We fix the unique
real place of F at which A is unramified and identify F as a subfield of R by
this embedding; we also fix an isomorphism ι∞ : A⊗F R ∼−→M2(R). Let O be a
maximal order in A (unique up to conjugation in A) and define the subgroup

Γ ∗(1) = {ι∞(γ) : γ ∈ A, γO = Oγ, nrd(γ) totally positive}/{±1} ⊂ PSL2(R).

The group Γ ∗(1) is an arithmetic Fuchsian group, and as above it gives rise to
a Riemann surface X∗(1)C = Γ ∗(1)\H.

An example of this situation is the modular group Γ ∗(1) = PSL2(Z) with the
usual fundamental domain, which corresponds to F = Q and A = M2(Q). We
will exclude this well-studied case and assume from now on that A is a division
ring, and thus the fundamental domain D and X∗(1)C are compact.

Suppose that Γ has t elliptic cycles of order m1, . . . ,mt. Then the group Γ is
freely generated by elements a1, b1, . . . , ag, bg, s1, . . . , st subject to the relations

sm1
1 = . . . = smt

t = s1 · · · sr[a1, b1] · · · [ag, bg] = 1

where [a, b] = aba−1b−1; the group Γ is said to have signature (g;m1, . . . ,mt).
We further make the assumption that Γ ∗(1) is a triangle group, a Fuchsian group
of signature (0; p, q, r) with p, q, r ∈ Z≥2. Therefore we have a presentation

Γ ∗(1) = 〈sp, sq, sr|spp = sqq = srr = spsqsr = 1〉. (3)

The fundamental domain D is the union of a fundamental triangle, a hyperbolic
triangle with angles π/p, π/q, π/r and vertices zp, zq, zr at the fixed points of the



4

generators sp, sq, sr, respectively, together with its image in the reflection in the
geodesic connecting any two of the vertices.

By assumption we have g = 0 and hence we have a map j : X∗(1)C → P1
C,

which is uniquely defined once we assert that the images of the elliptic points
zp, zq, zr be 0, 1,∞, respectively.

By [13], there are exactly 18 quaternion algebras A (up to isomorphism),
defined over one of 13 totally real fields F , that give rise to such a cocompact
arithmetic triangle group Γ ∗(1). (As pointed out in [5, p. 3], already these contain
a number of highly interesting curves.) We note that each such F is Galois over Q
and has class number 1; the fields Q(

√
3), Q(

√
6), Q(cosπ/12), and Q(cosπ/15),

arising from the classes IV, V, IX, XV, XVI, and XVII, have strict class number
2, the rest have strict class number 1.

3 Computing hypergeometric series

We continue notation from §§1–2. In this section, we address the following prob-
lem.

Problem 3.1. Given z ∈ H, compute the value j(z) ∈ P1(C).

In other words, in Problem 3.1 we wish to compute the parametrization
j : Γ ∗(1)\H → X∗(1) to large precision over C. The reader who is uninterested
in these numerical concerns may safely accept the following proposition and
proceed to the next section.

Proposition 3.2. There exists an explicit algorithm to solve Problem 3.1.

For the details, we refer the reader to [5] and [17, §5.2].
We provide an outline of the proof of Proposition 3.2. In the first step, we

reduce the problem to one in a neighborhood of an elliptic point. Let D be the
fundamental domain obtained from the union of the fundamental triangle and
its image in the reflection in the geodesic connecting zp and zr. We then find
z′ ∈ D in the Γ -orbit of z as follows.

Algorithm 3.3. For z ∈ H, this algorithm returns an element z′ ∈ D in the Γ -orbit
of z.

1. Let z′q be the image of zq in the reflection of the geodesic zpzr.
2. Apply sr to z until z is in the region R bounded by the geodesics zrzq and
zrz
′
q.

3. If z ∈ D, stop. Otherwise, apply sp until z is in the region bounded by the
geodesics zpzq and zpz

′
q. Return to Step 2.

Proof. For the proof, we map H conformally to the unit disc D by the map
z 7→ (z− zr)/(z− zr), which maps zr 7→ 0. The element sr now acts by rotation
on D by 2π/r about the origin, and the image of R is a sector S ⊂ D with
central angle 2π/r.
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Since the center of rotation of sp lies away from the origin, for z ∈ S as in
Step 3 we have z ∈ D if and only if |sipz| ≥ |z| for all 0 < i ≤ p. Thus we see that
the algorithm terminates correctly, because we obtain in this way a Γ -orbit with
strictly decreasing absolute value, and yet the group Γ acts discontinuously so
this orbit is finite.

Since j(z′) = j(z), we replace z by z′. Now the point z is near to at least one
elliptic point τ of Γ . We apply the linear fractional transformation

z 7→ w =
z − τ
z − τ

which maps the upper half-plane H to the open unit disc D and maps τ 7→ 0.
One easily recovers z from w as

z =
τw − (τ + τ)

w − 1
.

Next, rather than computing the value j(z) directly, we use the fact that
t = j(z) arises as an automorphic function for the group Γ . For the elliptic point
τ of order s, there exists a Puiseux series φτ (t) ∈ t1/sC[[t]] given as an explicit
quotient of two hypergeometric series, such that

w = φτ (j(z)).

To conclude, we use a combination of series reversion and Newton’s method
which, given z (and therefore w), finds the value t = j(z) such that w = φτ (t).

4 Principalization of ideals

In this section, we exhibit in Algorithm 4.4 a way to compute a generator for
a principal (right) ideal of a maximal order O for a certain class of quaternion
algebras A. Already, computing the class group and unit group of a number
field appears to be a difficult task; consequently, we will be content to provide
an effective algorithm that seems to work well in practice, as we are unable
to prove any rigorous time bounds. We refer the reader to [15, §III.5] for the
background relevant to this section.

Let A be a quaternion algebra defined over a number field F , and let O ⊂ A
be a maximal order. Let I, J be right ideals of O. We say that I and J are
in the same ideal class, and write I ∼ J , if there exists an α ∈ A∗ such that
I = αJ , or equivalently, if I and J are isomorphic as right O-modules. It is clear
that ∼ defines an equivalence relation on the set of right ideals of O. Since A
is non-commutative, the set of ideal classes may not form a group; however, the
number h of ideal classes is finite and is independent of O.

We are led to the following problem.

Problem 4.1. Given a right ideal I ⊂ O, determine if I is a principal ideal and,
if so, compute an an element α such that I = αO.
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For applications to the situation of Shimura curves, we may assume that A
has at least one unramified real place; we say then that A satisfies the Eichler
condition. For I ⊂ O a right ideal, we define nrd(I) to be the ideal of ZF
generated by the set {nrd(x) : x ∈ I}.

Proposition 4.2 ([9, Corollary 34.21], [15, Théorème III.5.7]). Suppose
that A satisfies the Eichler condition. Then the map nrd gives a bijection between
the set of ideal classes and the class group ClZF .

In view of Proposition 4.2, the task identifying principal ideals in O is com-
putationally equivalent to the analogous problem for F . From now on, suppose
that F is a totally real field with [F : Q] = n and that A satisfies the Eichler
condition.

Lemma 4.3. Let I ⊂ O be a right ideal, and let ξ ∈ I. Then ξ generates I
if and only if nrd(ξ)ZF = nrd(I), which holds if and only if |NF/Q(nrd(ξ))| =
NF/Q(nrd(I)).

Proof. If one first defines the norm N of a right ideal I of O as the product of
the primes of O occuring in a composition series for O/I as a O-module (see [9,
24.1]), then the statement ξO = I if and only if N(ξO) = N(I) is obvious. Since
[A : F ] = 4, then the norm N is the square of the reduced norm by [9, Theorem
24.11]. The second statement follows in the same way, now in the much easier
context of Dedekind domains.

The following algorithm then gives a solution to Problem 4.1 under these
hypotheses.

Algorithm 4.4 (Principal ideal testing). Let I ⊂ O be a right ideal. This algorithm
determines if I is principal and outputs a generator for I if one exists.

1. Compute nrd(I) ⊂ ZF . Test if nrd(I) ⊂ ZF is principal by [3, §6.5.10]. If
not, output a message indicating that I is not principal and terminate the
algorithm. Otherwise, let q = NF/Q(nrd(I)).

2. Find a Z-generating set for I and write these elements in a Z-basis for O.
Using the MLLL algorithm [3, 2.6.8], find a Z-basis B = γ1, . . . , γ4n for I.

3. Let σ1, . . . , σn be the n distinct real embeddings F ↪→ R. Embed I ↪→ R4n

as a lattice L via the embedding

µ 7→ (σi(µj))i=1,...,n
j=1,...,4

where we write µ = µ1+µ2α+µ3β+µ4αβ for α, β as in (1). Compute an LLL-
reduced basis L′ of this lattice with respect to the ordinary inner product
on R4n, and let T be the unimodular transformation such that TL = L′. Let
B′ = TB be the basis for I obtained by applying T to the basis B.

4. For each µ in the Z-linear span of B′, compute nrd(µ). If |NF/Q(nrd(µ))| = q,
output µ and terminate the algorithm.
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The algorithm terminates correctly by Proposition 4.2 if I is not principal
and by Lemma 4.3 (and sheer enumeration) if I is principal.

Remark 4.5. The LLL-step proves experimentally to be crucial. We can see this
more precisely by the following statement: There exists a C ∈ R>0 such that for
every ideal I of O, the first basis element γ in the LLL-reduced basis B′ in step
3 of Algorithm 4.4 satisfies

|NF/Q(nrd(γ))| ≤ C|NF/Q(nrd(I))|.

Since any generator ξ ∈ I has NF/Q(nrd(I)) = |NF/Q(nrd(ξ))|, we conclude that
the algorithm produces elements which are very close to being generators. We
refer the reader to [17, Proposition 4.4.9] for the proof and a discussion.

5 CM points and Shimura reciprocity

In this section, we define CM points and give methods for explicitly computing
them. We continue notation from §§1–2.

We first classify quadratic orders over ZF . The quadratic extensions K of
F are classified by Kummer theory as the fields K = F (

√
D) for D ∈ F ∗/F ∗2.

A quadratic order over ZF is a ZF -algebra which is a domain and a projective
ZF -module of rank 2. In our situation, F has class number 1, hence each such
quadratic order is equal as a ZF -module to ZF ⊕ ZF δ for some δ ∈ ZK ; the
discriminant D ∈ ZF of a minimal polynomial for δ is independent of the choice
of δ up to an element of Z∗2F . Therefore the set of quadratic orders over ZF is in
bijection with the set of orbits of

{D ∈ ZF : D is not a square, D is a square modulo 4ZF }

under the action of multiplication by Z∗2F . We denote the order of discriminant
D ∈ ZF by OD. Each such order is contained in a unique maximal order of
discriminant d, known as the fundamental discriminant, with D = df2 and f ∈
ZF (unique up to Z∗F ). We say that a quadratic order OD is totally imaginary
if D is totally negative.

Let OD be a totally imaginary quadratic order of discriminant D = df2 with
field of fractions K = F (

√
d). Suppose that K is a splitting field for A. Then

there exists an embedding ιK : K ↪→ A; more concretely, the map ιK is given
by an element µ ∈ O whose minimal polynomial over F has discriminant D. We
further assume that the embedding is optimal, so that ιK(K) ∩ O = OD (see
[4]). Let z = zD be the fixed point of ιK(µ) in H; we then say z is a CM point
on H, and j(z) is a CM point on P1(C).

Let HD be the ring class field of K of conductor f . By class field theory, we
have the Artin isomorphism

Cl(OD)
∼−→ Gal(HD/K)

[p] 7→ Frobp
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for all primes p of K unramified in HD, where Cl(OD) is the group of invertible
fractional ideals of OD modulo principal fractional ideals. For any fractional ideal
c of K with c ↔ σ under the Artin map, by Proposition 4.2 there exists ξ ∈ A
such that

ιK(c)O = ξO,

which describes the action of Gal(HD/K) on j(z) as indicated in the following
theorem known as the Shimura reciprocity law.

Theorem 5.1 ([11, p. 59]). We have j(z) ∈ P1(HD) and

j(z)σ = j(ι∞(ξ−1)(z)).

We may now compute the conjugates of j(z) under Gal(HD/K).

Algorithm 5.2. This algorithm computes the set

{j(z)σ : σ ∈ Gal(HD/K)} ⊂ C. (4)

1. Compute a set G of ideals in bijection with the ring class group ClOD.
2. Using Algorithm 4.4, for each ideal c ∈ G, compute an element ξ ∈ O such

that cO = ξO.
3. For each ξ from Step 2, compute j(ι∞(ξ−1)(z)) according to Proposition 3.2,

and output this set.

Remark 5.3. One can compute the set G in step 1 by the natural exact sequence

1→ (ZK/fZK)∗

Z∗K(ZF /fZF )∗
→ ClOD → ClZK → 1;

a representative set of elements of ClOD can be obtained as cosets of ClZK .

Given a complete set of conjugates tσ of a purported algebraic number t, we
then compute the polynomial

f(x) =
∏
σ∈G

(x− tσ)

and attempt to recognize the coefficients of this polynomial as elements of F
using LLL (see [3, §2.7.2]).

6 Galois descent

In this section, we discuss the Galois descent properties of CM points z. The
computationally-minded reader may proceed to the next section, since these
results will not affect the output. We continue notation from §2 and §5.

According to Theorem 5.1, a CM point j(z) of discriminant D is defined over
the ring class field HD of K = F (

√
D). However, the set of conjugates of j(z)

may descend to a smaller field.
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Proposition 6.1. Let S be a full set of Gal(HD/K)-conjugates of j(z) as in
(4). Then S is in fact a full set of Gal(HD/F )-conjugates.

Suppose that σ(D)/D ∈ Z∗2F for all σ ∈ Gal(F/Q). Then HD is Galois over
Q, and S is a full set of Gal(HD/Q)-conjugates.

The first statement is due to Shimura [12, §9.2]. Unfortunately, the proof of
the second statement is too detailed to appear in these pages. For some discus-
sion, see [17, Propositions 5.1.2, 5.4.1], though the proof there is incomplete. We
now give a sketch of the proof of Proposition 6.1.

Let N be an ideal of ZF , and define

Γ (N) = {ι∞(γ) : γ ∈ O∗, nrd(γ) = 1, γ ≡ 1 (mod N)}. (5)

We define X(N)C = Γ (N)\H. Denote by H(N) the ray class field of F of con-
ductor N.

The curve X(N) has an interpretation as a moduli space for a certain class of
abelian varieties equipped with level structure, and as a result it has a canonical
model defined over a number field. The following is due to Shimura.

Theorem 6.2 ([11, Main Theorem I (3.2)]). There exists a projective, non-
singular curve X(N)H(N) defined over H(N) and a holomorphic map jN : H→
X(N)C, such that the map jN yields an analytic isomorphism

jN : Γ (N)\H ∼−→ X(N)C.

As with the case of modular curves, with additional restrictions on the moduli
interpretation, one obtains a curve X(N)F defined over F .

Claim. If σ(N) = N for all σ ∈ Gal(F/Q), then X(N)F has a model X(N)Q
defined over Q.

Let S be the set of ramified places of A. For σ ∈ Gal(F/Q), let Aσ be
the quaternion algebra which is ramified at the set σ(S), let Γ ∗(1)σ be the
group associated to this data as in §2, and let Γ (N)σ be defined as in (5) for
the ideal σ(N). By functoriality, we see that the Galois-conjugate curve X(N)σ

corresponds exactly to the Shimura curve associated to the quaternion algebra
Aσ and ideal σ(N).

It is well-known that any two triangle groups of the same type (i.e. having
the same signature) are conjugate under PSL2(R). From the basic theory of
Shimura curves, we see that the groups Γ ∗(1) and Γ ∗(1)σ have the same type.
So let δ ∈ PSL2(R) be such that δΓ ∗(1)δ−1 = Γ ∗(1)σ ⊂ PSL2(R). Now using
that σ(N) = N, we show that δΓ (N)δ−1 = Γ (N)σ. It follows that δ gives an
isomorphism of Riemann surfaces X(N)C

∼−→ X(N)σC, which in fact yields an

isomorphism φσ : X(N)F
∼−→ X(N)σF defined over F . The map φσ lies over P1

F

since it must pair up the elliptic points which by the classification we note have
distinct orders, and hence must act by the identity. The maps φσ then give the
data necessary for Galois descent to Q (see [16]).
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Now suppose that N is prime to the discriminant of A. Then we have an
isomorphism ιN : O ⊗ZF

ZF,N
∼−→ M2(ZF,N), unique up to conjugation by an

element of GL2(ZF,N), where ZF,N denotes the completion of ZF at N. We then
define the subgroup

Γ0(N) = {ι∞(γ) : γ ∈ O∗, nrd(γ) = 1, ιN(γ) upper triangular modulo N}.

We let Γ0(N)\H = X0(N)C. The quotient X(N)Q/H
∼−→ X0(N) by the (Borel)

subgroup H is stabilized by the action of the Galois group on the automorphism
group of X(N)Q/X

∗(1)Q, and hence the quotient morphism is defined over Q
and we have a model X0(N)Q for X0(N)C.

For each N, there exists an element wN ∈ Aut(Γ0(N)), known by analogy
as an Atkin-Lehner involution, defined to be a normalizing element wN ∈ O
with trd(wN) = 0 and nrd(wN)ZF,N = N. Putting together the functions
j(z), j(wN(z)), we obtain a birational map of X0(N) to an irreducible closed
subvariety of P1

C×P1
C of dimension 1, described by a polynomial ΦN(x, y) in the

affine open (P1
C \ {∞})2 = A2

C. By the claim above, the polynomial ΦN(x, y) has
coefficients in Q.

To conclude the proof of the proposition, let D be as in Proposition 6.1, and
let N be an odd rational prime which splits in F and such that a prime above N
is principal in OD; infinitely many such integers exist by the Chebotarev density
theorem. Let OD = ZF [µ]. Then there exists an element ωN ∈ OD of trace
zero and norm 4N ; its image ωN = ιK(µ) ∈ O is an Atkin-Lehner involution on
X0(N). Obviously µ commutes with ωN , so z = ωN (z), and hence j(z) = j(ωNz).
Therefore j(z) is a root of the polynomial ΦN (x, x), and since this is true of each
of the conjugates of j(z) as well, we obtain Proposition 6.1.

7 Examples and applications

We now give examples of the above algorithms for the class XI of Takeuchi [14].
Let F be the totally real subfield of Q(ζ9), where ζ9 is a primitive ninth root
of unity. Then [F : Q] = 3, and ZF = Z[b], where b = −(ζ9 + 1/ζ9) satisfies
b3 − 3b− 1 = 0. We have disc(F/Q) = 34 and F has strict class number 1.

We choose the unique real place σ for which σ(b) > 0, and we take A to
be the quaternion algebra which is ramified at the other two real places and is
unramified at all other places. By Takeuchi [14, Proposition 2], we easily compute
that A is isomorphic to the algebra as in (1) with α2 = −3, β2 = b.

We fix the isomorphism ι∞ : A⊗F R ∼−→M2(R), given explicitly as

α 7→
(

0 3
−1 0

)
β 7→

(√
b 0

0 −
√
b

)
.

We next compute a maximal order O of A. Since F has class number 1, we
may represent O as a free ZF -module. We note that K = F (α) = F (

√
−3) =

Q(ζ9) has ring of integers ZK = Z[ζ9], and hence we have an integral element
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ζ ∈ A satisfying ζ9 = 1. Extending this to a maximal order (a näıve approach
suffices here, or see [17, §4.3]), we have O = ZF ⊕ ZF ζ ⊕ ZF η ⊕ ZFω, where

ζ = −1

2
b+

1

6
(2b2 − b− 4)α

η = −1

2
bβ +

1

6
(2b2 − b− 4)αβ

ω = −b+
1

3
(b2 − 1)α− bβ +

1

3
(b2 − 1)αβ.

These elements have minimal polynomials

ζ2 + bζ + 1 = 0, η2 − b = 0, ω2 + 2bω + b2 − 4b− 1 = 0.

From Takeuchi [14, Table (3)], we know that Γ ∗(1) is a triangle group with
signature (2, 3, 9). Explicitly, we find the elements

sp = b+ ω− 2η, sq = −1 + (b2 − 3)ζ + (−2b2 + 6)ω+ (b2 + b− 3)η, sr = −ζ

with sp, sq, sr ∈ O∗1 , satisfying the relations

spp = sqq = srr = spsqsr = 1,

hence the elliptic elements sp, sq, sr generate O∗1 . The fixed points of these ele-
ments are zp = 0.395526 . . . i, zq = −0.153515 . . .+0.364518 . . . i, and zr = i, and
they form the vertices of a fundamental triangle. This is shown in Fig. 1: any
shaded (or unshaded) triangle is a fundamental triangle for Γ ∗(1), and the union
of any shaded and unshaded triangle forms a fundamental domain for Γ ∗(1).

By exhaustively listing elements of O, we enumerate (optimal) embeddings
ιD : OD ↪→ O for orders with discriminant D of small norm. Using Algorithm
5.2, we compute the CM points for these orders, and the results are listed in
Tables 1–4 in §8. This follows in the spirit of the extended history of computing
such tables for values of the elliptic j-function (see e.g. [6, pp. 193–194]).

Example 7.1. The field K = F (
√
−7) has class number 1. The element

µ = (−b2 − b+ 2) + (−b2 + 2b+ 5)ζ + (2b2 − 2b− 8)ω + (3b+ 6)η ∈ O

has minimal polynomial x2−x+ 2 hence ZF [µ] = ZK = O−7. The fixed point of
ι∞(µ) in H is −0.32 . . .+ 0.14 . . . i, which is Γ -equivalent to z = 0.758 . . . i; and
we compute that j(z) = −9594.703125000 . . ., which agrees with

−614061

64
=
−3571192

26

to the precision computed (100 digits).

Example 7.2. Now take K = F (
√
−2), with class number 3. We find µ ∈ O

satisfying µ2 + 2 = 0, so Zf [µ] = ZK = O−8; explicitly,

µ = (−b2 − b+ 1) + (−2b2 + 2)ζ + (2b2 − b− 5)ω + (−b2 + b+ 1)η.
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We obtain the CM point j(z) = 17137.9737 . . . as well as its Galois conjugates
0.5834 . . . ± 0.4516 . . . i. We now identify the minimal polynomial and simplify
the resulting number field. Let c be the real root of x3 − 3x + 10; the number
field Q(c) has discriminant 2334. Then H = K(c), and in fact j(z) agrees with

4015647c2 − 10491165c+ 15369346

4096

to the precision computed (200 digits); we recognize the conjugates as

−4015647c2 − 10491165c− 54832574

8192
±−3821175c2 − 7058934c+ 7642350

4096

√
−2.

The product of these three conjugates is the rational number

727121992

220
.

Once one has a CM point as a purported algebraic number, it is not clear how
to prove directly that such an identification is correct! What one really needs in
this situation is a Gross-Zagier formula as in [6], which would identify the set
of primes dividing the norm of j(z) − j(z′) for CM points z, z′. This is already
listed as an open problem in [5, p. 42]. The work in this direction concerning the
Arakelov geometry of Shimura curves has dealt with either quaternion algebras
over Q (such as [10], [19], [8]) or M2(F ) with F real quadratic, the case of Hilbert
modular forms (see [2]). A nice formulation for the case of cocompact arithmetic
triangle groups seems to be in order. It is hoped that the data computed here
will be useful in proving such a formula.

8 Tables and figures

In the following tables, we list the results from the extended example in §7
concerning the (2, 3, 9) triangle group.

Let D ∈ ZF be a totally imaginary discriminant such that σ(D)/D ∈ Z∗2F
for all σ ∈ Gal(F/Q). Then K = F (

√
D) is Galois over Q and contains an order

OD of discriminant D. We list in Table 1 for each such small D a polynomial
g which is a minimal polynomial for the ring class field HD of K of conductor
fZF , where D = df2. In Table 2, we list factorizations of the norms of the CM
point j(zD) ∈ P1(HD).

In Tables 3–4, we repeat the above without assuming that D is Galois-stable.
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1

Fig. 1. The translates of a fundamental triangle for Γ ∗(1)
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−D |N(D)| g

b+ 2 3 Q
3 27 Q
4 64 Q

4(b+ 2) 192 Q
3(b− 1)2 243 Q

7 343 Q
5(b+ 2) 375 x2 + x− 1

8 512 x3 − 3x+ 10
4(b− 1)2 576 x2 − 3

11 1331 x3 + 6x+ 1
8(b+ 2) 1536 x2 − 2

12 1728 x3 − 2
9(b+ 2) 2187 x3 + 3
7(b− 1)2 3087 x4 − 2x3 + 6x2 − 5x+ 1

15 3375 x6 + x3 − 1
16 4096 x4 − 2x3 + 6x2 − 4x+ 2

8(b− 1)2 4608 x6 − 10x3 + 1
12(b+ 2) 5184 x6 − 4x3 + 1
13(b+ 2) 6591 x4 + x3 − x2 + x+ 1

19 6859 x4 + x3 + 9x2 + 2x+ 23
20 8000 x6 + 9x4 + 14x3 + 9x2 + 48x+ 44

11(b− 1)2 11979 x6 − x3 − 8

Table 1. Gal(F/Q)-stable CM Points: Ring class fields

−D Numerator Denominator

b+ 2 1 0
3 1 1
4 0 1

4(b+ 2) 712 27

3(b− 1)2 −1072 215

7 −3571192 26

5(b+ 2) −1792 212

8 727121992 220

4(b− 1)2 −194712 221

11 7211119630724312 230179

8(b+ 2) −1947145032 221179

12 −11271250329712 214179

9(b+ 2) 7121792863215112 215179

7(b− 1)2 19850321259222672 22459179

15 −7411212743592431214392 236717

16 314721981992 221717

8(b− 1)2 −714127450321871235272 22159539

12(b+ 2) 19127121634 2211075

13(b+ 2) −19817923074467264721511251472 224395391079

19 314194714107439432 2451797

20 −11219127121992379273922179223392451924751257792 2385917181799

11(b− 1)2 −19121274827212232158324787271272 2391791979

Table 2. Gal(F/Q)-stable CM Points: Norms
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D |N(D)| g

− 5b2 + 9b 71 F
−5b2 + b 199 F

8b2 − 4b− 27 323 x2 + (b2 − 3)x− b2 + 3
−3b2 + 5b− 3 379 F
7b2 + b− 28 503 x3 + (−b2 + b+ 2)x+ 1
5b2 + 2b− 23 523 F
3b2 + b− 16 591 x2 − bx− 1
−8b2 + 4b+ 1 639 x2 + (−b2 + b+ 3)x− b2 + 1
−12b2 + 16b+ 5 699 x2 + (−b2 + b+ 1)x− 1

9b2 − 3b− 31 739 F
−4b2 + 4b− 3 867 x2 + (b2 − 1)x+ 1

b2 − 12 971 x3 + (b2 − 1)x2 + (b2 − 2)x− b2 + 2
8b2 − 31 1007 x4 + (−b2 + b+ 1)x3 + bx2 + (2b2 − 4b− 2)x− b2 + 2b+ 1
−8b2 + 12b 1088 x4 + (−b− 1)x3 + (b2 + b− 1)x2 + (−b2 − b+ 2)x+ 1
−4b− 12 1216 x2 − b

−7b2 − 3b− 3 1387 x2 + (b2 − b− 2)x− b+ 1
−4b2 + 11b− 10 1791 x4 + (b2 − b− 1)x3 + (b2 − 2b− 2)x2 + (b2 − b− 1)x+ 1
−11b2 + 6b+ 1 2179 x3 + (b2 − b− 2)x2 + (−b2 + 2)x+ b
−3b2 + 4b− 8 2287 x3 − x2 + (b2 − b− 3)x− b2 + 3

4b2 − 23 2719 x3 + (−b2 + b+ 2)x2 + x− b
25b2 − 12b− 80 3043 x2 − x− b
−16b2 + 24b+ 4 3264 x4 + (b− 1)x2 + 1

Table 3. CM Points: Ring class fields

D Numerator Denominator

− 5b2 + 9b 194711 218

−5b2 + b 391921991 218

8b2 − 4b− 27 −19610721634 245

−3b2 + 5b− 3 −3919412723791 245

7b2 + b− 28 −19610721276271230725031 254179

5b2 + 2b− 23 −3919412725231 179

3b2 + b− 16 198107225123592 236179

−8b2 + 4b+ 1 −1987121072179225124312 236179

−12b2 + 16b+ 5 19871217924672 245

9b2 − 3b− 31 315196163230727391 245179

−4b2 + 4b− 3 −71210721792359243124672 2451710

b2 − 12 −19121272179219922512271248749711 290179

8b2 − 31 19127141272179225122712307235926314 2721718

−8b2 + 12b −19871419943794503252327392 2631718

−4b− 12 −326192712199437925232 263179

−7b2 − 3b− 3 326196127227123072 245539

−4b2 + 11b− 10 1987121072163443124672683271921151211872 272179539

−11b2 + 6b+ 1 33310722712487299121063221791 245719

−3b2 + 4b− 8 −333196714127248746312811222871 2541718539

4b2 − 23 −33919121632179263121459227191 254179539715

25b2 − 12b− 80 31819871212721632179225122712631281121423217832 290539899

−16b2 + 24b+ 4 1916503297121619218712190722339225912 257179539711

Table 4. CM Points: Norms
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4. M. Eichler, Über die Idealklassenzahl hypercomplexer Systeme, Math. Z. 43 (1938),
481–494.

5. Noam D. Elkies, Shimura curve computations, Algorithmic number theory (Port-
land, OR, 1998), Lecture notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998,
1–47.

6. Benedict H. Gross and Don B. Zagier, On singular moduli, J. Reine Angew. Math.
355 (1985), 191–220.

7. Svetlana Katok, Fuchsian groups, University of Chicago Press, Chicago, 1992.
8. Stephen S. Kudla, Michael Rapoport, and Tonghai Yang, Derivatives of Eisenstein

series and Faltings heights, Compos. Math. 140 (2004), no. 4, 887–951.
9. I. Reiner, Maximal orders, Clarendon Press, Oxford, 2003.

10. David Peter Roberts, Shimura curves analogous to X0(N), Harvard Ph.D. thesis,
1989.

11. Goro Shimura, Construction of class fields and zeta functions of algebraic curves,
Ann. of Math. (2) 85 (1967), 58–159.

12. Goro Shimura, Introduction to the arithmetic theory of automorphic functions,
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