ERRATA:

ON THE ARITHMETIC DIMENSION OF TRIANGLE GROUPS

STEVE NUGENT AND JOHN VOIGHT

This note gives errata for the article On the arithmetic dimension of triangle groups [1]. The authors thank Giovanni Panti and Cherng-tiao Perng.

(1) (1.2): there is a \mathbb{Q} missing, so it should read

$$E = \mathbb{Q}(\operatorname{Tr} \Delta^{(2)}) = \mathbb{Q}(\{\operatorname{Tr}(\delta^2) : \delta \in \Delta\}) = \mathbb{Q}(\lambda_a, \lambda_b, \lambda_c, \lambda_{2a}\lambda_{2b}\lambda_{2c})$$

- (2) (1.3): in two lines before, this is the preimage of $\Delta^{(2)}$, and the isomorphism requires $b \neq \infty$. (When $b = \infty$, necessarily $A \simeq M_2(E)$ because δ_b is parabolic, so A has a zerodivisor.)
- (3) Lemma 1.9: the cardinality signs are missing, so it should read

$$\operatorname{adim}(a, b, c) = \#\{k \in (\mathbb{Z}/2m\mathbb{Z})^{\times}/H : \sigma_k(\beta) > 0\}$$
$$= \#\{k \in (\mathbb{Z}/2m\mathbb{Z})^{\times}/H : \kappa(a, b, c; k) < 0\}.$$

- (4) Proof of Theorem 2.1, "after permuting a, b, c and choosing ϵ , we see that if t = 1": This also covers the (apparently unexplained) case t = 0.
- (5) Theorem 2.1: in case (b), if one of a, b, c is equal to 2, then the argument for H_1 is not correct: the congruence $k \equiv \pm 1 \pmod{2}$ does not give distinct signs. This issue arises also in the characterization of $H = H_1$: since $\cos(\pi/2) = 0$ the condition

$$\cos\frac{k\pi}{a}\cos\frac{k\pi}{b}\cos\frac{k\pi}{c} = \cos\frac{\pi}{a}\cos\frac{\pi}{b}\cos\frac{\pi}{c}$$

is vacuous. The corrected statement: if $2 \in \{a, b, c\}$, then $\#H_1 = \max(2, 2^u) \ge 4$ and $H = H_1$; otherwise, if $a, b, c \ge 3$, the original conclusion holds.

- (6) Theorem 2.12: the statement in (c), and its proof, concern $H = H_1$ (not $H = H_2$).
- (7) Lemma 3.4: there is a typo in the inequality, and the statement should read: $\kappa(a,b,c;k) \geq 0$ if and only if (3.5) holds. In the proof, we let $f(z) = \kappa(a,b,c;k)$ and considered when $f(z) \geq 0$. The remaining statements using Lemma 3.4 (Corollary 3.6, Proposition 4.6, Theorem 5.2) use the corrected Lemma 3.4; before (3.8) the inequality should be switched to > 0; the rest of the paper remains unchanged.
- (8) Proof of Lemma 3.4, "The discriminant simplifies as": This should read

$$\sqrt{t^2 - 4n} = \sqrt{4\cos^2\frac{k_a\pi}{a}\cos^2\frac{k_b\pi}{b} - 4\cos^2\frac{k_a\pi}{a} - 4\cos^2\frac{k_b\pi}{b} + 4\cos^2\frac{k_b\pi}{a}}$$

(so the final -4 should be +4), as shown on the next line.

(9) Proof of Proposition 4.6, "In particular $1 \le 3q/a$ ": Should be "In particular, 1 < 3q/a."

Date: January 28, 2020.

- (10) Beginning of section 5: should be "section", not "chapter".
- (11) Line 2 of Algorithm 1: Typo, should be max(48, 2r) (according to Lemma 4.10).
- (12) Line 5 of Algorithm 3: "for" should be **for**, and it is missing **do**. This step just initializes **divisors** to be an array of 1s.
- (13) Line 5 of Algorithm 4: should be (a,b,c,r).
- (14) Theorem 5.2: To be more precise, this theorem proves the correctness of FIND_R_ARITHMETIC.
- (15) Proof of Theorem 5.2: The middle paragraph is a bit muddled. Here is a revised version that hopefully makes the logic clear.

We have from Lemma 3.4 that for every (a, b, c) and every $k \in \mathbb{Z}_{>0}$ with $k \in (\mathbb{Z}/2m\mathbb{Z})^{\times}$, if $\kappa(a, b, c; k) > 0$ then

$$c < \frac{k_c}{|k_a/a + k_b/b - 1|} \le \frac{k}{|k_a/a + k_b/b - 1|} = \frac{kab}{|k_ab + k_ba - ab|}.$$

Suppose (a,b,c) is r-arithmetic, and consider the set of primes q < c/2 with $q \nmid m$. As in the proof of Lemma 4.3, these primes are distinct in $(\mathbb{Z}/2m\mathbb{Z})^{\times}/H$, so there at most r-1 of them for which $\kappa(a,b,c;q) < 0$; so among any r of them, there is at least one with $\kappa(a,b,c;q) > 0$. Putting these observations together, we find that in any set of r primes with $q \nmid ab$, there is a prime q in the set where at least one of the following holds:

either
$$q \mid c$$
 or $c < 2q$ or $c < \left\lceil \frac{qab}{|q_ab + q_ba - ab|} \right\rceil$.

To finish, suppose (a,b,c) is r-arithmetic, c>2*maxNDP, and c>bound, where bound is in the keyset of boundToPrimes. Let

$$B = \{q : q \in boundToPrimes[bound'] \text{ and bound'} \leq bound\}.$$

Then there exist at most r-1 primes $q \in B$ that do not divide c. The algorithm partitions B into r sets, and lets each divisor in divisors be the product of primes in one such set. Hence, c must be a multiple of at least one divisor in divisors. Therefore, the algorithm checks all possible r-arithmetic triples (a, b, c).

References

[1] Steve Nugent and John Voight, On the arithmetic dimension of triangle groups, Math. Comp. 86 (2017), no. 306, 1979–2004.