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Abstract. We show how to efficiently compute Hilbert modular forms as orthogonal
modular forms, generalizing and expanding upon the method of Birch.
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1. Introduction

Motivation. Algorithms for the efficient computation of classical modular forms have
applications in many areas in mathematics, and consequently their study and implemen-
tation remains a topic of enduring interest [BBB+21]. In 1991, Birch [Bir91] provided
such an algorithm based on the Hecke action on classes of ternary quadratic forms. Of
his method, Birch says [Bir91, p. 204, p. 191]:

[T]here is a great deal of interesting information to be calculated; since
the program is very fast, it is possible for anyone who owns it to generate
interesting numbers much faster than it is possible to read them. ...

[However,] this attempt ... has so far failed in two ways: first, it usually
gives only half the information needed, and, second, when the level is not
square-free it gives even less information. At least the program is very
fast!

Birch’s algorithm computes the Anzahlmatrizen of Eichler [Eic74, §17], which were stud-
ied in their relation to Brandt matrices by Ponomarev [Pon81] and Schulze-Pillot [SP86,
§2, Lemma 1].

Birch’s approach was first extended by Tornaŕıa [Tor05] in his PhD thesis, where the
notion of equivalence of quadratic lattices is refined to the notion of Θ-equivalence. In this
way, the Hecke module is enlarged to obtain the missing information in the squarefree
case, although there is no statement or proof of what eigenforms are constructed in
general. In his PhD thesis, Hein [Hei16] generalized Birch’s construction to work over a
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totally real field and interpreted the modular forms obtained using the construction of
the even Clifford algebra.

In this paper, we combine these approaches and exhibit an algorithm that simultane-
ously addresses both of Birch’s issues, generalizes to Hilbert modular forms, and is still
very fast: it gives as output all Hilbert modular forms of even weight and trivial charac-
ter except in the case where the totally real base field has odd degree and the level is a
square.

Results. Most of the effort in this paper is theoretical, but we begin with the motivating
and recognizable algorithmic application. We consider the space of Hilbert cuspforms

Sk(Γ̂0(N)) with trivial central character, specified by:

• a base field , a totally real field F with ring of integers R := ZF ;
• an even weight, a vector k = (kv)v|∞ ∈ (2Z≥1)

[F :Q]; and
• a level , a nonzero ideal N ⊆ R.

We abbreviate |k| :=
∑

v kv. For full definitions, see section 4.

The space Sk(Γ̂0(N)) comes equipped with an action by Hecke operators Tn indexed
by nonzero ideals n ⊆ ZF with n coprime to N. The Hecke operators act semisimply

and pairwise commute. The space Sk(Γ̂0(N)) further comes equipped with degeneracy

operators Sk(Γ̂0(N/p)) ⇒ Sk(Γ̂0(N)) for all primes p | N, commuting with the Hecke op-

erators. Let Snew
k (Γ̂0(N)) be the orthogonal complement of the images of these operators

under the Petersson inner product, inheriting a Hecke action. The space Snew
k (Γ̂0(N))

is furthermore equipped with Atkin–Lehner involutions Wq for each prime power divisor
q = pe ∥ N, again commuting with the Hecke operators by the theory of newforms. For
a sign vector ε ∈

∏
p|N{±1}, let

(1.1) Snew
k (Γ̂0(N))ε := {f ∈ Snew

k (Γ̂0(N)) : Wqf = εpf}

be the subspace of forms with Atkin–Lehner eigenvalues matching the signs in ε. Then

(1.2) Snew
k (Γ̂0(N)) =

⊕
ε

Snew
k (Γ̂0(N))ε.

Our main algorithmic result is as follows.

Theorem 1.3. There exists an explicit algorithm that, given as input

a base field F , an even weight k, and a factored level N =
∏r

i=1 p
ei
i

such that [F : Q] is even or N is nonsquare,
and a sign vector ε,

computes as output the new space Snew
k (Γ̂0(N))ε as a Hecke module.

If F and N are fixed, then this algorithm takes Õ(d2Nm(p)) bit operations to compute

the Hecke operator Tp, where d := dimC S
new
k (Γ̂0(N))ε.

To compute Snew
k (Γ̂0(N))ε as a Hecke module, we mean to return for each ideal n

coprime to N a matrix [Tn] representing the action of the Hecke operator Tn (with respect
to a consistent choice of basis for the space).

At least for F = Q [Mar18] (and likely also true more generally), the Atkin–Lehner
operators cut up the space of newforms into subspaces of approximately the same size,

giving the expectation dimC S
new
k (Γ̂0(N))ε ≍ 2−r Nm(N)|k−1| as Nm(N) → ∞ by the

mass formula. After a precomputation (to set up the lattice), the running time becomes

Õ(dNm(p)), so approximately linear in the dimension. To compute the systems of Hecke
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eigenvalues on Snew
k (Γ̂0(N))ε, we could continue with techniques from linear algebra—our

setup is especially well suited for this, as the matrices we produce are sparse.
The algorithm provided in Equation (1.3) uses orthogonal modular forms on a ternary

quadratic space and passing through quaternionic modular forms. We succeed in com-
puting the forms that Birch did not find by adding a character: for each sign vector ε,
we define a radical character νε in (6.3), and we consider orthogonal modular forms that
transform according to this character.

To explain this in more detail, let V be a totally positive definite ternary quadratic
space over F . Attached to V is its even Clifford algebra B := Clf0(V ); let D be its
discriminant, the product of the ramified primes. Let Λ ⊂ V be an integral R-lattice
such that Λ♯/Λ is cyclic. Then the even Clifford algebra O := Clf0(Λ) ⊆ B of Λ is a
locally residually unramified quaternion R-order.

Our main result, underlying Equation (1.3) (proven as Equation (7.5)), is the following.

Theorem 1.4. For each sign vector ε, there is a Hecke-equivariant bijection

(1.5) Sk(SO(Λ̂), νε)
∼−→ Sk(Ô)

ε

between the space of cuspidal orthogonal modular forms for Λ with weight k and char-
acter νε and the space of quaternionic cusp forms on O of weight k with Atkin–Lehner
eigenvalues ε.

When O is a suitable quaternion order, the Eichler–Shimizu–Jacquet–Langlands corre-
spondence (recalled in Equation (4.10)) then produces a final Hecke-equivariant bijection
between the space of quaternionic forms and a space of Hilbert cusp forms. (Restricting
orders in this way does not lose any newforms, and it keeps the newform theory quite
simple.)

Discussion. The main result in Equation (1.4) could also be understood through ana-
lytic means via theta series or a Shimura correspondence for Hilbert modular forms. This
method of proof is quite challenging, requiring half-integral weight forms and twists to
ensure nonvanishing. By contrast, the proof using the even Clifford algebra is completely
transparent—there is a natural bijection between the class set of Λ and the type set of
its even Clifford order O, and so the corresponding spaces of functions taking values in
a representation are canonically isomorphic, equivariant with respect to the Hecke op-
erators. To highlight this simplicity, we present an overview of the proof in the case of
F = Q in 2. A key innovation in this paper is the use of the radical character allowing
us to recover all forms, not just those invariant by the Atkin–Lehner operators.

There are also other methods for computing with Hilbert modular forms, including
quaternionic methods with either a definite or indefinite quaternion algebra: for an
overview, see Dembélé–Voight [DV13]. However, there are two key advantages of the
approach using ternary orthogonal modular forms, both implying that we may work in
smaller-dimensional spaces and therefore save substantially in the cost of linear algebra
operations.

(1) We work directly in the space with trivial central character, even when F has
nontrivial (narrow) class number.

(2) We work directly in each Atkin–Lehner eigenspace.

Our matrices are also as sparse as in the definite quaternion algebra case, but with a
simpler reduction theory—working with ternary quadratic forms instead of quaternion
ideals (whose reduced norm forms are quaternary quadratic forms).
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The implementation in Magma [BCP97] of a very general version of the algorithm
to compute orthogonal modular forms has been reported on by Assaf–Fretwell–Ingalls–
Logan–Secord–Voight [AFI+22], based on an initial implementation described by Green-
berg–Voight [GV14]. For this paper, we provide a complexity analysis and also im-
plemented an optimized version in C++ restricted to F = Q and squarefree level N ,
available online [Hei24]. As Birch notes, these algorithms perform very well in practice
(see section 9)!

Organization. The paper is organized as follows. In section 2, to orient the reader
we give a simplified overview and presentation of the method in the special case where
F = Q, recovering spaces of classical modular forms. In section 3, we provide a brief setup
for algebraic modular forms. We then specialize first to the case of definite quaternionic
modular forms, relating them to Hilbert modular forms in section 4. We then specialize
to orthogonal modular forms and explain the functoriality of the even Clifford algebra
relating ternary quadratic forms and quaternion orders in section 5: this provides a
natural, Hecke-equivariant relationship between the two spaces. In section 6, we introduce
the radical character. We then discuss orthogonal newform theory in section 7, present
the algorithms in section 8, and finally report on a specialized implementation for F =
Q in section 9. We conclude in section A with a categorical equivalence which gives
an alternative and more general approach to the correspondence provided by the even
Clifford functor.

Acknowledgements. The authors would like to thank Eran Assaf, Asher Auel, Bryan
Birch, Dan Fretwell, Benedict Gross, Adam Logan, Ariel Pacetti, Gustavo Rama, and
Rainier Schulze-Pillot for their helpful comments over many years. Voight was supported
by grants from the Simons Foundation (550029 and SFI-MPS-Infrastructure-00008650).

2. Overview in the classical case

In this section, we briefly describe our results over F = Q, eventually restricting to the
case of squarefree level N and weight k = 2, a case of special interest to Birch [Bir91].
The reader can skip this section entirely or take it as an overview of the proof of our
main result.

Let Q : V → Q be a positive definite ternary (i.e., dimQ V = 3) quadratic space with
associated bilinear form

(2.1) T (x, y) := Q(x+ y)−Q(x)−Q(y) for x, y ∈ V .

Let Λ ⊂ V be a lattice (Λ ≃ Z3 is the Z-span of a Q-basis for V ) that is integral , i.e.,
Q(Λ) ⊆ Z. Choosing a basis Λ = Ze1 + Ze2 + Ze3 ≃ Z3 gives a quadratic form

(2.2) QΛ(xe1 + ye2 + ze3) = ax2 + by2 + cz2 + uyz + vxz + wxy ∈ Z[x, y, z]

and vice versa. Define the (half-)discriminant

(2.3)
N := disc(Λ) = disc(QΛ) := det(T (ei, ej))i,j/2 =

1

2
det

2a w v
w 2b u
v u 2c


= 4abc+ uvw − au2 − bv2 − cw2 ∈ Z>0

We define the orthogonal group

(2.4) O(V ) := {g ∈ GL(V ) : Q(gx) = Q(x) for all x ∈ V }
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and define O(Λ) similarly; we have #O(Λ) <∞. We say lattices Λ,Π ⊂ V are isometric ,
written Λ ≃ Π, if there exists g ∈ O(V ) such that gΛ = Π. We make similar definitions
over Qp. The genus of Λ is

(2.5) Gen(Λ) := {Π ⊂ V : Λp ≃ Πp for all p}.
The class set Cl(Λ) is the set of isometry classes in Gen(Λ). We have #Cl(Λ) < ∞ by
the geometry of numbers.

Kneser’s theory of p-neighbors [Kne57, Voi23] gives an effective method to compute
the class set, and it also gives the Hecke action, as follows. Let p ∤ disc(Λ) be prime. We
say that a lattice Π ⊂ V is a p-neighbor of Λ, and write Π ∼p Λ, if Π is integral and

(2.6) [Λ: Λ ∩ Π] = [Π : Λ ∩ Π] = p.

If Λ ∼p Π, then Π ∈ Gen(Λ). The set of p-neighbors is efficiently computable: Π ∼p Λ if
and only if there exists v ∈ Λ, v ̸∈ pΛ such that Q(v) ≡ 0 (mod p2) and

Π = p−1v + {w ∈ Λ : T (v, w) ∈ pZ}.
The line spanned by v in Λ/pΛ uniquely determines Π, accordingly there are exactly p+1
neighbors Π (see [Tor05, Theorem 3.5]).

The space of orthogonal modular forms for Λ and trivial weight is

(2.7) M(O(Λ)) := Map(Cl(Λ),C).
In the basis of characteristic functions for Λ, we have M(O(Λ)) ≃ C#Cl(Λ).

For p ∤ disc(Λ), define the Hecke operator

(2.8)

Tp : M(O(Λ))→M(O(Λ))

Tp(f)([Λ
′]) :=

∑
Π′∼p Λ′

f([Π′]).

The operators Tp commute and are self-adjoint with respect to a natural inner product,
so there is a basis of simultaneous eigenvectors, called eigenforms. The Hecke operators
restrict to S(O(Λ)) ⊂M(O(Λ)), the orthogonal complement of the constant functions.

To compute this action: there is an explicit reduction theory of integral ternary qua-
dratic forms due to Eisenstein [Eis1853] and improved by Schiemann [Sch97, §2], gener-
alizing Gauss reduction of integral quadratic forms, which allows us to uniquely identify
(special) isometry classes.

Birch observed that there is an inclusion

(2.9) S(O(Λ)) ↪→ S2(Γ0(N))

adding that it was “provable” [Bir91, p. 203] and sketching an argument. Indeed, this
inclusion is explained by the even Clifford algebra. We define the even Clifford algebra of
Λ by

(2.10) O := Clf0(Λ) := Z⊕ Zi⊕ Zj ⊕ Zk
with standard involution and multiplication laws

(2.11)

i2 = ui− bc jk = ai = a(u− i)
j2 = vj − ac ki = bj = b(v − j)
k2 = wk − ab ij = ck = c(w − k).

Completing the square, we have

(2.12) O ⊂ O ⊗Q := B ≃
(
w2 − 4ab,−aN

Q

)
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(with other similar symmetric expressions) so O is an order in a definite quaternion
algebra B. Let D := disc(B) be the product of the primes p that ramify in B.

Theorem 2.13. The association Λ 7→ O = Clf0(Λ) is functorial and induces a (reduced)
discriminant-preserving bijection{

Lattices Λ ⊂ V
up to isometry

}
↔

{
Quaternion orders O ⊂ B

up to isomorphism

}
.(2.14)

Equation (2.13) has a long history [Voi21, Remark 22.5.13], with perhaps the earliest
version going back to Hermite.

Just as we defined the genus of Λ, we similarly define the genus of O to be the set of
orders in B which are locally isomorphic to O; the set of (global) isomorphism classes in
the genus is called the type set TypO.

Corollary 2.15. The even Clifford map induces a natural bijection

(2.16) Cl Λ↔ TypO.

Of course from this corollary we obtain an isomorphism

M(O(Λ)) = Map(Cl Λ,C) ∼−→ Map(Typ(O),C).

We now move from orders to ideals. Define the (right) class set of O to be the set
of locally principal fractional right O-ideals (those locally isomorphic to O) up to left
multiplication by B×. Then taking the left order gives a surjective map of (pointed) sets

(2.17)
ClsO → TypO

[I] 7→ [OL(I)]

which induces an injective C-linear map

(2.18) Map(Typ(O),C)→M(O) := Map(ClsO,C).

Suppose now for simplicity that N is squarefree. Then O is an Eichler order (in fact,
a hereditary order). The fibers of (2.17) are naturally identified with two-sided ideals,
measured by the group AL(O) ≃

∏
p|N C2 of Atkin–Lehner involutions. By naturality

and restricting to the cuspidal subspace, we have a Hecke-equivariant isomorphism

(2.19) S(O(Λ))
∼−→ S(O)+

where S(O)+ are those forms invariant under AL(O). Finally, the Jacquet–Langlands
correspondence gives

(2.20) S(O)+ ↪→ SD-new
2 (Γ0(N))δ

where for M | N we write εM for the sign vector which is −1 exactly at the primes p |M
and then δ := εD for the Hilbert symbol for B.

To get all forms, we add a representation. We equip V with an orientation (e.g.,
choose an ordered Q-basis V ≃ Q3) and define SO(V ) := O(V ) ∩ SL(V ). We note that
O(V ) ≃ {±1}× SO(V ). Therefore, we have a natural homomorphism obtained from the
composition

(2.21) ν : O(V )→ O(V )/{±1} ≃ SO(V ) ≃ B×/Q× nrd−−→ Q×/Q×2

called the spinor norm. A delightful calculation (see Equation (8.3)) shows that if γ ∈
SO(V ) has tr(γ) ̸= −1, then γ(ν) = tr(γ) + 1.
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For r | N , we define the spinor character for r by

(2.22)

νr : O(V )
ν−→ Q×/Q×2 → {±1}

a 7→
∏
p|r

(−1)ordp(a)

The spinor characters “find” the remaining forms with all Atkin–Lehner signs. We let
M(SO(Λ), νr) be the space of functions from GenΛ to C that transform by νr: that is,
f(γΛ′) = νr(γ)f(Λ

′) for all γ ∈ SO(V ). We take again S(SO(Λ), νr) the orthogonal com-
plement of the constant functions: when r ̸= 1, we have S(SO(Λ), νr) =M(SO(Λ), νr).
Putting all of this together, we obtain Equation (1.4) in this special case: we have a

Hecke-equivariant isomorphism

(2.23) S(SO(Λ), νr) ≃ SD-new
2 (Γ0(N))δεr .

To prove Equation (1.3), we compute the Hecke action on S(SO(Λ), νr) using ternary
forms and p-neighbors, giving the Hecke action on the space of classical modular forms.
To compute Tp on S(SO(Λ), νr) for p ∤ N , starting with Λ we iteratively compute p-
neighbors and reduce to identify isomorphism classes: we repeat this O(#ClΛ) = O(d)

times with p+ 1 neighbors, so the running time is Õ(pd) where

(2.24) d := dimS(SO(Λ), νr)

is the dimension of the output space.

Remark 2.25. Birch says that his original motivation was to generalize the method of
graphs due to Mestre–Oesterlé. This method was recently studied by Cowan [Cow22], so
we briefly explain the connection here as this method provides an extension to nonsquare
level with many parallel aspects. Let O be a maximal order in a quaternion algebra
B with discriminant disc(B) = p. Then there are at most two supersingular curves E
up to isomorphism over Fal

p such that End(E) ≃ O; there are two such if and only if
j(E) ∈ Fp2 ∖ Fp if and only if the unique two-sided ideal of O of reduced norm p is
not principal. So if we identify E with its image E(p) under the Frobenius map when
j(E) ̸∈ Fp, then we get a bijection of such classes with the type set TypO, which is
in bijection with ternary quadratic forms of discriminant p (also known as the Deuring
correspondence).

We conclude with a simple example.

Example 2.26. Let Λ = Z3 = Ze1 + Ze2 + Ze3 ⊂ Q3 have the quadratic form

QΛ(x, y, z) = x2 + y2 + 3z2 + xz

and bilinear form given by

[TΛ] =

2 0 1
0 2 0
1 0 6


so disc(QΛ) = 11. We compute that among the 2-neighbors of Λ, one is isometric to Λ
and the other two reduce to a new lattice Λ′ with Gram matrix 2 −1 1

−1 2 −1
1 −1 8

 .
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Among the 2-neighbors of Λ′, all 3 are isometric to Λ. This yields

[T2] =

(
1 2
3 0

)
.

Similarly, we compute

[T3] =

(
2 2
3 1

)
, [T5] =

(
4 2
3 3

)
, . . . .

The constant function e =

(
1
1

)
∈M(SO(Λ)) is an Eisenstein series with Tp(e) = (p+1)e.

Another eigenvector is f =

(
2
−3

)
with Tp(f) = ap(f):

a3 = −1, a5 = 1, . . .

We match it with the familiar modular form 11.2.a.a:
∞∑
n=1

anq
n =

∞∏
n=1

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + . . . ∈ S2(Γ0(11)).

And indeed the Atkin–Lehner involution z 7→ −1
11z

acts on f(z) dz with eigenvalue w11 =

−a11 = −1, as expected.

3. Algebraic modular forms

We now begin the general case. In this section, we briefly review the theory of algebraic
modular forms, as our quaternionic modular forms and orthogonal modular forms will be
special cases of this theory. For further reference, see Gross [Gro99]. Concrete versions
of the general theory in this section will be provided in the two sections that follow.

Let F be a number field with ring of integers R := ZF . Let G be a reductive algebraic
group defined over F . Let G∞ :=

∏
v|∞ G(Fv). Then G∞ is a real Lie group with

finitely many connected components. We consider a very special case: suppose that
G∞ is compact modulo its center. This setup was investigated by Gross [Gro99], who
showed that modular forms and automorphic representations can be fruitfully studied in
the absence of analytic hypotheses; in particular, we are in an ideal setting to develop
algorithms.

Let F̂ :=
∏′

pFp be the finite adeles of F . Let K̂ be a compact open subgroup of

Ĝ := G(F̂ ), let G := G(F ), and consider the double coset space

(3.1) Y := G\Ĝ/K̂.

The set Y is finite (being both discrete and compact), and so we can write a finite
decomposition

(3.2) Ĝ =
<∞⊔
i

Gβ̂iK̂.

Each point Gβ̂iK̂ ∈ Y has a (finite) stabilizer group

(3.3) Γi := β̂iK̂β̂
−1
i ∩G

whose conjugacy class in G is independent of the choice of representative β̂i.
8
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Let W be a finite-dimensional representation of G over C with a left action x 7→ g · x
for g ∈ G and x ∈ W . The space of modular forms on G of level K̂ and weight W is

(3.4) MW (K̂) := {f : Ĝ→ W : f(gα̂û) = g · f(α̂) for all g ∈ G, û ∈ K̂}

A form f ∈MW (K̂) is locally constant on Ĝ since it is invariant under the open compact

K̂.
With respect to a decomposition (3.2), we see that as C-vector spaces, we have an

isomorphism

(3.5)
MW (K̂)

∼−→
⊕
i

H0(Γi,W )

f 7→ (f(β̂i))i

where H0(Γi,W ) denotes Γi-invariants, since gβ̂iK̂ = β̂iK̂ if and only if g ∈ Γi.
We will also make use of two slight generalizations and modifications. First, we allow

character. Suppose that K̂ ⊴ K̂0 is a normal inclusion such that C := K̂0/K̂ is abelian.

Since K̂0 normalizes K̂, the group C acts by right translation on Ĝ/K̂, inducing operators

on MW (K̂) which we call diamond operators by analogy with the classical case. Then we
have an isotypic decomposition

(3.6) MW (K̂)
∼−→

⊕
χ∈C∨

MW (K̂0, χ)

according to characters χ : C → C×, where we define

(3.7) MW (K̂0, χ) := {f : Ĝ→ W : f(gα̂û) = χ(u)(g · f(α̂)) for all g ∈ G, û ∈ K̂0}.

Second, similarly the normalizer mod centralizer A := NĜ(K̂)/(K̂CĜ(K̂)) acts by

conjugation on K̂ and hence on MW (K̂). When A is abelian we have an isotypic decom-
position

(3.8) MW (K̂)
∼−→

⊕
χ∈A∨

MW (K̂)χ

where the subspace is defined by the condition that A acts via χ.

Remark 3.9. As further generalizations, we could equally well work with W a finite-
dimensional representation over any field, and weaken the requirement that the groups

C = K̂0/K̂ and A = NĜ(K̂)/(K̂ZĜ(K̂)) are abelian by instead taking the isotopic
decomposition indexed instead by irreducible representations.

The space MW (K̂) is equipped with the action of Hecke operators Tπ̂ for π̂ ∈ Ĝ,

depending on the class K̂π̂K̂, as follows: write

(3.10) K̂π̂K̂ =
⊔
j

π̂jK̂

as a finite disjoint union, and then for f ∈MW (K̂) define

(3.11) (Tπ̂f)(α̂K̂) :=
∑
j

f(α̂πjK̂).

This is well-defined (independent of the choice of representative π̂ and representatives π̂j)

by the right K̂-invariance of f .
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We call the subspace of MW (K̂) of functions that factor through Ĝ/[Ĝ, Ĝ] the space of

Eisenstein series. There is a natural inner product on MW (K̂)—the dot product weighted
by 1/#Γi—for which the Hecke operators are self-adjoint, and we let the cuspidal subspace
be the orthogonal complement of the Eisenstein series under the inner product.

4. Hilbert modular forms as quaternionic modular forms

In this section, we specialize the previous section to the case of groups from definite
quaternion algebras.

Let B be a definite quaternion algebra over a totally real field F . We take G to be
the reductive group associated to G = B×, so that G∞ = B×

∞ ≃
∏

v|∞ H× where H is the

division ring of real Hamiltonians, and Ĝ = B̂×.

For level structure, we let O ⊆ B be an R-order and take K̂ = Ô×; let N := discrd(O).
Then the double coset space

(4.1) Y = G\Ĝ/K̂ = B×\B̂×/Ô× ↔ ClsO

is naturally identified with the (right) class set of O [Voi21, Lemma 27.6.8].
We restrict to weights k = (kv)v ∈

∏
v|∞ 2Z>0, corresponding to the representation

Wk :=
⊗

v|∞ Symkv−2(C)(−kv/2 − 1) with respect to a splitting B× ↪→ GL2(C), but we
also consider twists of these weights by characters. On the associated space of mod-
ular forms, there is an action by diamond operators corresponding to the class group

[Voi21, 41.3.4] which picks out the central character; we let Mk(Ô
×) be the fixed space.

The Eisenstein subspace consists of those functions that factor through the norm map

nrd: B̂× → F̂×; this space is trivial unless kv = 2 for all v | ∞. We let Sk(Ô
×) ⊆Mk(Ô

×)
be the orthogonal complement of the Eisenstein subspace.

We further define the group

(4.2) AL(Ô) := NB̂×(Ô)/(F̂
×Ô×) ≃

∏
p|N

AL(Op)

which we call the adelic Atkin–Lehner group. (Although there are complications in the
global normalizer group [Voi21, §28.9], they do not arise adelically.) Then as in (3.8)

when AL(Ô) is abelian—and more generally as in Equation (3.9)—we have

(4.3) Sk(Ô
×) ≃

⊕
χ∈AL(Ô)∨

Sk(Ô
×)χ

checking that the Eisenstein subspace is preserved under the normalizer.
We now focus on a very general class of orders for which we have good control of the

normalizers. See Voight [Voi21, §24.3] for background reading. Let N ⊆ R be a nonzero
ideal.

Definition 4.4. A quaternion algebra B over F is suitable for N provided that

(i) B is ramified at all infinite places; and
(ii) if B is ramified at p, then vp(N) is odd.

Proposition 4.5. There are quaternion algebras suitable for N except when [F : Q] is
odd and N is a square.

Proof. When [F : Q] is even, we can take B ramified at all the infinite places and split at
all the finite places. When [F : Q] is odd and N is not a square, we can take B ramified at
all infinite places and at one p, where vp(N) is odd, and split at all other finite places. □
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Remark 4.6. We will not assume that the quaternion algebra is as given by the proof
above. For reasons that will be clear later, it will be more convenient to have a quaternion
algebra ramified at more primes.

An order O is locally residually unramified [Voi21, 24.3] if for all primes p | discrd(O),
the quotient Op/ rad(Op) of the quotient of the completed order by the Jacobson radical
is either Fp×Fp (residually split or Eichler at p) or Fp2 (residually inert at p), corresponding
to the Eichler symbol values 1,−1.

We will need to recall some facts in the residually inert case, studied by Pizer [Piz77, §2]
(see also [Voi21, 24.3.7]). Let Op be residually inert. Lifting the extension Op/ radOp ≃
Fp2 we have a quadratic unramified extension Sp ⊇ Rp, the valuation ring in the quadratic

unramified extensionKp ⊇ Fp. Diagonalizing, we find Op ≃
(
Sp, b

Rp

)
for some b ∈ R∖{0}.

Since NmSp|Rp(S
×
p ) = R×

p , we may suppose that b = πe for some e ≥ 0 with π a uniformizer
for Rp, and then discrdOp = pe. We have e even when Bp ≃ M2(Fp) and e odd when
Bp a division algebra [Voi21, 24.4.9]. Then [Voi21, Proof of Proposition 24.4.7] the order
Op ⊗ Sp ↪→ M2(Sp) is residually split, and the regular representation identifies

(4.7) Op ↪→
{(

u v
bv u

)
: u, v ∈ Sp

}
⊆ M2(Sp)

with j 7→
(
0 1
b 0

)
.

Proposition 4.8. If B is a suitable quaternion algebra for N, then there exists a resid-
ually unramified order O ⊆ N with discrd(O) = N. Moreover, the genera of such orders
are determined by the choice of residually inert or split for pe ∥ N with e even.

We could make a unique choice in Equation (4.8) by taking Op residually split whenever
Bp is split.

Proof. As we have seen, all residually unramified orders in a local division quaternion
algebra have odd exponent in their reduced discriminant, which is precisely guaranteed
by the algebra being suitable; there is no condition at primes p split in B. See also Gross
[Gro88, Proposition 3.4]. □

Remark 4.9. Gross [Gro88] and Martin [Mar20] also consider residually ramified orders
with bounded level, so our methods could be extended to that case too (e.g., the Lipschitz
order in the Hurwitz order).

We are now ready to state the correspondence between Hilbert modular forms and
quaternionic modular forms. Let B be a quaternion algebra suitable forN, letD = discB,
and let O be a residually unramified order with discrd(O) = N. Write N = N−N+ where
N− is divisible by exactly those primes where O is residually inert (i.e., Eichler invariant
−1) and N+ by primes where O is residually split (Eichler invariant +1). Whenever
p | D, we must have p | N−.

For Hilbert modular forms, we take adelic level structure Γ̂0(N) ≤ GL2(R̂) writing
the associated space of cuspidal Hilbert modular forms (with trivial central character)

as Sk(Γ̂0(N)). For M | N, let SM-new
k (Γ̂0(N)) ⊆ Sk(Γ̂0(N)) be the subspace consisting of

forms which are p-new for all p |M with respect to the natural degeneracy operators.
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Theorem 4.10 (Eichler–Shimizu–Jacquet–Langlands correspondence). Let O be a suit-
able quaternion order of level N. Then there is an isomorphism of Hecke-modules

(4.11) Sk(Ô) ≃
⊕
M

SM-new
k (Γ̂0(MN+))

where the sum runs over all divisors M | N− such that vp(M) and vp(N) have the same
parity for all p | N−.

Proof. See Jacquet–Langlands [JL70, Chap. XVI], Gelbart–Jacquet [GJ79, §8], and Hida
[Hid81, Proposition 2.12], and more recently Martin [Mar20, Theorem 1.1(ii)]. □

For these nice lattices and orders, we have a simple description of the normalizer.

Proposition 4.12. Suppose that O is residually unramified at p. Then the following
statements hold.

(a) The Atkin–Lehner group AL(Op) has order 2, generated by wq where q = pe ∥ N.
(b) Under the correspondence with Hilbert modular forms (4.11), the involution wq

on Sk(Ô
×) corresponds to either the Atkin–Lehner involution on Sk(Γ̂0(N)) or its

negative, according as p | D or not.

Proof. We begin with (a). When Op is residually split (Eichler) the result is well-known
[Voi21, Proposition 23.4.14]. The residually inert case can be derived from this, as follows.
The inclusion (4.7) provides an inclusion NB×

p
(Op) ↪→ NB×

Kp
(OSp). We check that indeed

j ∈ NB×
p
(Op), and the rest is O×

Sp
∩B×

p = O×.

Part (b) follows from work of Jacquet–Langlands [JL70, Proposition 15.5], see also
[GJ79, Theorem (8.1)] Gelbart–Jacquet). The result may also be derived via theta series
using work of Böcherer–Schulze-Pillot [BSP91, Lemma 8.2]. □

As in the introduction, a sign vector (for N) is

(4.13) ε = (εp)p ∈
∏
pe∥N

{±1}.

For a sign vector, we define

(4.14) Sk(Ô)
ε = {f ∈ Sk(Ô) : wqf = εpf}

We conclude this section with newform theory, with attention to Atkin–Lehner eigen-
values. The algorithmic application will be to knowing precisely when we have carved
away the old subspace.

Definition 4.15. Let α be the multiplicative function on divisors of N defined by

α(pe) =


1 + e, if p | N+;

1, if p | N− and e is even; and

0, if p | N− and e is odd.

The function α records multiplicities in the newform decomposition as follows.

Theorem 4.16. We have

Sk(Ô
×) ≃

⊕
M|N

Snew
k (Γ̂0(M))⊕α(N/M)

12



Proof. First, we rewrite Equation (4.10) as

(4.17) Sk(Ô
×) ≃

⊕
M−|N−

S
M−-new
k (Γ̂0(M−N+))

⊕α(N−/M−).

Second, we apply the usual Atkin–Lehner theory for Hilbert modular forms, see Roberts–
Schmidt [RS07, p. 4] for a succinct summary. We obtain

(4.18) S
M−-new
k (Γ̂0(M−N+)) ≃

⊕
M+|N+

Snew
k (Γ̂0(M−M+))

⊕α(N+/M+).

We conclude by substituting (4.18) into (4.17), using multiplicativity of α, and rewriting
divisors as M = M−M+ | N−N+ = N. □

Now we refine this theorem to take Atkin–Lehner signs into account. For p | N−,
there is no change in the Atkin–Lehner signs under degeneracy operators; for p | N+, the
possible Atkin–Lehner signs are as balanced as possible.

Definition 4.19. For a sign vector ε, let αε be the multiplicative function on divisors of
N such that

αε(pe) =


⌈
1+e
2

⌉
, if p | N+ and εp = +1;⌊

1+e
2

⌋
, if p | N+ and εp = −1;

1, if p | N−, e is even, and εp = +1; and

0, if p | N−, otherwise

Considering cases, it is straightforward to show that
∑

ε α
ε = α.

Proposition 4.20. Let ε be a sign vector. Then

(4.21) S
M−-new
k (Γ̂0(M−N+))

ε ≃
⊕

M+|N+

⊕
ε′

(
Snew
k (Γ̂0(M−M+))

ε′
)⊕αεε′ (N+/M+)

the sum over all sign vectors ε′.

Proof. This is standard newform theory of Atkin–Lehner in the case of Hilbert modular
forms: see e.g. Roberts–Schmidt [RS07, p. 4] for a concise statement. □

Corollary 4.22. Let δ be the sign vector with δp = −1 if and only if p | D. Then we
have

(4.23) Sk(Ô
×)ε ≃

⊕
M|N

⊕
ε′

(
Snew
k (Γ̂0(M))δεε

′)⊕αδεε′ (N/M)
.

Proof. Repeat the proof of Equation (4.16) but restrict to the Atkin–Lehner subspaces
using Equation (4.20) and Equation (4.12)(b). □

Remark 4.24. It is also enough in (4.21) and (4.23) to sum only over those sign vectors
ε′ such that ε′p = 1 for all p | N−.

5. Ternary quadratic forms and the even Clifford algebra

In this section, we review the even Clifford functor, relating ternary quadratic forms and
quaternion orders. We then observe that this functor gives a Hecke-equivariant isomor-
phism between certain spaces of orthogonal modular forms and quaternionic modular
forms. Importantly, we show that (because we are in odd rank) we can work equiva-
lently with isometry classes or (twisted) similarity classes, the former being simpler for
computation. We then restrict this result to a nice class of lattices—those with cyclic
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discriminant—corresponding to a nice class of quaternion orders—those which are lo-
cally residually unramified, as in the previous section. For further background reading,
see Voight [Voi21, Chapters 22–24].

Let R be a Dedekind domain with field of fractions F := FracR. Let V be an F -vector
space with dimF V = 3 and let Q : V → F be a nondegenerate quadratic form. Recall
that the similarity group of V is the algebraic group GO(V ) consisting of linear maps that
preserve the quadratic form V up to a scalar called the similitude factor , the isometry
group O(V ) of V is the algebraic subgroup of similarities with similitude factor 1 [Voi21,
§4.2], and the special (or oriented) isometry group SO(V ) of V is the subgroup fixing an
orientation.

In fact, every similarity is in fact an oriented isometry composed with a scaling.

Lemma 5.1. Multiplication gives an isomorphism

(5.2) SO(V )×GL1,F → GO(V )

of algebraic groups over F .

Proof. Choose a basis V ≃ F 3 and let [T ] be the Gram matrix of the symmetric bilinear
form T associated to Q in this basis and A = [ϕ]. Certainly we have a homomorphism,
it is injective because if cA = 1 then c3 detA = c3 = 1 but also At[T ]A = [T ] so c2 = 1
so in fact c = 1.
To see the map is surjective, we define an inverse. If A ∈ GL3(F ) has A

t[T ]A = u[T ]
with u ∈ F×, let d := detA, then taking determinants and cancelling det[T ] ∈ F×

gives d2 = u3 so u = (d/u)2 is a square; whence (u/d)A ∈ SO(V ) and so we can map
A 7→ ((u/d)A, d/u).
This shows the isomorphism on F -points; repeating this over an arbitrary extension

gives the result on the level of algebraic groups. □

Remark 5.3. Equation (5.1) generalizes to nondegenerate quadratic forms of any odd
dimension.

Let Λ ⊆ V be an R-lattice. An isometry or similarity from Λ to an R-lattice Λ′ is such
a map ϕ on V such that ϕ(Λ) = Λ′, and we define SO(Λ) ≤ O(Λ) ≤ GO(Λ) for the
corresponding stabilizers. Restricting (5.1) gives an isomorphism

(5.4) SO(Λ)×GL1,R
∼−→ GO(Λ).

Attached to Λ will be four possible class sets corresponding to the notions above—but
with one asterisk, they all end up being in natural bijection.

We first define the usual genus GenO(Λ) = Gen(Λ) of Λ, consisting of all lattices Λ′ ⊆ V
such that Λ(p) is isometric to Λ′

(p) for all (nonzero) primes p ⊆ R, where the subscript

denotes localization; then we define the class set ClO Λ = ClΛ to be the (global) isometry
classes in Gen(Λ).

Second, we could replace isometry with oriented isometry to get ClSO Λ, in fact the
natural inclusion map ClSO Λ→ ClO Λ is a bijection: we have O(Λ) ≃ {±1} × SO(Λ), so
two lattices are isometric if and only if they are oriented isometric, the same being true
locally. (This holds more generally in odd rank.)

Third, we replace isometry with similarity, and get the similarity genus GenGO(Λ) (lat-
tices locally similar to Λ) and similarity class set ClGO Λ (up to global similarity). On
ClGO Λ, we have an action of ClR by [a] · [Λ] = [aΛ].

Definition 5.5. The twist of Λ by a fractional ideal a is the lattice aΛ. A twisted similarity
between two R-lattices Λ,Λ′ ⊆ V is a similarity between a twist of Λ and Λ′.

14



Finally, we define analogously the twisted similarity class set, the quotient set (ClGO Λ)ClR.

Lemma 5.6. There is a natural inclusion map ClO Λ ↪→ ClGO Λ which induces a bijection
ClO Λ↔ (ClGO Λ)ClR.

Proof. The two maps are injective, since isometries are in particular similarities and
twisted similarities. The second map is also surjective, as follows. Suppose Λ′ is locally
twisted similar to Λ; we find a twist of Λ′ which is locally isometric to Λ. Since the
localizations are DVRs we conclude that Λ′ is locally similar to Λ. Considering a local
similarity over F , using (5.2) we see that there exists local isometries between Λ(p) and
a(p)Λ

′ for each prime p. Since Λ(p) = Λ′
(p) for all but finitely many p, there is a unique

fractional ideal a ⊆ F such that a(p) = a(p)R(p) for all p, and hence Λ is locally isometric
to aΛ′, as desired. □

We now turn to the main goal of this section: Clifford algebras. The even Clifford
algebra [Voi21, §5.3] B := Clf0(Q) is a quaternion algebra over F (defined by a universal
property [Voi21, Exercise 5.20]); and we recover Q = nrd |B0 up to similarity as the
reduced norm on the trace zero subspace. The construction of the even algebra extends
naturally to R-lattices in V .

Theorem 5.7. The association Λ 7→ Clf0(Λ) of the even Clifford algebra to a lattice
defines a functor from the category of

R-lattices Λ ⊆ V , under similarities

to the category of

Gorenstein quaternion R-orders O ⊆ B, under isomorphisms

Moreover, the association is functorial with respect to ring homomorphisms R→ R′.

Proof. See Voight [Voi21, Theorems 22.2.11 and 22.3.1]. Restricting R to a Dedekind
domain implies that every order is projective over R, and we obtain only Gorenstein
orders [Voi21, Theorem 24.2.10] because our quadratic forms are necessarily primitive:
we take the codomain of the quadratic module to be the R-submodule generated by the
values of the quadratic form. □

Corollary 5.8. The even Clifford map gives a bijection between the set of twisted similar-
ity classes of R-lattices Λ ⊆ V and the set of isomorphism classes of Gorenstein R-orders
O ⊆ B. Moreover, it induces a natural bijections

ClGO(Λ)
ClR ↔ TypO

to the type set of O = Clf0(Λ).

By Equation (5.6), we similarly get a natural bijection

(5.9) ClSO(Λ)↔ TypO.

Proof. For the first statement, apply Voight [Voi21, Main Theorem 22.5.7] with the same
modifications as in the proof of Equation (5.7); an explicit inverse is also given (arising
from the reduced norm). The second statement is Voight [Voi21, Corollary 22.5.12]. □

Remark 5.10. Although it is not needed in what follows, the bijections in Equation (5.8)
also follow naturally from an equivalence of categories, something which holds over a
more general base ring: this is developed in Voight [Voi11, Theorem B]. Algorithmically
it is most convenient to work with (5.9) as isometries are easier to compute, so we explain
this associated equivalence of categories in Equation (A.39).
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We now apply this to orthogonal modular forms. Recall [Voi21, Proposition 4.5.10]
that there is an exact sequence

(5.11) 1→ F× → B× → SO(nrd |B0)→ 1

giving an isomorphism B×/F× ≃ SO(Q)(F ) (and Q ≃ nrd |B0). This extends integrally:
for a lattice Λ ⊆ V , computing stabilizers gives

(5.12) SO(Λ)(R) ≃ NB×(O)/F×

with O := Clf0(Λ).
Let ρ : SO(V ) → GL(W ) be a finite-dimensional representation. Via (5.11) we can

lift to get a representation ρ : B× → GL(W ) whose restriction to F× is trivial, i.e., has
trivial central character.

Recalling the Atkin–Lehner group AL(Ô) in (4.2), we have the following result.

Theorem 5.13. The even Clifford map induces a Hecke-equivariant bijection

MW (SO(Λ̂))
∼−→MW (Ô×)AL(Ô)

that restricts to a Hecke-equivariant bijection cuspidal subspaces

SW (SO(Λ̂))
∼−→ SW (Ô×)AL(Ô).

Proof. From Equation (5.8), we have a bijection Cl Λ ↔ TypO; from Equation (5.7)
(restricting to oriented isometries), it is functorial with respect to the Hecke operators.
The constant functions and inner product are preserved by this map, so the result restricts
to their orthogonal complements, the cuspidal subspaces. □

Equation (5.13) applies to a general ternary lattice with arbitrary weight, yielding
a general (Gorenstein) quaternion order. Looking towards our application, where we
restrict our classes of orders to those which are residually unramified, we characterize the
corresponding lattices.

Lemma 5.14. Let Λ be a ternary R-lattice. Then the following are equivalent.

(i) The discriminant module Λ♯/Λ is a cyclic R-module;
(ii) For all (nonzero) primes p ⊆ R we have

(5.15) Λp ≃ Up ⊞Rpz

where Up is nonsingular (i.e., disc(Up) ∈ R×
p /R

×2
p ); and

(iii) Clf0(Λ) is residually unramified at all primes p.

Proof. The equivalences of (i) and (ii) are almost immediate: for odd primes p, the
condition in (ii) is equivalent to the rank of the reduction of Q modulo p (defined on
Λ/pΛ) being at least 2, but when p is even we are asking further that the reduction is
nonsingular. The equivalence (ii) ⇔ (iii) is given in Voight [Voi21, 24.3.9]. □

6. The radical character

We keep notations as in previous section: in particular, let Λ ⊂ V be a definite ternary
R-lattice of discriminant N, and let O = Clf0(Λ) be its even Clifford algebra, an R-order
in B = Clf0(V ).

Let p | N. We define the radical of Λp as

(6.1) rad(Λp) := {x ∈ Λp : T (x, y) ≡ 0 (mod 2N) for all y ∈ Λp}.
The name is justified, as this recovers the usual radical of a quadratic space when the
discriminant is 0.
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We see that radp(Λ) is a Rp-lattice with rad(Λp) ⊇ 2NΛp.

Proposition 6.2. If Λp has cyclic discriminant, then rad(Λp)/(2NΛp) is free of rank 1
over Rp/2NRp.

Proof. We apply Equation (5.14), (i)⇒ (ii): it is generated by z, since Q(z) ≡ 0 (mod N)
and hence T (z, z) = 2Q(z) ≡ 0 (mod 2N); see also [DPRT24, Lemma 6.13]. □

Since it is defined by the bilinear form, rad(Λp) is invariant under O(Λp), hence we
obtain a character

(6.3) νp : SO(Λ̂)→ SO(Λp)→ O(radp(Λ)/2NΛp) ≃ (Rp/2NRp)
×

which we call the radical character at p.

Lemma 6.4. The image of the radical character νp is {±1}, and it is uniquely defined
by

σ(z) ≡ νp(σ)z (mod 2pΛ)

for σ ∈ SO(Λp).

Proof. For the first statement, we have a (noncanonical) splitting Λp ≃ Up ⊞ Rpz in
Equation (5.14)(ii) with z ∈ rad(Λp). Let σ ∈ SO(Λp). Then from (6.3) we have σ(z) =
az + y with a ∈ R×

p and y ∈ 2NΛp. Without loss of generality, we may suppose that
y ∈ 2NUp. Then Q(z) = Q(σz) = a2Q(z) +Q(y) ≡ a2Q(z) (mod 4N2) since y ∈ 2NUp.
Since ordpQ(z) = ordpN, we conclude that a2 ≡ 1 (mod 4N), whence a = νp(σ) ≡ ±1
(mod 2N). Composing a reflection in z with reflection in a vector in Up shows that the
image is fully {±1}, and this can already be seen modulo 2p. □

We extend the radical character multiplicatively, defining

(6.5) νM :=
∏
p|M

νp : SO(Λ̂)→ {±1}

for M | N squarefree.
There is another character, the spinor norm character; we show these agree in odd

exponent, as follows. Recall that the spinor norm is the map composition

(6.6) θ : SO(V ) ≃ B×/F× nrd−−→ F×/F×2.

We define the spinor norm character for M | N by composing

(6.7)

θM : SO(V )
θ−→ F×/F×2 → {±1}

a 7→
∏
p|M

(−1)ordp(a).

We let A := ⟨νM⟩ ≃
∏

p|NC2 be the radical character group.

Proposition 6.8. Suppose O is residually unramified. Then the following statements

hold, under the isomorphism SO(Λ̂)
∼−→ NB̂×(Ô) induced by the even Clifford map.

(a) The pairing

(6.9)
A×NB̂×(Ô)→ {±1}

(ν, α) 7→ ν(α)

is perfect.
(b) If ordp N is odd, then νp = θp.
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Proof. First part (a). We computed NB×
p
(Op) = F×

p O
×
p ⟨wp⟩ in Equation (4.12)(i). We

now make that a bit more explicit. Writing

Λp = Up ⊞Rpz

we compute that

Clf0(Λp) = Clf0(Up)⊕ Upz.

Write Sp := Clf0(Up). Then Sp is unramified over Rp, either split or inert according as
Up is isotropic or anisotropic and according as p | N+ or p | N−. Abbreviate Jp := Upz.
Then Jp = Spj with j2 = b with ordp(b) = ordp N = e, and j = wp.
Suppose first that αp ∈ S×

p . Then αp commutes with z, since Up is orthogonal to z.
Similarly, suppose αp = 1 + βp ∈ 1 + Jp. Then Nm(αp) = 1 − β2

p with β2
p ∈ N, and

βpz ∈ NΛp. Hence

(6.10)

α−1
p zαp = (1 + βp)

−1(1− βp)z =
(1− βp)2

1− β2
p

z

≡
1 + β2

p

1− β2
p

z − 2βp
1− β2

p

z ≡ z (mod 2NΛp)

since β2
p ≡ −β2

p (mod 2N). This shows that νp is trivial on O×
p = S× · (1 + Jp). Thus it

must be nontrivial on j, and indeed we quickly verify that j−1zj = j−1(−j)z = −z.
This shows that the radical character on the normalizer is simply the projection onto

(6.11) NB×
p
(Op)/F

×
p → NB×

p
(Op)/(F

×
p O

×
p ) ≃ ⟨wp⟩ ≃ {±1}.

Part (a) follows directly.
For part (b), since ordpN = ordp(b) = nrd(j) is odd, the map in (6.11) is also exactly

described by the spinor norm character θp in (6.7). (And this does not hold when ordpN
is even, in that case θp = 1) □

Corollary 6.12. Let M | N be squarefree, and let εM be the sign vector with (εM)p = −1
if and only if p | M. Suppose that O is residually unramified. Then there is a Hecke-
equivariant bijection

(6.13) Mk(SO(Λ̂), νM)
∼−→Mk(Ô

×)εM

where the image is the space of forms where the Atkin–Lehner operators have signs agree-
ing with εM. The map (6.13) restricts to a similar bijection on cuspidal subspaces.

Proof. We apply Equation (5.13) and identify the fixed subspace for the characters using
Equation (6.8). □

7. Newform theory for orthogonal modular forms

In this section, we translate the degeneracy maps and newform theory provided in
section 4 to the orthogonal side. This upgrades Equation (6.12) to a statement about
newforms, and it explains the multiplicities of oldforms observed over F = Q by Birch
[Bir91, pp. 202–203].

The degeneracy maps on the quaternion (and Hilbert) side are of the following form.

Whenever we have O ⊆ O′, equivalently Ô ⊆ Ô′, we get a natural surjective map of
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pointed sets

(7.1)

B×\B̂×/NB̂×(Ô) = Typ(O)

��

B×\B̂×/NB̂×(Ô′) = Typ(O′).

Described in terms of type sets, given a order locally isomorphic to O, its adelization is

α̂−1Ôα̂; the map then makes the order α̂−1Ô′α̂ which when intersected with B gives an
order locally isomorphic to O′.
But we have already identified these double cosets (and type sets) using the even

Clifford functor (5.9): corresponding to Ô′ is an adelic lattice Λ̂′ ⊆ V̂ and lattice Λ′ =

Λ̂′ ∩ V ⊆ V , giving again a map of pointed sets

(7.2)

Cl(Λ) = SO(V )\ SO(V̂ )/ SO(Λ̂) oo //

��

B×\B̂×/NB̂×(Ô) = Typ(O)

��

Cl(Λ′) = SO(V )\ SO(V̂ )/ SO(Λ̂′) oo // B×\B̂×/NB̂×(Ô′) = Typ(O′)

(We do not claim that Λ̂ ⊆ Λ̂′, only that SO(Λ̂) ≤ SO(Λ̂′).) On the level of class sets, the
map is described in a similar way to the quaternionic case: for a lattice which is locally

isometric to Λ its adelization is ĝΛ̂, we make the adelic lattice ĝΛ̂′ and then intersect
with V to get a lattice locally isometric to Λ′.

Orthogonal and quaternionic modular forms are defined by equivariant maps on these
sets. The degeneracy operators on quaternionic modular forms commute with

(7.3) αΛ′ : MW (SO(Λ̂′)) ↪→MW ′(SO(Λ̂))

via pullback. These maps give an old and new subspace as usual.

Definition 7.4. The old subspace Mold
W (SO(Λ̂)) ⊆MW (SO(Λ̂)) is the span of the image

of all degeneracy maps αΛ′ for lattices Λ′ corresponding to superorders O′ ⊇ O. The new
subspace Mnew

W (SO(Λ̂)) ⊆MW (SO(Λ̂)) is the orthogonal complement of the old subspace
with respect to the Petersson inner product.

Theorem 7.5. If O is residually unramified, then there is a Hecke-equivariant bijection

Mnew
k (SO(Λ̂), νM)

∼−→Mnew
k (Ô)εM

that restricts to the cuspidal subspaces.

Proof. We restrict Equation (6.12) to the new subspace on quaternionic modular forms;
by definition, this corresponds to the new subspace on orthogonal modular forms. □

8. Orthogonal algorithms

A general reference for algorithms on orthogonal modular forms on lattices is Greenberg–
Voight [GV14]. Further practical improvements are given by Assaf–Fretwell–Ingalls–
Logan–Secord–Voight [AFI+22, §3].

We advance these algorithms with the following additions. First, we construct a ternary
quadratic space with cyclic discriminant module given invariants, as follows.

Algorithm 8.1. Given as input

• a totally real field F ,
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• a factored ideal N =
∏r

i=1 p
ei
i of R = ZF ,

• a divisor N− | N such that if pe ∥ N− then e is odd, and
• a squarefree divisor D | N− whose number of prime divisors has the same parity
as [F : Q];

we return as output a residually unramified order O in a suitable quaternion algebra of
discriminant D.

1. Compute a totally definite quaternion algebra B of discriminant D [GV14, Algo-
rithm 4.1].

2. Compute a maximal order O ⊆ B [Voi13, §7].
3. Compute an Eichler order O1 ⊆ O of level N+ := N/N− by computing a p-matrix

ring for all p | N+ [Voi13, Corollary 7.13] and taking the preimage of the standard
Eichler order.

4. Compute O2 ⊆ O1 residually inert for p | D, for each prime p:
a. Compute Jp := rad(Op) = [Op, Op].
b. Lift a basis of the quotient Op/Jp to Sp.

c. Take O2,p = Sp + J
(e+1)/2
p for pe ∥ N− (with e odd).

5. Compute O3 ⊆ O2 residually inert for p | N− but p ∤ D:
a. Compute a p-matrix ring Op ≃ M2(Rp).
b. Compute Sp, the valuation ring in the quadratic unramified extension Kp ⊇
Fp.

c. By the regular representation, compute Sp ↪→ M2(Rp) and identify Sp with
its preimage in Op. Compute O′

p = Sp + pOp, let Jp = rad(O′
p), and take

O′
3,p = Sp + J

e/2
p .

6. Return O3.

Theorem 8.2. Equation (8.1) returns correct output and runs in probabilistic polynomial
time.

Proof. Steps 1–3 run in probabilistic polynomial time by the references given. (See in
particular Voight [Voi13] for a discussion of exact global representations for p-adic com-
putations.) In steps 4 and 5 we have only linear algebra steps other than finding an
irreducible quadratic polynomial over Fp, which can be found in probabilistic polynomial
time. □

To compute spaces of orthogonal modular forms with radical character, there is no
trouble computing the radical character: part of the above suite of algorithms efficiently
computes a p-splitting as in (5.15), and from there we just compute the action on the
radical generator z (by matrix multiplication).

In the special case where the radical character is given spinor norm (when ordp N is
odd, Equation (6.12)), we have the following extraordinary formula.

Lemma 8.3. Let V be a finite-dimensional nondegenerate quadratic space over a field k
with char k ̸= 2. Let σ ∈ SO(V ) have det(1 + σ) ̸= 0. Then the spinor norm of σ is

θ(σ) = det((1 + σ)/2) = 2n det(1 + σ) ∈ k×/k×2.

If further n = 3, then θ(σ) = 1 + tr(σ).

Proof. See Zassenhaus [Zas62, Theorem, Corollary, p. 446], who actually shows one you
can define the spinor norm this way (without the Clifford algebra). For completeness, we
give a direct proof in the case n = 3.
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The case σ = idV is immediate. By the Cartan–Dieudonné theorem, σ = τuτv is a
product of reflections where u, v ∈ V are not colinear, where

τu(x) = x− T (x, u)

Q(u)
u

(and similarly for v). Let w ∈ V be orthogonal to u and v, so that {u, v, w} is a basis of
V .

We compute σ in this basis:

σ(u) = τu

(
u− T (u, v)

Q(v)
v

)
= −u− T (u, v)

Q(v)

(
v − T (v, u)

Q(u)
u

)
=

(
T (u, v)2

Q(u)Q(v)
− 1

)
u− T (u, v)

Q(v)
v

σ(v) = τu(−v) =
T (v, u)

Q(u)
u− v

σ(w) = w

Hence

det(1 + σ) =
T (u, v)2

Q(u)Q(v)

and

tr(σ) =
T (u, v)2

Q(u)Q(v)
− 1,

and the claim follows since θ(σ) = Q(u)Q(v) ∈ k×/k×2. □

For completeness, when tr(σ) = −1, we can still do something nice.

Corollary 8.4. If σ ∈ SO(V ) with dimk V = 3 has tr(σ) = −1, then σ2 = idV and
ker(σ − 1) = kw for some nonzero w ∈ V and θ(σ) = Q(w).

Proof. If tr(σ) = −1 then σ = τu · τv with T (u, v) = 0, so taking the orthogonal comple-
ment we find an orthogonal basis β = {u, v, w} for V such that [σ]β = diag(−1,−1, 1)
is diagonal, and in particular σ2 = 1 and ker(σ − 1) = kw. Since the spinor norm of
σ is by definition θ(σ) = Q(u)Q(v) ∈ k×/k×2 and the discriminant of Q is discQ =
4Q(u)Q(v)Q(w), the result holds. □

To find a vector w with σ(w) = w as in Equation (8.4), better than computing a kernel,
we see that since σ is an involution, we can take w := v + σ(v) for any v ∈ V whenever
w ̸= 0. Since σ ̸= −1, we need only try v in a basis for V .

We conclude with a runtime analysis, which we state in more generality.

Theorem 8.5. There exists an explicit algorithm that, given as input a totally positive
definite ternary quadratic space V over a totally real number field F with n = [F : Q], an
R-lattice Λ ⊂ V , a nonzero prime ideal p ⊂ R, computes the Hecke operator Tp using

Õ(Nm(p)H3n(∥Λ∥d2))

bit operations, where ∥Λ∥ denotes the number of bits required to encode Λ, d = #ClΛ, and
H3n is a polynomial that determines the number of bit operations to compute a Hermite
normal form of a matrix in M3n(Z).
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Proof. The algorithm is specified in [GV14, §6]; we focus on the ternary case. We first
enumerate the points of the projective conic QΛ(x, y, z) ≡ 0 (mod p) corresponding to

isotropic lines, which can done in time Õ(Nm(p)) by looping over values of x ∈ Fp and
computing roots. In a fixed number of operations we can compute a hyperbolic comple-
ment, compute generators for the neighbor, and then we compute a Hermite normal form
over Z which by assumption has complexity O(H3n(∥Λ∥)). Finally, we account for the
isometry testing for the lattice projected to Z which occurs at a complexity ofO((3n)O(3n))
by work of Haviv–Regev [HR14]: we treat V as a Q-vector space with additional bilinear
forms. □

9. Implementation and examples

This algorithm has been implemented in Magma [BCP97] over a general totally real
field (in arbitrary rank), as reported by Assaf–Fretwell–Ingalls–Logan–Secord–Voight
[AFI+22].

We also implemented an optimized version restricted to F = Q and N squarefree,
written in C++ and available online [Hei24]. On a standard desktop we can compute all
rational newforms with squarefree conductor N < 15 000 and their Hecke eigenvalues for
all p < 1000 in just 25 minutes!

Example 9.1. For level N = 1062 347 = 11 · 13 · 17 · 19 · 23 = N− so N+ = 1 and hence
we directly get the space of newforms, using Equation (8.1) we find the ternary form

Q(x, y, z) = x2 + 187y2 + 1467z2 − 187xz

with #Cl(Λ) = 2016.
Given Q, we can compute the Hecke matrices [T2], [T3], [T5], [T7] for all radical (spinor)

characters, giving all newforms, in 4 seconds on a standard desktop machine. Then 1
minute of linear algebra computing kernels with sparse matrices in Magma following
methods in Cremona [Cre97, §2.7] gives that there are exactly 5 elliptic curves with
conductor N .

The same computation with modular symbols Magma crashed after consuming all 24
GB of available memory!

The excellent performance in Equation (9.1) suggests that this method would be an
effective method to get a “random” isogeny class of elliptic curves of moderately large
conductor.

Appendix A. A functorial inverse to the even Clifford map

In section 5, we saw that the even Clifford functor associates to a nondegenerate ternary
quadratic module a quaternion R-order, giving a bijection from twisted isometry classes
of lattices to isomorphism classes of orders and inducing a bijection on class sets. In
this appendix, we upgrade this to an equivalence of categories extending work of Voight
[Voi11, Theorem B].

Throughout the appendix, let R be a (commutative) domain with F := FracR. (The
argument generalize to an arbitrary base, but we keep this hypothesis in line with the
paper and to simplify a few arguments.) The even Clifford functor associates to a non-
degenerate ternary quadratic module a quaternion R-order. We show how to do the
converse, furnishing a functorial inverse to the Clifford functor. The construction is due
to Voight [Voi11, §2], following Bhargava [Bha04b] (who considered the case of commu-
tative rings of rank 4) and a footnote of Gross–Lucianovic [GL09, Footnote 2].
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Let O ⊂ B be an R-order in a quaternion algebra B over F which is projective as an
R-module.

Proposition A.1. O/R is projective of rank 3 as an R-module, and there exists a unique
quadratic map

ψ = ψO :
∧

2(O/R)→
∧

4O

with the property that

(A.2) ψ(x ∧ y) = 1 ∧ x ∧ y ∧ xy
for all x, y ∈ O.

Proof. See Voight [Voi11, Lemma 2.1]. □

The quadratic module ψO :
∧

2(O/R)→
∧

4O in Equation (A.1) is called the canonical
exterior form of O.

Proposition A.3. The association O 7→ ψO yields a functor from the category of

projective quaternion orders over R, under isomorphisms

to the category of

ternary quadratic modules, under similarity.

Proof. An isomorphism ϕ : O → O′ of quaternion R-orders induces a similarity∧
2(O/R)

ψ //

∧2ϕ≀
��

∧
4O

∧4ϕ≀
��∧

2(O′/R)
ψ′
//
∧

4O′

because for all x, y ∈ O we have

(A.4)

(∧4ϕ)(ψ(x ∧ y)) = 1 ∧ ϕ(x) ∧ ϕ(y) ∧ ϕ(xy)
= 1 ∧ ϕ(x) ∧ ϕ(y) ∧ ϕ(x)ϕ(y)
= ψ′(ϕ(x) ∧ ϕ(y)) = ψ′((∧2ϕ)(x ∧ y))

as desired. □

Example A.5. Suppose that O is free with a good basis 1, i, j, k [Voi21, 22.4.7] and mul-
tiplication laws

(A.6)

i2 = ui− bc jk = ai

j2 = vj − ac ki = bj

k2 = wk − ab ij = ck.

We now compute the canonical exterior form [Voi11, Example 2.5]

ψ = ψO :
∧

2(O/R)→
∧

4O.

We choose bases, with∧
2(O/R)

∼−→ R(j ∧ k)⊕R(k ∧ i)⊕R(i ∧ j) = Re1 ⊕Re2 ⊕Re3
and the generator −1 ∧ i ∧ j ∧ k for

∧
4O.

With these identifications, the canonical exterior form ψ : R3 → R has

ψ(e1) = ψ(j ∧ k) = 1 ∧ j ∧ k ∧ jk = 1 ∧ j ∧ k ∧ (−ai) = a(−1 ∧ i ∧ j ∧ k)
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and

ψ(e1 + e2)− ψ(e1)− ψ(e2) = ψ(k ∧ (i− j))− ψ(j ∧ k)− ψ(k ∧ i)
= −1 ∧ k ∧ j ∧ ki− 1 ∧ k ∧ i ∧ kj
= −w(1 ∧ k ∧ i ∧ j) = w(−1 ∧ i ∧ j ∧ k).

Continuing in this way, we see that

ψ(x(j ∧ k) + y(k ∧ i) + z(i ∧ j)) = Q(xe1 + ye2 + ze3) = Q(x, y, z)

with

(A.7) Q(x, y, z) = ax2 + by2 + cz2 + uyz + vxz + wxy,

so that

(A.8) Clf0(ψO) ≃ O.

Therefore ψ furnishes an inverse to the map in Equation (5.7) when R is a PID. In
particular, we have obtained the same quadratic form as constructed from the reduced
norm [Voi21, Proposition 22.4.12], so

(A.9) N nrd(O♯) ∼ ψO.

Example A.10. Suppose that R is a Dedekind domain with field of fractions F . Then
there is a good pseudobasis for O

(A.11) O = R⊕ ai⊕ bj ⊕ ck.

The canonical exterior form of O, by the same argument as in Equation (A.5) but
keeping track of scalars, is given by

ψO : bce1 ⊕ ace2 ⊕ abe3 → abc

under the identification

(A.12)

∧
4O

∼−→ abc

1 ∧ i ∧ j ∧ k 7→ −1;
we again have

ψO(xe1 + ye2 + ze3) = ax2 + by2 + cz2 + uyz + vxz + wxy

as in (A.7), but now with x, y, z are restricted to their respective coefficient ideals.

The even Clifford algebra and the canonical exterior form carry with them one global
property (Steinitz class) that must be taken into account before we obtain an equivalence
of categories. Briefly, in addition to similarities one must also take into account twisted
similarities, obtained not by a global map but by twisting by an invertible module.

Definition A.13. A quadratic module d : P → I with P, I projective of rank 1 is called
a twisting quadratic module if the associated bilinear map P ⊗ P → I is an R-module
isomorphism.

Example A.14. The quadratic module d : R→ R by z 7→ z2 is a (trivial) twisting.
If P is an invertible R-module, then the quadratic module

(A.15)
P → P⊗2

z 7→ z ⊗ z
is twisting.
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Definition A.16. Let Q : M → L be a quadratic module and let d : P → I be a twisting
quadratic module. The twist of Q by d is the quadratic module

Q⊗ d : M ⊗ P → L⊗ I
x⊗ z 7→ Q(x)⊗ d(z).

A twisted similarity between quadratic modules Q : M → L and Q′ : M ′ → L′ is tuple
(f, h, d) where d : P → I is a twisting quadratic module and (f, h) is a similarity between
Q⊗ d and Q′.

Example A.17. Let Q : M → L be a quadratic module and let a ⊆ R be an invertible
fractional ideal of R. Then d : a→ a2 is twisting, and the twist of Q by a can be identified
with

Q⊗ d : aM → a2L

zx 7→ z2Q(x).

If a = aR is principal, then Q is similar to Q ⊗ d via the similarity (f, h) obtained by
scaling by a. However, if a is not principal, then Q may not be similar to Q⊗ d.

Lemma A.18. Let Q : M → L be a quadratic module and let d : P → I be twisting.
Then there is a canonical isomorphism of R-algebras

Clf0(Q)
∼−→ Clf0(Q⊗ d).

Proof. First, we have a canonical isomorphism

(A.19) (M ⊗ P )⊗ (M ⊗ P )⊗ (L⊗ I)∨ ∼−→M ⊗M ⊗ L∨

coming from rearranging, the canonical map d : P ⊗ P → I followed by the evaluation
map I ⊗ I∨ ∼−→ R. Now recall the definition of the even Clifford algebra Clf0(Q) [Voi21,
22.2.1]:

Clf0(Q) = Ten0(M ;L)/I0(Q).

The canonical isomorphism (A.19) induces an isomorphism Ten0(M⊗P ;L⊗I) that maps

I0(Q⊗ d) ∼−→ I0(Q), and the result follows. □

Theorem A.20. Let R be a noetherian domain. Then the associations

(A.21)

{
Nondegenerate ternary

quadratic modules over R
up to twisted similarity

}
↔

{
Projective quaternion orders
over R up to isomorphism

}
Q 7→ Clf0(Q)

ψO ←[ O

are mutually inverse, discriminant-preserving bijections that are also functorial with re-
spect to R.

Before we begin the proof of the theorem, we need one preliminary lemma.

Lemma A.22. Let M be a projective R-module of rank 3. Then there are canonical
isomorphisms ∧

3
(∧

2M
) ∼−→

(∧
3M

)⊗2
(A.23) ∧

2
(∧

2M
) ∼−→M ⊗

∧
3M.(A.24)
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Proof. The proof is a bit of fun with multilinear algebra [Voi11, Lemma 3.7]. To illustrate,
we give the proof in the special case where M is completely decomposable M = ae1 ⊕
be2 ⊕ ce3—so in particular the result holds when R is a Dedekind domain (and, more
generally using the splitting principle). In this case, we have∧

2M ≃ ab(e1 ∧ e2)⊕ ac(e1 ∧ e3)⊕ bc(e2 ∧ e3)
and so ∧

3
(∧

2M
)
≃ (abc)2(e1 ∧ e2) ∧ (e1 ∧ e3) ∧ (e2 ∧ e3)

agreeing with (∧
3M

)⊗2 ≃ (abc)2(e1 ∧ e2 ∧ e3)⊗2

by rearranging the tensor in a canonical way. The second isomorphism follows similarly.
□

Proof of Equation (A.20). We have two functors, by Equation (5.7) and Equation (A.3),
that are functorial with respect to the base ring R.

We now compose them. Let Q : M → L be a quadratic module with O = Clf0(Q),
and consider its canonical exterior form ψ :

∧
2(O/R) →

∧
4O. As R-modules, we have

canonically

(A.25) O/R ≃
∧

2M ⊗ L∨.

By the isomorphism (A.24), we have as the domain of ψ the R-module

(A.26)

∧
2(O/R) ≃

∧
2(
∧

2M ⊗ L∨) ≃
∧

2(
∧

2M)⊗ (L∨)⊗2

≃M ⊗
∧

3M ⊗ (L∨)⊗2

and as codomain we have by the canonical R-module isomorphism∧
3(O/R)

∼−→
∧

4O

and the isomorphism (A.23)

(A.27)

∧
4O ≃

∧
3(O/R) ≃

∧
3(
∧

2M ⊗ L∨) ≃
∧

3(
∧

2M)⊗ (L∨)⊗3

≃ (
∧

3M)⊗2 ⊗ (L∨)⊗3.

Now we twist. Let
P :=

∧
3M ⊗ (L∨)⊗2

and let d : P∨ → (P∨)⊗2 be the natural twisting quadratic module. Then the twist ψ⊗ d
has domain and codomain canonically isomorphic to

(A.28)

∧
2(O/R)⊗ P∨ ≃M∧
4O ⊗ (P∨)⊗2 ≃ L

by (A.26)–(A.27) so we have a quadratic form ψClf0(Q) ⊗ d : M → L.

We show that the composition Q 7→ Clf0(Q) = O 7→ ψO is naturally isomorphic to the
identity, via the twist d. But to do this (and show the induced maps are similarities),
since the above construction is canonical, we can base change to F and check within the
quadratic space QF : V → F where V := M ⊗R F . Choosing a basis, we find that the
composition is the identity by Equation (A.5).

We may then conclude that the map of sets in (A.21) is a well-defined bijection: func-
toriality shows that the map is well-defined and that both maps are injective, and the
composition shows that it is surjective. □

We now shift to isometries and upgrade the bijection to an equivalence of categories;
this has Equation (2.15) as an immediate corollary.
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Remark A.29. Over a field, we used orientations [Voi21, §4.5] to get an equivalence of
categories: the crux of the problem being that the isometry −1 : V → V maps to the
identity map on Clf0 V under the Clifford functor. However, −1 acts nontrivially on the
odd Clifford module Clf1 V , and the point of an orientation is to keep track of this action
on piece of Clf1 V coming from the center. Restricting an orientation of V would also
work here; but we add a different and more functorial structure on quaternion orders to
allow for these extra morphisms.

Definition A.30. Let N be an invertible R-module. A parity factorization of N is a pair
of invertible R-modules P,L and an isomorphism p : N

∼−→ P⊗2 ⊗ L. If N has a parity
factorization, we call it paritized .

An isomorphism (N, p) to (N ′, p′) of paritized invertible R-modules is a pair of isomor-
phisms N ≃ N ′, P ≃ P ′ such that the diagram

(A.31)

N
p //

≀
��

P⊗2 ⊗ L
≀
��

N ′ p′ // P ′⊗2 ⊗ L
commutes.

We do want to fix the module L in order to work with isometries; this serves as an
anchor for our construction.

Definition A.32. Let O be a quaternion R-order. Then O is paritized if O is equipped
with a parity factorization of

∧
4O. An isomorphism of paritized quaternion orders is an

isomorphism ϕ : O ≃ O′ and an isomorphism of parity factorizations with the isomorphism∧
4O ≃

∧
4O′ given by ∧4ϕ.

Example A.33. Every invertible R-module N has the identity parity factorization, with
P = R and L = N ; up to isomorphism, every other differs by a choice of isomorphism
class of P . So parity factorizations can be thought of as factorizations according to parity
inside PicR.

Example A.34. The main example of a parity factorization comes from the even Clifford
construction. Let Q : M → L be a nondegenerate ternary quadratic module. Let O =
Clf0(Q), and let P =

∧
3M ⊗ (L∨)⊗2. Then by (A.27), we have a canonical parity

factorization

(A.35) pQ :
∧

4O ≃ (
∧

3M)⊗2 ⊗ (L∨)⊗3 ≃ P⊗2 ⊗ L.

Lemma A.36. Let (O, p) be a paritized quaternion R-order. Then

AutR(O, p) ≃ AutR(O)× {±1}.

Proof. By definition, an automorphism of (O, p) is a pair of automorphisms (ϕ, h) with
ϕ ∈ AutR(O) and h ∈ AutR(P ) such that the diagram∧

4O
p //

∧4ϕ ≀
��

P⊗2 ⊗ L
≀
��∧

4O
p // P⊗2 ⊗ L

commutes. The choice ϕ = idO and h = −1 gives us an automorphism we denote by −1.
Since L is fixed, it plays no role in this part.
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We claim that if ϕ ∈ AutR(O) is an R-algebra isomorphism, then there is a unique
h ∈ AutR(P ) up to −1 such that (ϕ, h) ∈ AutR(O, p). We will prove this over each
localization R(p), including R(0) = F : once we choose such an h over F , it follows that
±h ∈ AutR(p)

(P(p)) and hence by intersecting h ∈ AutR(P ). So we may suppose O

is free with good basis and P ≃ R, and
∧

4ϕ acts by detϕ; we want to show that
detϕ = h2 is a square. This follows from [Voi21, 22.3.15]: we have ϕ = adj(ρ) where
ρ ∈ GL3(R) is the action on the ternary quadratic module M ≃ R3 associated to O, and
detϕ = det adj(ρ) = (det ρ)2. □

Example A.37. We recall the twist construction employed in (A.27) that we now de-
fine in the above terms. Let (O, p) be a paritized quaternion R-order, with the parity
factorization

p :
∧

4O
∼−→ P⊗2 ⊗ L.

Let ψO,p :
∧

2(O/R)→
∧

4O be the canonical exterior form. We then define the quadratic
module

(A.38) ψO,p := p ◦ ψO ⊗ P∨ :
∧

2(O/R)⊗ P∨ → L

where p induces an isomorphism
∧

4O ⊗ (P∨)⊗2 ≃ L.

We now have the following theorem.

Theorem A.39. The associations

Q 7→ (Clf0(Q), pQ)

ψO,p ←[ (O, p)

are functorial and provide a discriminant-preserving equivalence of categories between

nondegenerate ternary quadratic modules over R
under isometries

and

paritized projective quaternion R-orders under isomorphisms

that is functorial in R.

Proof. First, we show the associations are functorial. If Q : M → L and Q′ : M ′ → L
are isometric (nondegenerate ternary) quadratic modules under f : M → M ′, then by
functoriality of the even Clifford algebra, this induces an isomorphism f : O ≃ O′ and
thereby an isomorphism

P =
∧

3M ⊗ (L∨)⊗2 ≃ P ′ =
∧

3M ′ ⊗ (L∨)⊗2

and then of parity factorizations

(A.40)

∧
4O

pQ //

≀
��

P⊗2 ⊗ L
≀
��∧

4O′
pQ′

// P ′⊗2 ⊗ L

.

Conversely, if (O, p) and (O′, p′) are isomorphic paritized quaternion R-orders under
ϕ : O → O′ and P ≃ P ′, then we get an isometry

(A.41)

∧
2O/R⊗ P∨ ψO,p //

≀
��

L

∧
2O′/R⊗ (P ′)∨

ψO′,p′ // L
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by Equation (A.3) (see (A.4)): the similitude factor is the identity by construction.
We now tackle the two compositions and show they are each naturally isomorphic to

the identity. Let (O, p) be a paritized quaternion R-order. We first associate (ψO,p, id),
and let M =

∧
2O/R ⊗ P∨ be the domain of ψO,p. We then associate its even Clifford

algebra. As R-modules, we have canonical isomorphisms

(A.42)

Clf0(ψO,p) = R⊕
∧

2M ⊗ L∨ = R⊕
∧

2(O/R⊗ P∨)⊗ L∨

≃ R⊕
∧

2(O/R)⊗ (P⊗2 ⊗ L)∨

≃ R⊕O/R⊗
∧

3(O/R)⊗ (P⊗2 ⊗ L)∨

≃ R⊕O/R

where we have used (A.24) and in the last step we used the parity factorization p giving
a natural isomorphism of the last piece to R. To check that the corresponding map is an
R-algebra homomorphism, by functoriality we can do so over F , and we suppose that B
is given by a good basis, and then the verification is as in (A.5). To finish, we show that
the parity factorization is also canonically identified: we have∧

3M ⊗ (L∨)⊗2 =
∧

3(
∧

2(O/R)⊗ P∨)⊗ (L∨)⊗2

≃
∧

3(
∧

3O/R)⊗2 ⊗ (P∨)⊗3 ⊗ (L∨)⊗2 ≃ P

where now we use (A.23) and then again (twice) the parity factorization. Therefore we
have a natural isomorphism of parity factorizations

(A.43)

∧
4Clf0(ψO,p)

pψO,p//

≀
��

(
∧

3M ⊗ L∨)⊗2 ⊗ L

≀
��∧

4O
p // P⊗2 ⊗ L

This completes the verification that the composition in this order is naturally isomorphic
to the identity.

Now for the second composition. Let Q : M → L be a (nondegenerate ternary) qua-
dratic module over R. We associate O = Clf0Q and pQ its parity factorization, and then
ψO,pQ . In (A.28), using (A.26)–(A.27), we showed that we had an natural isometry

(A.44)

∧
2O/R⊗ P∨

ψO,pQ //

f ≀
��

L

M
Q // L

and this completes the proof. □
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