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Preface

These notes are in a preliminary version, intended as a preview for the 2026
Arizona Winter School for students in projects, including a more complete
description of possible projects. Hopefully it will also be useful to others who
want to get a first impression of the lecture contents and prepare a bit in terms
of background.

In the meantime, I am really sorry for the many mistakes in these notes!
If you see something that looks wrong, it probably is wrong or a typo or
something else not helpful, and I’m sorry about that. Please write to me at
jvoight@gmail.com and I will fix it in the next version, hopefully before the
lectures start!

Goal

The goal is to give a broad survey of what it means to compute modular forms,
with the intended audience graduate students, so including enough background
material that it can be a launching point for further work, either theoretical or
algorithmic.
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Chapter 1

Introduction

We begin with a brief history of computing modular forms.
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Part I

Classical modular forms
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Chapter 2

Classical modular curves

In this chapter, we quickly review classical modular curves with a focus on
computational and algorithmic aspects.

2.1 Beginnings

There are very many references for classical modular groups, including Apostol
[Apo90, Chapter 2], Diamond–Shurman [DS05, Chapter 2], and Serre [Ser73,
Chapter VII]. For continuity, we largely follow Voight [Voi21, Chapters 33–35].

2.1.1. The upper half-plane is the set

H2 := {z = x + iy ∈ C : Im(z) = y > 0} (2.1.2)

equipped with the hyperbolic metric ds := |dz|/ Im z. The group of orientation-
preserving isometries of H2 is PSL2(R) := SL2(R)/{±1}, acting via linear
fractional transformation.

The subgroup SL2(Z) ≤ SL2(R) is discrete and therefore the quotient
PSL2(Z) := SL2(Z)/{±1} is a Fuchsian group [Voi21, §§34.2, 34.7], acting
properly on H2. The matrices

S :=
(

0 −1
1 0

)
, T :=

(
1 1
0 1

)
∈ SL2(Z) (2.1.3)

generate SL2(Z) with S2 = (ST )3 = −1 a minimal set of relations.
A fundamental set for the action of PSL2(Z) on H2 is

◊ := {z ∈ H2 : |Re z| ≤ 1/2 and |z| ≥ 1}. (2.1.4)

2.1.5. Indeed, there is an explicit reduction algorithm: given as input z ∈ H2

(provided by a complex approximation or using ball arithmetic), it produces
as output a word γ ∈ ⟨S, T ⟩ such that γz ∈ ◊, as follows.

1. We translate z applying a power of T so that |Re z| ≤ 1/2.

5



6 CHAPTER 2. CLASSICAL MODULAR CURVES

2. If |z| ≥ 1, we are done; otherwise, if |z| < 1, then we apply S and

Im
(
−1
z

)
= Im z

|z|2
> Im z. (2.1.6)

We then repeat this process, returning to step 1.

In this way, we obtain (from the second step) a sequence of elements z =
z1, z2, . . . with Im z1 < Im z2 < . . . . This process terminates after finitely many
steps since the orbit of z under SL2(Z) is discrete and therefore its intersection
with the compact set

{z′ ∈ H2 : |Re(z′)| ≤ 1/2 and Im z ≤ Im z′ ≤ 1}

is finite.

The group {±1} ≤ SL2(R) of scalar matrices acts trivially on the upper half-
plane, so we also work with PSL2(R) := SL2(R)/{±1} and similarly PSL2(Z).
Let Y = PSL2(Z)\H2. Gluing together the fundamental set, we obtain a
homeomorphism

Y = PSL2(Z)\H2 ≃ P1(C) ∖ {∞} ≃ C. (2.1.7)

2.1.8. We compactify Y , closing up the cusp ∞, as follows. The orbit of the
limit point ∞ under SL2(Z) is P1(Q) ⊆ bd H2. Let H2∗ := H2 ∪ P1(Q); then
the action by linear fractional transformations extends to P1(Q). We define
a topology on H2∗, called the Satake topology: a basis of open sets of ∞
consists of the sets {z ∈ H2 : Im(z) > σ} for σ > 0 and a basis of open sets
at a cusp c ∈ P1(Q) consists of open disks tangent to the real axis at c. This
induces a topology on the quotient, giving a homeomorphism

X := PSL2(Z)\H2∗ ≃ P1(C). (2.1.9)

Away from the orbits of i and ω with nontrivial stabilizer, the complex structure
on H2 descends giving the structure of a Riemann surface. We prefer to keep
track of stabilizers, in which case X has the structure of a good, compact
complex 1-orbifold, in this case a stacky projective line.

2.1.10. The quotient Y has an interpretation as a moduli space of (oriented)
complex lattices: the map

Y = PSL2(Z)\H2 → {Λ ⊂ C lattice}/∼
PSL2(Z)τ 7→ [Z + Zτ ];

(2.1.11)

is a bijection, which is to say Y parametrizes oriented complex lattices up to
homothety. To a lattice Λ, we associate the complex elliptic curve C/Λ, thus
the space Y also parametrizes isomorphism classes of complex elliptic curves.
The compact X can be seen as parametrizing generalized elliptic curves: the
elliptic curve C/(Z + Zτ) via the map q : z 7→ exp(2πiz) has image C×/⟨q(τ)⟩
(Tate curve) so as τ →∞ we get C×.
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2.2 Congruence subgroups

The setup in the previous section extends to finite-index subgroups of PSL2(Z)
play a central role, and of particular importance are those subgroups defined
by congruence conditions on the entries.

Definition 2.2.1. Let N ∈ Z≥1. The principal congruence subgroup
Γ(N) ⊴ SL2(Z) of level N is

Γ(N) := ker(SL2(Z)→ SL2(Z/NZ))

=
{

γ ∈ SL2(Z) : γ =
(

a b
c d

)
≡

(
1 0
0 1

)
(mod N)

}
.

2.2.2. By strong approximation for SL2(Z) [Voi21, Theorem 28.2.6] (boiling
down to the fact that elementary matrices generate, just like in linear algebra
over a field), the reduction map πN : SL2(Z)→ SL2(Z/NZ) is surjective for all
N ≥ 1, so there is an exact sequence

1→ Γ(N)→ SL2(Z)→ SL2(Z/NZ)→ 1. (2.2.3)

Definition 2.2.4. A subgroup Γ ≤ SL2(Z) is a congruence subgroup if
Γ ≥ Γ(N) for some N ≥ 1; if so, the minimal such N is called the level of Γ.

2.2.5. We describe congruence subgroups algorithmically as follows. Let K1
N ≤

SL2(Z/NZ) be a subgroup. Then the inverse image π−1
N (K1

N ) is a congruence
subgroup of level dividing N . And conversely, if Γ has level N then Γ =
π−1

N (K1
N ) where K1

N = πN (Γ)).
By lookup/hash in O(log[SL2(Z/NZ) : K1

N ]) time we can determine if γ ∈
SL2(Z) belongs to π−1

N (K1
N ). We could also construct coset table, and there

are better methods for specific groups.

Remark 2.2.6. Sorry for the notation, but later when we work adelicially, it
will be important to take KN ≤ GL2(Z/NZ), and then K1

N = H∩SL2(Z/NZ).
Other authors use either G or H, but we need these for a reductive group and
homology and cohomology, and K will be our level structure!)

2.2.7. Let Γ ≤ SL2(Z) be a congruence subgroup, and let PΓ := Γ/(Γ∩{±1}).
We define

Y = Y (Γ) := PΓ\H2. (2.2.8)
The set of orbits of PΓ on P1(Q) ⊆ bd H2 is again finite, called the cusps of
Γ. We therefore again compactify

X = X(Γ) := PΓ\H2∗. (2.2.9)

Again X has the structure of a good, compact complex 1-orbifold, with finitely
many points with nontrivial stabilizer. (If we did not mod out by {±1}, po-
tentially every point would have additional stabilizer, and in certain contexts
we may want to consider that as well! But we will need to get even stackier,
and so the notation will get scriptier.)
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2.2.10. In addition to the congruence groups Γ(N) themselves, we will make
use of two other important congruence subgroups for N ≥ 1, which we call the
standard congruence subgroups:

Γ0(N) :=
{

γ =
(

a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
=

{
γ ∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)

}
Γ1(N) :=

{
γ ∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N)

} (2.2.11)

Visibly, Γ(N) ≤ Γ1(N) ≤ Γ0(N). We accordingly write

Y0(N) := Γ0(N)\H2

X0(N) := Γ0(N)\H2∗ (2.2.12)

where H2∗ := H2 ∪ P1(Q), and similarly Y1(N) ⊆ X1(N) and Y (N) ⊆ X(N).

We will find it useful both to work with a general congruence subgroup
since the theory and algorithms extend this far and because they are still inter-
esting for applications, and to restrict to the standard congruence subgroups
for concreteness especially in examples.

2.3 Modular forms

There are also a wealth of references for the classical modular forms, including
Apostol [Apo90, Chapters 1–2], Diamond–Shurman [DS05], Miyake [Miy06,
Chapter 4], Lang [Lang95, §1], and Serre [Ser73, Chapter VII]. For laziness we
largely follow Voight [Voi21, Chapter 40].

Definition 2.3.1. Let k ∈ Z and let Γ ≤ SL2(Z) be a Fuchsian group. A map
f : H2 → C ∪ P1(C) is weight k invariant for Γ if

f(γz) = (cz + d)kf(z) for all γ =
(

a b
c d

)
∈ Γ and all z ∈ H2. (2.3.2)

2.3.3. If f is weight k invariant and f ′ is weight k′ invariant, then ff ′ is weight
k + k′ invariant, and if k′ = k then f + f ′ is weight k invariant. Therefore, the
set of weight k-invariant functions has the structure of a C-vector space and
the set of all functions of some weight k forms a ring.

2.3.4. For g =
(

a b
c d

)
∈ GL2(R) with det g > 0 and z ∈ H2 we define the

automorphy factor
ȷ(g, z) = cz + d;

and for k ∈ Z and a map f : H2 → C

f [g]k(z) := (det g)k−1ȷ(g, z)−kf(gz). (2.3.5)
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Sorry for all of that, at least when g ∈ SL2(Z) the determinant disappears, and
f is weight k-invariant for Γ if and only if f [γ]k(z) = f(z) for all γ ∈ Γ.

2.3.6. The automorphic factor ȷ satisfies the cocycle relation

ȷ(gg′; z) = ȷ(g; g′z)ȷ(g′; z) (2.3.7)

for all g, g′ ∈ GL2(R)>0. Hence f(γ(γ′z)) = ȷ(γγ′; z)kf(z) for γ, γ′ ∈ Γ, and
so weight k invariance under Γ can be checked on a set of generators for Γ.

Since PSL2(Z) is generated by S, T , it follows that a map f is weight k
invariant for PSL2(Z) if and only if

f(z + 1) = f(z)
f(−1/z) = zkf(z)

(2.3.8)

hold for all z ∈ H2.

2.3.9. Let f : H2 → C be a meromorphic map that is weight k invariant under
a Fuchsian group Γ ∋ T =

(
1 1
0 1

)
. Then f(z + 1) = f(z), so f admits a

Fourier expansion in q = exp(2πiz)

f(z) =
∞∑

n=−∞
anqn. (2.3.10)

If an ∈ C and an = 0 for all but finitely many n < 0, then we say that f is
meromorphic at ∞; if further an = 0 for n < 0, we say f is holomorphic
at ∞.

2.3.11. For what comes later, we record the following equivalent condition:
a weight k invariant meromorphic function f : H2 → C is holomorphic at ∞
if the SL2(Z)-invariant function z 7→ (Im z)k/2|f(z)| has at most polynomial
growth in y as y →∞; we then say that f is of moderate growth.

2.3.12. More generally, let Γ ≤ PSL2(Z) be a subgroup of finite index. For
γ ∈ PSL2(Z), we define

f [γ]k(z) := ȷ(γ; z)−kf(γz). (2.3.13)

Then f [γ]k(z) is weight k invariant under the group γ−1Γγ. We say that f is
meromorphic at the cusps if for every γ ∈ PSL2(Z), the function f [γ]k is
meromorphic at ∞, in the above sense. Since the set of cusps is finite, in fact
it suffices to consider finitely many such representatives.

Finally, we say that f is holomorphic at the cusps if f [γ]k(z) is holomor-
phic at ∞ for all γ ∈ PSL2(Z), and vanishes at the cusps if f [γ]k(∞) = 0
for all γ.
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Definition 2.3.14. A (holomorphic) modular form of weight k is a holo-
morphic map f : H2 → C that is weight k invariant under Γ and holomorphic
at the cusps. A cusp form of weight k is a holomorphic modular form of
weight k that vanihses at the cusps.

If −1 ∈ Γ, then the only holomorphic modular form of odd weight k is 0.
Let Mk(Γ) be the C-vector space of modular forms of weight k for Γ, and

let Sk(Γ) ⊆Mk(Γ) be the subspace of cusp forms.

2.4 Modular forms as sections of a line bundle

In this section, we reinterpret Mk(Γ) and Sk(Γ) as the C-vector space of sections
of a line bundle on X(Γ), and conclude that these spaces are finite-dimensional.
This is an important guide to the generalization of modular forms we pursue
in these notes.

2.4.1. Since
d(γz)

dz
= 1

(cz + d)2 (2.4.2)

the weight k invariance (2.3.2) of a map f for k ∈ 2Z≥0 can be rewritten

f(γz) d(γz)⊗k/2 = f(z) dz⊗k/2 (2.4.3)

so equivalently, the differential f(z) dz⊗k/2 is (straight up) invariant under Γ,
and that kind of justifies the name.

Although such forms are globally defined, we can make the same definition
locally, packing them together into the line bundle Ωk/2

Y of holomorphic k/2-
forms over Y = Y (Γ) when k is even. In other words, the weight k invariance
for modular forms pops out from the condition of being a differential k/2-form.
When we compactify to X = X(Γ), the condition of being holomorphic at ∞
concerns the q-expansion: since dq = 2πiq dz, we check that modular forms
correspond to k/2-differential forms with a pole of order at most 1 at the cusps,
and cusp forms are exactly those which are holomorphic at ∞, giving global
sections of Ωk/2

X . This perspective also explains why we naturally “start” at
weight k ≥ 2 and continue most easily with even weights. To summarize, for
k ≥ 2 even, we have

Mk(Γ) ∼= H0(X(Γ), Ωk/2(∆))
Sk(Γ) ∼= H0(X(Γ), Ωk/2)

(2.4.4)

where ∆ is the divisor given by the sum of the cusps.
We can go a bit further to handle odd weights (when −1 ̸∈ Γ otherwise there

are none): we need somehow to extract a “square root” of the bundle Ω1
X(Γ)

of holomorphic 1-forms. There is such a bundle ωX over X, called the Hodge
bundle, defined as follows. We let π : E → X be the universal elliptic curve over
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X: this exists as a complex orbifold and as a complex manifold if Γ is torsion-
free. Then the Hodge bundle is the pushforward ω := π∗Ω1

E/X : the fiber at
a point [E] is H0(X, Ω1

E) the one-dimensional space of invariant differentials
on the modular curve. The Kodaira–Spencer map gives an isomorphism

Ω1
X(Γ)(∆) ≃ ω⊗2. (2.4.5)

This reinterpretation has several immediate consequences. First, it implies
that the spaces Mk(Γ) and Sk(Γ) are finite-dimensional C-vector spaces: in-
deed, the Riemann–Roch theorem then provides their dimensions. Again, this
makes sense on X(Γ) as an orbifold (see Voight–Zureick-Brown [VZB15, Chap-
ters 5–6]) or is literally true if Γ is torsion free. In this case, we can eek out
something further for odd weights, but in general this will guide our conceptual
template for generalizations of modular forms: we will have sections of natural
vector bundles on arithmetic quotients, with analytic conditions reinterpreted
as extension or vanishing properties along boundary components.

2.5 Eisenstein series

Key examples of modular forms coming from averaging at the cusp ∞, as
follows. We first consider the case Γ = SL2(Z).

Let Γ∞ ≤ Γ = SL2(Z) be the stabilizer of ∞; then Γ∞ is the extension

of the infinite cyclic group generated by T =
(

1 1
0 1

)
by {±1}. We consider

the cosets Γ∞\Γ: for t ∈ Z and γ =
(

a b
c d

)
we have T tγ =

(
a + tc b + td

c d

)
with the same bottom row. Thus the function (cz + d)2 is well-defined on the
coset Γ∞γ. Thus we can form the sum

Ek(z) =
∑

Γ∞γ∈Γ∞\Γ

(cz + d)−k = 1
2

∑
c,d∈Z

gcd(c,d)=1

1
(cz + d)k

(2.5.1)

the factor 2 coming from the choice of sign. Since every nonzero (m, n) ∈ Z2

can be written (m, n) = r(c, d) with r = gcd(m, n) > 0 and gcd(c, d) = 1, we
find that

Gk(z) = 2ζ(k)Ek(z)

where ζ(k) =
∑∞

n=1 n−k and

Gk(z) :=
∑

m,n∈Z
(m,n)̸=(0,0)

1
(m + nz)k

. (2.5.2)

The series Ek(z) and Gk(z) converges absolutely, and we call them Eisenstein
series of weight k.
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Lemma 2.5.3. The Eisenstein series Ek(z) is a holomorphic modular form of
weight k ∈ 2Z≥2 for SL2(Z) with Fourier expansion

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn (2.5.4)

where Bk ∈ Q are the Taylor coefficients of

x

ex − 1 =
∞∑

k=0
Bk

xk

k! = 1− 1
2x + 1

6
x2

2! −
1
30

x4

4! + 1
42

x6

6! + . . .

and
σk−1(n) =

∑
d|n
d>0

dk−1.

The coefficients Bk are called Bernoulli numbers.
It is often preferable to normalize Eisenstein series to be primitive with

integer coefficients (when working with series rings over Z), or to take the
coefficient of q1 to be equal to 1 (when looking at congruences). Sorry about
that!

2.6 Hecke operators

If modular forms are functions on lattices, then Hecke operators are obtained
by summing functions over “neighboring” lattices, namely those of a fixed
index. This provides a good intuition for Hecke operators; we then show how
to formulate it in terms of double cosets, then providing a general definition.

Let n ≥ 1. Let M2(Z)n be the set of integer matrices with determinant n.
Then by the theory of elementary divisors,

GL2(Z) M2(Z)n GL2(Z) =
⊔
a|d

ad=n

GL2(Z)
(

a 0
0 d

)
GL2(Z) (2.6.1)

This arises as part of the fundamental theorem of finitely generated modules
over a PID, here just the case over Z. We interpret the actions of GL2(Z) on
left and right as acting by row and column operations. Indeed, given a matrix
in M2(Z)n for a computable PID (e.g., a computable Euclidean domain) there
is an explicit algorithm to reduce to the above representative, called Smith
normal form.

In fact, this algorithm only uses elementary matrices (which have determi-
nant 1) to get to a diagonal matrix; so just also allowing the scalar matrix −1,
in the same breath we get

SL2(Z) M2(Z)n SL2(Z) =
⊔
a|d

ad=n

SL2(Z)
(

a 0
0 d

)
SL2(Z). (2.6.2)
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A matrix α =
(

a b
c d

)
∈ M2(Z) is primitive if gcd(a, b, c, d) = 1. Let

M2(Z)n,prim ⊆ M2(Z)n be the subset of primitive matrices, so that

M2(Z)n =
⊔
d|n

d M2(Z)n/d2,prim.

Next, if instead we only act on the left by SL2(Z), then we only get row
operations, and we can only reduce a matrix to Hermite normal form, i.e.,

SL2(Z) M2(Z)n,prim SL2(Z) =
⊔

α∈Θn

α SL2(Z) (2.6.3)

where

Θn :=
{(

a b
0 d

)
∈ M2(Z) : ad = n, gcd(a, d) = 1, 0 ≤ b < d

}
. (2.6.4)

Then Θn is in bijection with the set {Λ ⊆ Z2 : Z2/Λ ≃ Z/NZ}. This matches
cyclic N -isogenies for elliptic curves.

Example 2.6.5. For n = p prime, Θp consists of the p + 1 matrices(
p 0
0 1

)
,

(
1 0
0 p

)
,

(
1 1
0 p

)
, . . . ,

(
1 p− 1
0 p

)
.

For θ ∈ Θn, the row span of θ defines a lattice of index n in Z2 and
conversely every such lattice occurs uniquely this way.

With this motivation in mind, we now make general definitions: for more,
see Diamond–Shumran [DS05, Chapter 5]. Let Γ ≤ SL2(Z) be a congruence
subgroup, and write GL2(Q)>0 for the subgroup of matrices of positive deter-
minant.

Lemma 2.6.6. For each β ∈ GL2(Q)>0, the double coset ΓβΓ is a disjoint
union of cosets

ΓβΓ =
⊔

α∈Θ(β)

Γα (2.6.7)

with #Θ(β) <∞.

Proof. This is most conveniently seen by thinking adelically, but can also be
proved in a direct and somewhat less conceptual manner!

Example 2.6.8. When Γ is a standard congruence subgroup, for β =
(

1 0
0 n

)
we have again that Θ(β) = Θn.
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Definition 2.6.9. For α ∈ GL2(Q)>0, the Hecke operator Tβ acting on the
space of weight k modular forms Mk(Γ) is the operator defined by

Mk(Γ)→Mk(Γ)

Tβ(f) =
∑

α∈Θ(β)

f [α]k (2.6.10)

Example 2.6.11. For Γ a standard congruence subgroup and f ∈ Mk(Γ), we
have

(Tnf)(z) =
∑

α=
(

a b
0 d

)
∈Θn

d−2f

(
az + b

d

)
.

The Hecke operators are well-defined independent of the choice of represen-
tatives in Θ(β) precisely because they are weight k invariant. They pairwise
commute and satisfy a natural recursion. They preserve the space of cusp forms
and commute with the Petersson inner product (so preserve the Eisenstein sub-
space); they generate a commutative, semisimple subalgebra of EndC Mk(Γ)
and so by the spectral theorem this space decomposes into eigenspaces; an
element in an eigenspace is called a eigenform. We say an eigenform f is
normalized if a1(f) = 1.

Lemma 2.6.12. If Γ is a standard congruence subgroup and f(q) =
∑∞

n=0 anqn

is a normalized eigenform, then f |Tn = anf .

Proof. We have

(Tmf)(z) =
∞∑

n=1

∑
d|gcd(m,n)

damn/d2qn

so for example

(Tpf)(z) =
∞∑

n=1
(anp − pan/p)qn

for p prime where an/p = 0 if p ∤ n; so if (Tmf) = cmf then from a1 = 1 we
conclude cm = am. This is still OK for normalized Eisenstein series!

Remark 2.6.13. We lose the property that the q-expansion can be read off
immediately from its eigenvalues for a general congruence subgroup, but it is
still possible to recover its coefficients by considering twists.

Remark 2.6.14. We revisit the definition of Hecke operators for a general con-
gruence subgroup by thinking adelically in section 9.4.
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2.7 Newforms and oldforms

2.8 Graded ring and equations

A complete description of the ring of (holomorphic) modular forms for SL2(Z).
By 2.3.3, the C-vector space

M∗(Γ) =
⊕
k∈Z

Mk(Γ)

under multiplication has the structure of a graded C-algebra; we call M(Γ) the
graded ring of modular forms for Γ.

2.9 The computational problem

Let Γ ≤ SL2(Z) be a congruence subgroup and let k ∈ Z≥0. By computing
modular forms for Γ, we mean the following suite of tasks:

1. compute the dimensions dim Mk(Γ), dim Ek(Γ), and dim Sk(Γ), the de-
composition into Hecke irreducible subspaces;

2**. compute the Hecke action on Mk(Γ);
3. extract Hecke eigensystems using linear algebra;
4. perform a decomposition into oldforms and newforms; and
5. write out q-expansions.

In what follows, we will focus on the case k ≥ 2; but we can ask and pursue
the algorithmic question in general.

Step 2 has a double star because it is the big one, and to a large extent
the rest of the text zooms into making this step precise (itself requiring many
further steps). In this step, sometimes we are not interested in Eisenstein
series, in which case we restrict the second step to the cuspidal subspace. In
any event, the Hecke action means for each p to give a matrix [Tp] representing
the action of Tp (in a fixed basis of a vector space). We may content ourselves
with only partial data, for example just the traces Tr[Tp].

Step 3 is one that we will see in generalizations is almost universal: given
commuting normal operators on a finite-dimensional complex vector space,
compute a common basis of eigenvectors. In truth, the linear algebra aspects
are often the bottleneck in our computations, so a lot of engineering goes into
refining the precise linear algebra questions and then adapting and optimizing
the algorithms to work efficiently in practice.

Before we write out q-expansions in step 5, we are only dealing with Hecke
data (sequences of numbers)—an idea we will carry as far as we can in our
generalizations. For standard congruence subgroups, step 5 is immediate by
Lemma 2.6.12, but for a general congruence subgroup more is required.

The computations do not stop here! Given a modular form, we may also
want to compute other interesting data about it, including the associated Galois
representations and L-functions. From the perspective taken in these notes,
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we consider this a call to action and save for another time their algorithmic
elaboration.



Chapter 3

Modular symbols

Having laid the basic notation and setup for modular curves in the previous
section, here we show how to compute classical modular forms using modular
symbols.

Modular forms are dual to homology by the integration pairing, and it is in-
deed easier to work with homology: we can construct (relative) one-dimensional
cycles as paths on the modular curve as Riemann surface whose endpoints lie
on the set of cusps. From this one can systematically work with the relative
homology group and then the action of Hecke operators, from which we can
hope to recover modular forms.

The rough sketch is as follows:

1. we find a nice basis in relative homology,
2. we take the kernel with respect to a boundary operator,
3. then we apply Hecke operators, and the crux is reducing the result in

homology to the given basis.

3.1 Farey symbols

Let Γ ≤ SL2(Z) be a congruence subgroup—in fact, the algorithm works for an
arbitrary finite index subgroup. For concreteness and because it is some nice
number theory, we begin by discussing how to compute a fundamental domain
for the action of Γ ⟳ H2∗ with a reduction theory, adapted from 2.1.5.

We will make fundamental domains drawing edges between cusps and el-
liptic points, like SL2(Z).

The original Farey fractions of order n ∈ Z≥1 is set of rational numbers

{0 ≤ p/q ≤ 1 : gcd(p, q) = 1, q < n} (3.1.1)

and the Farey sequence just writes the Farey fractions in increasing order.
For example: 0/1, 1/1; 0/1, 1/2, 1/1, 0/1, 1/3, 1/2, 2/3, 1/1, etc. We notice that
the sequence of order n+1 is obtained from order n by inserting a unique frac-

17
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tion in between two Farey neighbors, namely the “frosh’s sum of fractions”

a

b
F

c

d
= a + c

b + d

and more properly called the mediant. This is a fun way to algorithmically
generate all rational numbers by increasing height, never computing a gcd!

Lemma 3.1.2. The following statements hold.

(a) If a/b < c/d are Farey fractions of order n, then they are Farey neighbors
if and only if bc− ad = 1.

(b) If a/b < c/d are Farey neighbors and h/k = (a/b) F (c/d), then a/b <
h/k < c/d and bh− ak = ck − dh = 1.

Proof. As a hint for (b), we have

a + c

b + d
− a

b
= bc− ad

b(b + d)

and
c

d
− a + c

b + d
= bc− ad

d(b + d) > 0;

and
k = (bc− ad)k = b(ck − dh) + d(bh− ak)

from which the result can be derived.

This is also clearly related to continued fractions in a lovely way, either say
more here or maybe peek at Lemma 3.5.1! And if we draw geodesics in the
upper half-plane between Farey neighbors, we get Ford circles.

Now our fundamental domain algorithm is due to Kulkarni [Kul91], follow-
ing Kurth–Long [KL08].

Definition 3.1.3. A generalized Farey sequence is a sequence of rationals

x0 = a0

b0
< · · · < an

bn
= xn (3.1.4)

with consecutive terms ai/bi < ai+1/bi+1 satisfying

biai+1 − aibi+1 = 1. (3.1.5)

We include formally −∞ = −1
0 and ∞ = 1

0 .

Definition 3.1.6. A Farey symbol is a generalized Farey sequence starting
at −∞, ending at∞, together with neighbors labelled with one of the following:

• free, labelled with a positive integer;
• even, labelled with •;
• odd, labelled with ◦.
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and such that each free integer appears twice.

There is an algorithm that takes as input PΓ (in this presentation, coming
from K1

N ≤ SL2(Z/NZ)) and returns as output a Farey symbol such that:

(i) The xi represent the cusps of PΓ, and
(ii) The interior of the Ford circles drawn by neighbors (with some fiddling

at odd vertices) is a star-like fundamental domain with Ford circles as
boundary, and

(iii) Gluing together the fundamental domain by identifying oriented free
edges yields the quotient X(Γ).

Example 3.1.7. For Γ = SL2(Z) so PΓ = PSL2(Z), we have the Farey se-
quence −∞ <• 0 <◦ ∞:

The algorithm proceeds roughly as follows. Working out the case of index
2 (Exercise 3.1), we may suppose that [PSL2(Z) : PΓ] ≥ 3.

1. Initialize: if ±ST = ±
(

1 −1
1 0

)
∈ PΓ, start with with −∞ < 0 < 1 <∞

(unlabelled); else start with −∞ < −1 < 0 <∞.
2. Choose an unlabelled edge ai

bi
,

ai+1

bi+1
be unlabeled. See if it can be non-

trivially paired with itself (even or odd according to the order of the
element) or another unlabelled aj

bj
,

aj+1

bj+1
: check if the side pairing matrix

γ =
(

aj+1bi+1 + ajbi −ajai − aj+1ai+1
bjbi + bj+1bi+1 −ai+1bj+1 − aibj

)
has γ ∈ Γ. If so, label accordingly. If not, split

ai

bi
,

ai + ai+1

bi + bi+1
,

ai+1

bi+1

(still unlabelled) and repeat.
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3. Return when there are no unlabelled sides.

Example 3.1.8. We execute this algorithm for Γ = Γ(2) the principal con-

gruence subgroup. −∞, 0,∞. Check 0
1 ∼

1
1 :

(
0 −1
1 0

)
/∈ Γ(2). Check 1

1 ∼
1
0 :(

1 0
1 1

)
/∈ Γ(2). So we split! −∞, 0, 1,∞.

Continuing in this way, we get

−∞ <1 −1 <2 0 <2 1 <1 ∞

with sidepairing elements labelled 1:
(

1 2
0 1

)
and 2:

(
1 0
2 1

)
. The cusps are

then represented by 0, 1,∞.

This algorithm also gives a wealth of other information about X(Γ): the
number of cusps, generators for Γ (as side-pairing elements), the number of
elliptic points (the number of ◦ and • labels, respectively), the width of the
cusps, etc. There is also an explicit reduction theory similar to what we had
over SL2(Z).

3.2 Coset representatives

It will always take time at least linear in the SL2(Z)-index of Γ to write out
the cosets. Looking ahead to Hecke operators, we also want an algorithm that
that takes δ ∈ SL2(Z) and computes (very efficiently!) an element γ ∈ Γ and
the coset represenative δj such that δ = γδj .

The Farey symbol for Γ provides geometrically meaningful coset represen-
tatives for Γ\SL2(Z). Let ∆ be the hyperbolic triangle with vertices i, ω,∞.
(Together with its complex conjugate, the dark side, they form the usual fun-
damental domain for SL2(Z).) By construction, ∆ is contained in the funda-
mental polygon ◊ constructed from the Farey symbol, and the set of γ ∈ Γ
such that γ∆ ∈ ◊ are a set of coset representatives for Γ. These can be read
off from the Farey symbol, a first approximation is that they are γ−1

i where

γi =
(

ai ai+1
bi bi+1

)
for xi = ai/bi < xi+1 = ai+1/bi+1 in the sequence; but we

also have to add the stabilizers at each cusp and fiddle with odd vertices.
For Γ coming from K1

N ≤ SL2(Z/NZ), we can apply the the Todd–Coxeter
algorithm.

3.2.1. For Γ = Γ0(N), the map

Γ\ SL2(Z)→ P1(Z/NZ)

Γ
(

a b
c d

)
7→ (c : d)

(3.2.2)

is a bijection. Algorithmically, this gives a clean way to enumerate coset rep-
resentatives and to store them in a hash table for fast reduction.
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3.3 Modular symbols in homology

Modular symbols were introduced by Manin [Man72] and developed by Merel
[Mer94], and they were turned into a practical computational tool in work of
Cremona [Cre97] and Stein [Ste07], as well as others. We give a homological
definition that is well-suited for algorithms.

Just as in the previous section, where Farey symbols as paths in the up-
per half-plane described the boundary of a fundamental domain, here we will
consider the resulting homology: we will find a presentation for H1(X(Γ),Z)
in terms of paths between cusps, and then we will use an action of Hecke op-
erators to see systems of Hecke eigenvalues. This will only give us access to
modular forms of weight k ≥ 2.

We work abstractly, axiomatizing how these paths should behave, for algo-
rithmic purposes; we then prove that this correctly computes homology.

3.3.1. LetD be the free abelian group on ordered pairs (x, y) with x, y ∈ P1(Q).
The group GL2(Q) acts on D by

γ · (x, y) = (γx, γy)

where γ acts on P1(Q) = bd H2∗ by linear fractional transformations. Thinking
of paths from x to y, let R ≤ D be the subgroup generated by the relations

(x, y) + (y, z) + (z, x) = 0
(x, x) = 0

(3.3.2)

for all x, y, z ∈ P1(Q). The resulting quotient M2 := D/R is the universal
module of modular symbols; the equivalence class of (x, y) in the quotient is
denoted {x, y}. In particular, we have {y, x} = −{x, y} (paths are oriented).

Remark 3.3.3. Most of the time we further take the quotient by the torsion
subgroup of M2, presumably caused by the elliptic points? For the purposes
of modular forms in characteristic zero these are in the way, for example in the
integration pairing they will vanish, but it may be useful to keep them around
for a bit. Otherwise, it seems like we should be honest about it and replace
coefficients by Q or Z[1/6]?

Let Γ ≤ SL2(Z) be a congruence subgroup. Then for γ ∈ Γ, the path from
x to y and its image under γ are identified!

Definition 3.3.4. The modular symbols module for Γ is the Γ-coinvariants

M2(Γ) := (D/R)Γ (3.3.5)

i.e., the quotient of M2(Γ) by the submodule generated by

{m− gm : m ∈M2, g ∈ Γ}.

We write {x, y}Γ for the image of {x, y} inM2(Γ) when we need to distin-
guish the two, but we will usually drop the subscript.
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3.3.6. Homology is about closed loops, not paths! So time to close the loop—
with the boundary map.

Let B2(Γ) be the free abelian group on the set of cusps of Γ, the Γ-orbits
in P1(Q). Define

∂2 : M2(Γ)→ B2(Γ), ∂2{x, y} = (y)− (x). (3.3.7)

The given relations ensure that ∂2 is well-defined (Exercise 3.3).

Remark 3.3.8. We could also define the boundary map ∂2 : M2 → B2(Γ), and
it would be the group of degree 0 divisors on P1(Q).

Definition 3.3.9. The kernel

S2(Γ) := ker ∂2

is the space of cuspidal modular symbols.

The group of cuspidal modular symbols consists of linear combinations of
paths in H2∗ whose endpoints are in bd H2 = P1(Q) and whose images in X(Γ)
are linear combinations of loops.

Proposition 3.3.10 (Manin). The natural map (“take the path in homology”)
provides canonical group isomorphisms

M2(Γ) ∼= H1(X(Γ), bd X(Γ);Z)
S2(Γ) ∼= H1

(
X(Γ),Z

)
.

Proof. See Manin [Man72, Theorem 1.9]. In a nutshell, we get a relative ho-
mology group via a relative chain complex.

Since the Farey neighbors describe the boundary of X(Γ), a generating set
for M2(Γ) is given by the symbols {xi, xi+1} for xi < xi+1 Farey neighbors!
And a basis is obtained by taking the quotient by the relations specified by
the labels in the Farey symbol for Γ. Then a basis for S2(Γ) can be computed
using straightforward linear algebra.

We extend these definitions to more general coefficients and weights as
follows.

Let R be a (computable) commutative ring, let k ≥ 2, and let Wk(R) :=
Symk−2(R) = R[X, Y ]k−2 be the binary forms of degree k − 2 ≥ 0 with ce-
officients in R. Then Wk(R) has a natural left action by SL2(Z), namely if

γ =
(

a b
c d

)
∈ SL2(Z) and v ∈Wk(R) then

(gv)(x, y) = v(g−1(x, y)) = v(dX − bY,−cX + aY ).

(Sorry about the left versus right, this is an inevitable consequence of the choice
(fg)(x) is first g then f !) Let

Mk(R) := Wk(R)⊗M2. (3.3.11)
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We abbreviate Mk :=Mk(Z). We extend the action of SL2(Z) on Mk(R) by
its natural action on each component

γ(v ⊗ {x, y}) := γv ⊗ {γx, γy}

for γ ∈ SL2(Z) and v ⊗ {x, y} ∈ Mk(R), and extending linearly.
We similarly define

Bk(R) := Wk(R)⊗ B2 (3.3.12)
with the natural action γ(v ⊗ (x)) = γ(v)⊗ (γx); and the boundary map

∂k : Mk(R)→ Bk(R)
v ⊗ {x, y} 7→ v ⊗ y − v ⊗ x.

(3.3.13)

Definition 3.3.14. The space of modular symbols of weight k over R is
the Γ-coinvariants

Mk(Γ, R) :=Mk(R)Γ.

The space of cuspidal modular symbols of weight k over R is the kernel

By naturality, we have Mk(Γ, Z) ⊗Z R ∼= Mk(Γ, R); and from Manin’s
theorem (Proposition 3.3.10) and universal coefficients or something, we have

Mk(Γ, R) ∼= H1(X(Γ), bd X(Γ); Symk−2 R2)

and similarly Sk(Γ, R) ∼= H1(X(Γ); Symk−2 R2).

3.4 Integration pairing

In weight 2, cusp forms are exactly holomorphic differentials on X(Γ). As
we saw in section 2.4, if f ∈ S2(Γ) then the differential f(z) dz is Γ-invariant
(2.4.3) and extends holomorphically across the cusps.

3.4.1. One of the good thing about a differential is that you can integrate
against them! In general, if you have a compact Riemann surface X of genus g
and H0(X, Ω1) is the g-dimensional C-vector space of holomorphic differential
1-forms on X, then there is a well-defined integration pairing

H0(X, Ω1)×H1(X,Z)→ C

⟨ω, υ⟩ =
∫

υ

ω.
(3.4.2)

that is right nondegenerate: if ⟨ω, υ⟩ = 0 for all υ ∈ H1(X,Z) then ω = 0. But
H1(X,Z) is a free Z-module of rank 2g, not g, so extending scalars to C could
not give a perfect pairing. We could start by extending scalars to R, but we
are missing the anti-holomorphic differentials; once we add those, the pairing
becomes perfect.

Remark 3.4.3. We can interpret this in terms of de Rham cohomology H1
dR(X,C)

and the Hodge filtration H0,1 ⊕H1,0.
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3.4.4. Returning to the context of modular forms and modular symbols, let

S2(Γ) = {f : f ∈ S2(Γ)}

be the complex conjugate of S2(Γ), with f(z) = f(z); intrinsically, we can
think of these as weight k-invariant anti-holomorphic functions which vanish
at the cusps.

Then we again have an integration pairing

⟨·, ·⟩ :
(

S2(Γ)⊕ S2(Γ)
)
× S2(Γ)→ C

⟨(f, g), {x, y}⟩ =
∫ y

x

f(z) dz +
∫ y

x

g(z) dz
(3.4.5)

where the integral is taken along any path (for example, the hyperbolic geodesic
in H2) from x to y: Manin’s theorem (Proposition 3.3.10, well-defined homology
class) and then Cauchy’s theorem (independent of choice of path, extended to
anti-holomorphic functions) ensures that this is pairing is well-defined.

The integration pairing (3.4.5) is left and right nondegenerate. In particu-
lar, it gives a natural isomorphism

HomR(S2(Γ),R) ∼−→ S2(Γ)⊕ S2(Γ).

The natural modification of this pairing also works in weight k.

Proposition 3.4.6. The integration pairing

⟨·, ·⟩ :
(

Sk(Γ)⊕ Sk(Γ)
)
×Mk(Γ)→ C

⟨(f, g), v ⊗ {x, y}⟩ =
∫ y

x

v(z, 1)f(z) dz +
∫ y

x

v(z, 1)g(z) dz.

(3.4.7)
is well defined and right nondegenerate; its left kernel is Bk(Γ), giving a natural
isomorphism

HomR(Mk(Γ),R) ∼−→Mk(Γ)⊕ Sk(Γ). (3.4.8)

Proof. See Merel [Mer94, §1.5], at least for Sk(Γ) ∼−→ Sk(Γ)⊕ Sk(Γ).

Remark 3.4.9. It should be better to normalize the pairing (3.4.5) by multiply-
ing by 2πi, so we are really integrating with respect to dq/q; likely something
similar for (3.4.7).

The conclusion: modular symbols are dual to modular forms!

Example 3.4.10. Γ0(11) has Farey symbol −∞ <1 0 <2
1
2 <3

1
3 <3 1 <1 ∞,

with side-pairing elements

γ1 =
(

1 1
0 1

)
, γ2 =

(
7 −2
11 −3

)
, γ3 =

(
8 −3
11 −4

)
.
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The cusps are 0 1←→ 1 3←→ 1/3 2←→ 1/2 3←→ 2/3 and ∞ = −∞.
The space M2(Γ) is spanned by {∞, 0}, {0, 1/3}, . . . , {1,∞} and has basis

{∞, 0}, {0, 1/3}, {1/3, 1/2}. The cuspidal space has basis {0, 1/3}, {1/3, 1/2}.
(This might look weird, because we were supposed to have loops, right? But
we just computed that the cusps 0, 1/3 and 1/3, 1/2 are identified!) We have
rkZ S2(Γ) = 2 = 2g, so g(X0(11)) = 1.

3.5 Manin symbols and reduction

To compute with modular symbols, we need a basis and a reduction algorithm
to that basis. The Farey sequence and its reduction algorithm provides such a
method, but there is an even more efficient way of doing the reduction due to
Manin which realizes the reduction theory as continued fractions.

Lemma 3.5.1 (Manin’s trick). The Q-vector spaceM2(Q) is generated by the
set of symbols γ{∞, 0} with γ ∈ SL2(Z).

We sometimes call such symbols unimodular symbols. The proof will in
fact provide an algorithm for writing a modular symbol as a linear combination
of unimodular symbols.

Proof. Using {x, y} = {x, 0} − {y, 0}, it suffices to treat {x, 0} with x ∈
Q. Compute the negative-regular or Hirzebruch–Jung continued fraction of
x [Voi21, Exercise 35.4] and let ai/bi be its convergents, obtained from the Eu-
clidean algorithm. (Or you can also use the usual continued fraction and adjust
some signs, no worries.) Consecutive convergents satisfy ai+1bi − aibi+1 = 1,
so the relation{

ai+1

bi+1
, 0

}
=

{
ai+1

bi+1
,

ai

bi

}
+

{
ai

bi
, 0

}
= γi{∞, 0}+

{
ai

bi
, 0

}
(3.5.2)

with γi =
(

ai+1 ai

bi+1 bi

)
iterates to express {x, 0} as a sum of symbols given

by translates of {∞, 0} by an element of SL2(Z). (This should be the right
way around, since we usually swap the order and then the determinant is −1?
Yikes.)

3.5.3. Compute a set of representatives {δi}i for Γ\SL2(Z) as in section 3.2. It
follows from Manin’s trick (Lemma 3.5.1) that the symbols δi{∞, 0} generate
M2(Γ). The relations among them come from the standard generators

S =
(

0 −1
1 0

)
, ST =

(
0 −1
1 1

)
of SL2(Z) satisfying S2 = (ST )3 = −1. Writing the right action on cosets as
[i]γ = [j] when Γγiγ = Γγj , the resulting Manin relations take the form

[i] + [i]S = 0
[i] + [i]R + [i]R2 = 0.

(3.5.4)
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More generally, with coefficients Vk(R) the same presentation is used with the
action extended diagonally to the coefficients.

3.5.5. Reduction of Manin symbols then proceeds as follows. Given a sym-
bol {x, y}, we use continued fractions as in (3.5.2) to express it as a linear
combination of translates of {∞, 0}, then reduces each translate to a coset
representative δi as in section 3.2, then applies the quotient to the coefficients.

3.6 Hecke operators

We recall the definition of Hecke operators from section 2.6 defined using double
cosets β ∈ GL2(Q)>0 and with the explicit expression by Hermite normal forms
for the standard congruence groups.

3.6.1. Working now (dually) in homology, we express the Hecke operators as
follows. For v ⊗ {x, y} ∈ Mk(Γ, R) and β ∈ GL2(Q)>0, we define

Tβ(v ⊗ {x, y}) :=
∑

α∈Θ(β)

α(v ⊗ {x, y}) =
∑

α∈Θ(β)

αv ⊗ {αx, αy}.

Compatibility of the Hecke operators with the integration pairing

⟨Tnf, ξ⟩ = ⟨f, Tnξ⟩ (3.6.2)

comes from a straightforward change-of-variables argument.

Example 3.6.3. We return to the Example 3.4.10. The cosets for Γ = Γ0(11)
are specified by P1(Z/11Z) which we write as [0], [1], . . . , [10], [∞]. This gives
a generating set.

The relations are as follows. For [i]S = [−1/i] we get

[0] + [∞] = [1] + [10] = [2] + [5] = [3] + [7] = [4] + [8] = [6] + [9] = 0.

For [i]R = [−1/(i + 1)], we obtain

[0] + [10] + [∞] = [2] + [7] + [4] = [1] + [5] + [9] = [3] + [8] + [6] = 0.

Thus we get a basis [0], [2], [3] matching the Farey symbols, and the following
identifications at other cosets: [1] = 0 = [10], [4] = [3] − [2], [5] = −[2] = [6],
[7] = −[3], [8] = [2] − [3], [9] = [2], [∞] = −[0]. This also gives the boundary
map, and the basis for the kernel is [2], [3].

Great, now back to Hecke operators. We start with

T2[2] = T2{1/2, 0} =
(

2 0
0 1

)
{1/2, 0}+

(
1 0
0 2

)
{1/2, 0}+

(
1 1
0 2

)
{1/2, 0}

= {1, 0}+ {1/4, 0}+ {3/4, 1/2} = [1] + [4] + {3/4, 0} − {1/2, 0}
= [1] + [4] + [7] + [10]− [2] = 0 + [3]− [2]− [3] + 0− [2] = −2[2].

(3.6.4)
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(Computed with the standard continued fraction, 3/4 = 0 + 1/(1 + 1/3) so
convergents 0 = 0/1, 0 + 1/1 = 1/1 and 3/4, giving

{3/4, 0} =
(

3 −1
4 −1

)
{∞, 0}+

(
1 0
1 −1

)
{∞, 0}+ {0, 0} (3.6.5)

= [(4 : −1)] + [(1 : −1)] = [7] + [10].) (3.6.6)

Should compute with the negative continued fraction to see better the connec-
tion with SL2(Z)!

Similarly we compute that T2[3] = −2[3], so [T2] =
(
−2 0
0 −2

)
. From the

eigenform

f(q) = q
∏

(1− qn)2(1− q11n)2 = q − 2q2 − q3 + . . .

which we look up in the LMFDB, we find a match with the coefficient of q2!

Remark 3.6.7. A small implementation point: reduction is the bottleneck. If
you repeatedly expand Tp and reduce every term from scratch, performance
collapses. The standard speedup is to precompute reduction data once (con-
tinued fraction steps, coset reductions, and the matrix giving coordinates of
each raw Manin symbol in the final basis) and then reuse it for every prime p
you need.

3.7 Cohomology

We have emphasized homology because it is concrete and efficient for compu-
tation, but the same structure appears (often more conceptually cleanly) in
cohomology; this ends up being just another wrapper for the same conclusion,
as we might expect by duality.

The Eichler–Shimura isomorphism provides an identification

H1(X(Γ),C) ∼−→ S2(Γ)⊕ S2(Γ),

and more generally, for the weight representation Wk and the associated local
system Wk,

H1(
X(Γ), Wk

) ∼−→ Sk(Γ)⊕ Sk(Γ).

Working over Y (Γ) rather than X(Γ) introduces an Eisenstein contribution,
reflecting the difference between absolute and relative cohomology at the cusps.

Exercises

3.1. Show that there is a unique subgroup of PSL2(Z) of index 2, identify it as
a congruence subgroup, and show that a Farey symbol is −∞ <• 0 <• ∞.
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3.2. Analyze the running time of the algorithm for computing Farey symbols
by counting bit operations and the number of calls to a function which
identifies membership in Γ.

3.3. Prove the following.
(a) In 3.3.6, show that B2(Γ) is isomorphic the Γ-coinvariants of the free

abelian group on P1(Q).
(b) Show that the boundary map (3.3.7) is well-defined.
(c) Repeat (a) and (b) for Bk(Γ, R).

3.4. Carry out the same steps in Example 3.4.10 and Example 3.6.3 for N = 4
and N = 13. Most importantly, have fun doing so!

3.5. What is the deal with the Hecke operators and the torsion submodule
M2(Γ)tors? It’s Eisenstein torsion?



Chapter 4

The trace formula

4.1 Eichler–Selberg trace formula

Exercises

4.1. Verify the computational complexities and comparisons between modular
symbols and the trace formula computed in [BB+20, Table 5.2.3].

29





Chapter 5

Additional methods

We mention several other methods for computing modular forms that are quite
useful.

5.1 Multiplication and graded ring

One great way to get modular forms of higher weight is to multiply forms of
lower weight. A main result of [VZB15, Main Theorem 1.4.1, Corollary 1.5.1]
is that the graded ring of even weight modular forms is generated in weights
2, 4, 6; the results also provide an initial ideal for the relations among them.
This gives a way to express forms of larger weight as monomials in smaller
weight.

This point of view for example is useful when working with p-adic modular
forms, where weights can quickly get large.

Cusp forms of weight 2 define the canonical map from a modular form
to projective space, and more generally modular forms of weight 2 define a log
canonical map; this gives a way to compute equations for modular curves. More
generally, the proj Proj M∗(Γ) of the graded ring of even weight modular forms
gives equations for the stacky modular curve in weighted projective space.

5.2 Eisenstein series

There are also explicit formulas for Eisenstein series, obtained from averaging
over G Eisenstein series for the principal congruence subgroup in a manner
analogous to the above. See sections 7.3–7.4 of Cohen–Stromberg, Brunault–
Neururer, and Zywina, as well as earlier work of Borisov–Gunnells.

Then Khuri-Makdisi shows that products of Eisenstein series generate.

Exercises

5.1.
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Part II

Modular forms on reductive
groups
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Chapter 6

Bianchi modular forms

In this chapter, we make our first step towards generalize notions from the
previous part. The main goal is to begin preparations for the general case by
considering a key example.

6.1 Compactification

Take F imaginary quadratic.
There is a bijection between the cusps, the orbits of GL2(ZF ) (or SL2(ZF )

acting on P1 and the ideal class group. This is in fact something that is true
for any number field, so we could do it in that level of generality.

6.2 Modular symbols

Then D = H3 and one can similarly define modular symbols, now with elements
in P1(K). Things look just like in Chapter 3: a finitely generated module and
matrices for Hecke operators.

6.3 Eisenstein series

The notion of Eisenstein series extends in a natural way to the Bianchi groups
PSL2(ZF ) where F is an imaginary quadratic field: see Elstrodt–Grunewald–
Mennicke [EGM98, Chapter 3].

Exercises

6.1.
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Chapter 7

Reductive algebraic groups

In this chapter, we give the basics of linear algebraic groups. Our goal is
modest: we introduce and outline the basic infrastructure, giving references
for further reading. We hope to provide intuition and enough detail so that
we can define modular forms in a general context and then describe algorithms
and then effective computation: (not just in principle algorithmic, but also
something concrete that can actually be carried out that finishes on realistic
input).

7.1 Beyond GL2

In Part I, we worked with modular forms as differential forms on modular
curves, naturally presented as a quotient of the hyperbolic upper half-plane
and moduli spaces for elliptic curves with level structure. In the previous
section, we considered the natural generalization for hyperbolic three-space.
These arose naturally from the groups GL2 over F = Q and F an imaginary
quadratic field.

We generalize by allowing subgroups of invertible matrices over a number
field defined by polynomial equations. We want to apply techniques from
algebraic geometry, so we want to think not only of the group of points over a
field but also its scheme structure, which amounts to thinking about the group
of points over extensions.

Let G ≤ GLn be a linear algebraic group defined over a number field F ,
a closed subgroup of the algebraic group GLn defined by the vanishing of poly-
nomials with coefficients in F in the entries and the inverse of the determinant
of a matrix of indeterminates. Equivalently, G is an affine algebraic variety
over F equipped with multiplication and inversion maps that are morphisms
of algebraic varieties. The most basic examples of linear algebraic groups are
the multiplicative group Gm and the additive group Ga and the general linear
group GLn and special linear group SLn.

Linear algebraic groups which are built from Gm and Ga, for example sub-
groups of upper-triangular matrices, do not provide the generalization of mod-

37
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ular forms we seek here: they are solvable. Indeed, subgroups of unipotent
matrices (upper-triangular with 1s on the diagonal), with composition factors
Ga, have a representation theory that is decidedly less fun as we know from
linear algebra.

Accordingly, we say that the group G is reductive if its maximal con-
nected unipotent normal subgroup is trivial and is semisimple if its maximal
connected solvable normal subgroup is trivial. The group GLn is reductive but
not semisimple, as it has center given by scalar matrices; the group SLn is
semisimple. Reductive linear algebraic groups G over an algebraically closed
field are classified by their root datum, with the following key examples (with
n ≥ 1):

An SLn+1, SUn

Bn SO2n+1
Cn Sp2n

Dn SO2n

E6, E7, E8 exceptional
F4, G2 exceptional

The fact that there are redundancies in this list is a feature, not a bug! We
may also consider forms of any of these groups, such as the (special) orthogonal
group of a quadratic form or the units (of reduced norm 1) of a central simple
algebra. We once again feel the lesson that the classification of semisimple Lie
algebras has an unfair impact on understanding the mathematical big picture!

7.2 Algebraic groups

This section collects the minimum structure theory of algebraic groups that we
will use later when we pass from modular forms to Hecke modules on locally
symmetric spaces. References for the general theory are [Bo91, Spr98, Hum75,
Mil17]. Add Getz–Hahn.

Let k be a field. Via its coordinate entries, the matrix ring

Mn,k := Spec k[xij ]1≤i,j≤n ≃ An2

k (7.2.1)

is naturally an affine space over k. The Zariski open subset of matrices with
nonzero determinant defines an affine variety GLn,k = Spec k[GLn,k] with coor-
dinate ring OGLn,k

= k[GLn,k] = k[xij ]i,j [D−1] and D := det(xij)i,j ∈ k[xi,j ]i,j
is the determinant (a polynomial of degree n with n! terms). In this way,
GLn,k is a smooth affine k-scheme but its point sets define a group. We will
sometimes drop the subscript k, writing just GLn.

Historically, when k is algebraically closed, linear algebraic groups were
defined as closed subgroups of GLn,k. As we will work over non-algebraically
closed fields, but will still want to work with point sets as groups, we adopt a
categorical perspective and then reconcile this with the concreteness of matrix
groups.
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Definition 7.2.2. An affine group scheme over k is a group object in the
category of affine k-schemes of finite type.

Equivalently, an affine group scheme is an affine k-scheme G = Spec k[G]
whose coordinate ring k[G] is a finitely generated commutative Hopf algebra
over k: giving a Hopf algebra structure on k[G] (coidentity, comultiplication,
coinverse) is equivalent to giving identity e : Spec k → G, multiplication m : G×
G→ G, and inverse morphisms i : G→ G [Mil17, §1–2] that satisfy the axioms
of a group. Thus for an affine group scheme G over k and every k-algebra R,
the set

G(R) := Homk(Spec R, G) (7.2.3)
is a group, functorially in R. From this point of view, we can also think of an
affine group scheme over k as a functor from the category of k-algebras to the
category of groups that is representable by a finitely generated commutative
k-algebra. The Hopf algebra structure is recovered automatically from the
group-valued functor by the Yoneda lemma.

Definition 7.2.4. A homomorphism φ : G → G′ of affine group schemes is
a morphism of schemes that is a homomorphism of group objects (i.e., φ com-
mutes with the identity, multiplication, and inverse maps in the three commu-
tative diagrams).

Equivalently, the map of sets G(R)→ G′(R) is a group homomorphism for
every k-algebra R.

Example 7.2.5. The matrix multiplication map m : GLn×GLn → GLn, on
points defined by (

(xij)i,j , (yij)i,j

)
7→ (zij)i,j

where (xij) · (yij) = (zij) is defined by zij =
∑n

r=1 xiryrj , is given by the
polynomial map

m∗ : k[GLn]→ k[GLn]⊗k k[GLn]

m∗(xij) =
n∑

r=1
xir ⊗ xrj

(7.2.6)

The identity map is e : Spec k → GLn by k[GLn] → k by e∗(xij)i,j 7→ In.
The inverse map i : GLn → GLn is similarly defined by cofactor expansion
(Cramer’s rule).

Definition 7.2.7. An affine algebraic group over k is a reduced affine group
scheme of finite type over k.

Theorem 7.2.8 (Cartier). If char k = 0, then every affine group scheme of
finite type over k is smooth (in particular, reduced).

Proof. See Milne. Briefly, left translation by g ∈ G identifies Ω1
G/k with its

pullback along translation by g, so Ω1
G/k is a locally free OG-module of (con-

stant) rank equal to dim Lie(G). In characteristic zero, the Jacobian criterion
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shows that locally free implies smoothness. See more generally Stacks Project,
Tag 0BF6.

Thus in characteristic zero we avoid some pathologies coming from nonre-
duced affine group schemes like αp over Fp.

With this setup, we now make the key definition.

Definition 7.2.9. A (linear) representation of an affine algebraic group
is a morphism ρ : G → GLn for some n; we say ρ is faithful if ρ is a closed
immersion.

A linear algebraic group over k is an affine algebraic group G which
admits a faithful linear representation.

Theorem 7.2.10. Every affine algebraic group over k is a linear algebraic
group over k.

Proof. See Milne, Theorem 9.1: the regular representation has faithful finite-
dimensional subrepresentations. See also Waterhouse’s Introduction to Affine
Group Schemes.

Example 7.2.11. Examples of linear algebraic groups abound. For example,
we have the subgroup of diagonal matrices

∗ 0 · · · 0
0 ∗ · · · 0
...

... . . . ...
0 0 · · · ∗

 ≤ GLn,k

defined by xij = 0 for all i ̸= j. We note how the description of the points
and the scheme go together. These are already defined over the prime field e.g.
k = Fp or k = Q.

We similarly have tori Gr
m and additive groups Gr

a.

Example 7.2.12. Similarly, we have upper triangular matrices, unipotent
matrices (upper triangular with 1s on the diagonal), as well as SLn,k defined
by the closed condition D = 1.

Example 7.2.13. Important for these notes are those subgroups that preserve
a bilinear form up to rescaling, for example the usual orthogonal group

On(k) := {A ∈ GLn(k) : AAt = AtA = 1} (7.2.14)

(preserving the dot product). Of course (7.2.14) only defines the set of points;
but we could equally well replace k by R any k-algebra with the same condition
to get On(R), and by the Yoneda lemma this is enough to recover it uniquely.
Here, we can take R the coordinate ring of GLn,k representing the universal
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matrix A = (xij)i,j to see explicitly the defining equations. For example, for
n = 2, (

a b
c d

) (
a c
b d

)
=

(
a2 + b2 ac + bd
ac + bd c2 + d2

)
=

(
1 0
0 1

)
(7.2.15)

gives the equations a2 + b2 = c2 + d2 = 1 and ac + bd = 0 defining On,k inside
Spec k[a, b, c, d, D−1].

In general, if T ∈ Mn(k) then we can similarly define

G(R) := {(A, u) ∈ GLn(R)×GL1(R) : ATAt = uT} (7.2.16)

and G is a linear algebraic group.

Example 7.2.17. Every finite group is a linear algebraic group, via the regular
representation. As a finite set of points over k, such groups are disconnected
whenever the group is nontrivial. But they are allowed!

Example 7.2.18. Let B be a finite-dimensional algebra over k. Then via the
regular representation, B× is a linear algebraic group. If B is a central simple
k-algebra, then there is further a reduced norm map nrd: B× → Gm (a power
of which is the algebra norm) giving a group B1 = ker nrd. The special case
where B is a quaternion algebra over k is of particular interest in what follows.

In fact, more generally, Autk(B) is also a linear algebraic group.

Remark 7.2.19. An irreducible projective group variety over k in fact has a
commutative multiplication law: it is an abelian variety.

In principle, to specify a reductive group G in bits, one could give a set of
defining equations for G inside GLn or to give the classical groups (or their
forms) by name. Using the classification, will see below that we can cover the
spread reasonably well by considering labels.

7.3 Subgroups, identity component

Let G be a linear algebraic group over k.

Definition 7.3.1. A closed (linear algebraic) subgroup H ≤ G is a closed,
reduced subscheme which inherits a group scheme structure from G.

In other words, k[H] = k[G]/I where I is a radical ideal preserved by the
coidentity, comultiplication, and coinverse maps. These are all properties we
can check over the algebraic closure, so it is enough to show that (H is reduced
and) H(kal) is Zariski closed in G(kal).

A linear algebraic group over k is then (essentially by definition) a closed
subgroup of GLn,k for some k.
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Example 7.3.2. We have the upper-triangular Borel

Bn :=



∗ ∗ · · · ∗
0 ∗ · · · ∗
... . . . . . . ...
0 · · · 0 ∗


 ≤ GLn .

Inside Bn, the diagonal torus

Tn :=



∗ 0 · · · 0
0 ∗ · · · 0
... . . . . . . ...
0 · · · 0 ∗




and the upper-triangular unipotent subgroup

Un :=




1 ∗ · · · ∗
0 1 · · · ∗
... . . . . . . ...
0 · · · 0 1


 .

We will soon see that Bn is built from Tn and Un. For now, we just note the
dimensions

dim Bn = 1 + 2 + · · ·+ n = n(n + 1)
2 ,

dim Tn = n,

dim Un = 1 + 2 + · · ·+ (n− 1) = n(n− 1)
2 .

Example 7.3.3. Let H ≤ G be a closed subgroup. Then the normalizer and
centralizer

NG(H) := {g ∈ G : g−1Hg = H} ≤ G,

CG(H) := {g ∈ G : g−1hg = h for all h ∈ H} ≤ G,
(7.3.4)

are closed subgroups.
Indeed, for h ∈ H, the conjugation map

ch : G→ G

g 7→ g−1hg
(7.3.5)

is a morphism of affine algebraic groups, so c−1
h (H) = {g ∈ G : g−1hg ∈ H} is

closed, thus
⋂

h∈H φ−1
h (H) = NG(H) is closed. And similarly, CG(H) is closed.

In particular, the center Z(G) = CG(G) is a closed subgroup.

Let e = e(Spec k) ∈ G(k) be the identity element. Let

G = G1 ∪ G2 ∪ · · · ∪ Gr (7.3.6)

be the irredundant decomposition into irreducible components.
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Lemma 7.3.7. e ∈ Gi for a unique i.

Proof. In a nutshell, the product of the components Gi containing e is irre-
ducible so contained in some Gj , but Gi ⊆ Gj for all i so since irredundant
must have only one such component.

Definition 7.3.8. The unique irreducible component of G containing e is called
the identity component of G, denoted G0 ≤ G.

Since G0 is connected, we also say G0 is the connected component of
the identity.

Proposition 7.3.9. The following statements hold.

(a) G0 ◁ G is a closed, normal subgroup of finite index.
(b) There is a decomposition

G =
⊔

gG0∈G/G0

gG0

as a finite, disjoint union into irreducible/connected components.
(c) Every closed subgroup of G of finite index contains G0.

Proof. For (a), we show closed under inverse and multiplication, for all g ∈
G0 we have e ∈ g−1G0 ≃ G0 irreducible so g−1G0 ⊆ G0 and hence equality
holds, and hence g−1h ∈ G0 for all g, h ∈ G0. To check normal, same with
e ∈ gG0g−1 = G0 for all g ∈ G.

For (b), we have G =
⋃

g∈G gG0 a union of irreducible components, so by
Noetherianity it is a finite union, and cosets are disjoint.

For (c), given H ≤ G closed of finite index, we have G =
⊔

gH∈G/H gH = H⊔
G′ where G′ is the rest; intersecting with G0 gives e ∈ G0 = (H∩G0)⊔(G′∩G0),
but G0 is connected and e ∈ H ∩G0, so G0 = H ∩G0 thus G0 ⊆ H.

Proposition 7.3.10. Let φ : G → G′ be a homomorphism of linear algebraic
groups. Then the following statements hold.

(a) ker φ ≤ G is a closed subgroup.
(b) img φ = ϕ(G) ≤ G′ is a closed subgroup.
(c) φ(G0) = φ(G)0.

Proof. For (a), we have ker φ = ϕ−1({e′}). For (b), we have ϕ(G) constructible
so closed (add reference). For (c), we have φ(G0) closed by (b) and irreducible,
so φ(G0) ⊆ φ(G)0; but φ(G0) ≤ φ(G) is finite index since G0 ≤ G is finite
index, so in fact φ(G)0 ⊆ φ(G0) by Proposition 7.3.9(c), so equality holds.
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7.4 Restriction of scalars

One may work with a group G defined over a number field F by taking the
restriction of scalars. If F is a number field and G is an algebraic group over
F , then ResF |Q G is a Q-group characterized by

(ResF |Q G)(R) = G(R⊗Q F )

for all Q-algebras R. In particular (ResF |Q G)(Q) = G(F ). This allows us to
work with groups over Q without any real loss of generality, for example with
Hilbert modular groups [Mil17, §2], and it is a standard tool in arithmetic
subgroup theory [PR94].
Remark 7.4.1. For the locally symmetric spaces we define, we are really working
with the complex points of something which we descend to a number field using
the theory of canonical models due to Shimura and Deligne. This construction
does not see a difference between the group G and its restriction of scalars, and
especially in the formalism of Shimura varieties it is standard just to work over
Q.

7.5 Unipotent and reductive

Definition 7.5.1. An element g ∈ GLn(kal) is unipotent if (g − 1)m = 0 for
some m ≥ 1, equivalently all eigenvalues of g are 1.

Definition 7.5.2. A linear algebraic group U over k is unipotent if U(kal)
consists of unipotent elements in some (equivalently any) faithful representa-
tion.

We say that a linear algebraic group is solvable if its group of kal-points
is solvable. We then have the following key structural theorem of Lie–Kolchin.

Theorem 7.5.3 (Lie–Kolchin). Suppose k is algebraically closed of character-
istic 0 and let H ≤ GLn be a solvable, connected algebraic subgroup. Then H
stabilizes a complete flag in kn, or equivalently H is conjugate to a subgroup of
upper triangular matrices.

Proof. We use the Borel fixed-point theorem: a connected solvable linear al-
gebraic group acting by morphisms on a complete variety has a fixed point
[Bo91, §11] (see also Humphries [Hum75, §15]). The induced action of H on
the projective space Pn−1 therefore fixes a point of P(V ), i.e., stabilizes a line
L ⊆ kn. The induced action on the quotient is again by a connected, solvable
group, so we finish by induction on n.

Definition 7.5.4. The solvable radical rad(G) is the maximal connected
solvable normal subgroup, and the unipotent radical urad(G) is the maximal
connected unipotent normal subgroup.

These exist and are unique [Bo91, §13].
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Definition 7.5.5. The group G is reductive if urad(G) = {1} and semisim-
ple if rad(G) = {1}.

Example 7.5.6. GLn is reductive: it has no nontrivial connected unipotent
normal subgroup. It is not semisimple because its center contains the scalar
matrices, a copy of Gm. In contrast, SLn is semisimple for n ≥ 2. See [Hum75,
§14–16] or [Bo91, §11–14].

One pretty good reason why reductive groups are the natural class for
automorphic forms is that they have a workable representation theory and a
clean structure theory via maximal tori and roots [Bo91, Spr98].

7.6 Tori, characters, and rank

Definition 7.6.1. A torus over k is an algebraic group T such that Tkal ≃ Gr
m

for some r. A torus over k is (k-)split if T ≃ Gr
m over k.

The basic invariant of a torus is the character lattice

X∗(T) = Hom(Tkal ,Gm),

a free abelian group of rank r equipped with a natural Galk := Gal(kal | k)-
action [Mil17, §8].

The rank of a connected reductive group over k is the dimension of a
maximal split torus over k. If G has no nontrivial split torus over k, we say
that G is anisotropic over k.

This simple invariant controls many important properties of arithmetic quo-
tients and the resulting modular forms.

Proposition 7.6.2. Let G be a simple Lie group with real rank 1 and finite
center. Then the Lie algebra of G is isomorphic to the Lie algebra of one of
the following Lie groups with n ≥ 2:

• SO(n, 1),
• SU(n, 1),
• Sp(n, 1) (a quaternionic unitary group), or
• a certain form of the exceptional Lie group F4.

The first three of these fit together nicely: they are the group of real, com-
plex, or quaternionic matrices preserving a quadratic, Hermitian, or quater-
nionic Hermitian form, respectively, with signature n, 1.

Proof. Cartan’s classification [Tit67].
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7.7 Parabolics and Levi decomposition

To begin, we suppose that k is algebraically closed.

Definition 7.7.1. A Borel subgroup B ⊂ G is a maximal connected solvable
subgroup.

Definition 7.7.2. A parabolic subgroup P ⊂ G is a closed subgroup con-
taining a Borel subgroup.

Every parabolic subgroup has a large unipotent radical and admits a Levi
decomposition.

Theorem 7.7.3 (Levi decomposition). Let G be a connected linear algebraic
group over a field k of characteristic 0, and let P ⊂ G be a parabolic subgroup.
Write U = urad(P). Then there exists a reductive subgroup L ⊂ P such that
P = L ⋉ U.

Proof sketch in the matrix case. For G = GLn and P the stabilizer of a flag,
P is the group of block upper triangular matrices, U is the subgroup of block
upper unitriangular matrices, and L is the block diagonal subgroup. This
gives P = L ⋉ U directly. The general case reduces to this by choosing a
faithful representation in which P stabilizes a flag (see Borel [Bo91, §14–15] or
Springer[Spr98, §8–9]).

Equivalently, P is parabolic if and only if the homogeneous variety G/P is
projective; see [Bo91, §11].

Now allowing a general field k, we make the following definition.

Definition 7.7.4. A closed subgroup P ≤ G defined over k is parabolic if G/P
is a projective variety over k. Its unipotent radical is the maximal connected
normal unipotent k-subgroup UP ⊴ P and the Levi quotient is the reductive
k-group LP := P/UP.

Parabolics defined over the ground field are the ones that parametrize
boundary strata of arithmetic quotients, and they are central in reduction
theory.

7.8 Classification over C

See e.g. Helgason [Hel01, §X.6].

7.9 Classification over R

Classification of real Lie groups, see Onischchik–Vinberg or Knapp.
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7.10 Integral models

For integral models and group schemes (when we want a clean notion of “inte-
gral points” over Z or ZF ) see [Con14, Mil17].

We can start by choosing an embedding G ↪→ GLn and then considering
G(F ) ∩GLn(ZF ). This group depends on the choice of embedding.

Lemma 7.10.1. The commensurability class of G(F ) ∩ GLn(R) in G(F ) is
well-defined.

Proof. More precisely, if G is defined over F , then after clearing denominators
in the defining equations one gets some group scheme G ⊂ GLn over R = ZF

with generic fibre GF ≃ G. Changing the embedding gives another model
over R, which changes only finitely many fibers, and this does not affect its
commensurability class [BHC62, Bor69, PR94].

Exercises

Unless otherwise specified, in the exercises we work over a field k.

7.1. For the orthogonal group show that D2 = 1 where D is the determinant,
so On ⊆ Mn is closed but not connected. Draw a picture or cartoon for
n = 2.

7.2. A matrix A ∈ GLn(k) is monomial if each row, column has a unique
nonzero entry.
(a) Show that the set of monomial matrices N is a closed subgroup of

GLn.
(b) Show that N0 = Tn, the diagonal torus.
(c) Show that N/N0 ≃ Sn, with the cosets represented by a permutation

matrix.





Chapter 8

Symmetric spaces

8.1 Overview

We saw that the modular curve Y (1) = SL2(Z)\H2 is naturally the space
of lattices in dimension 2. Similarly, associated to GLn and SLn there is a
space of lattices in dimension n and functions on this space—or more precisely,
functions on a space of framed lattices which have an invariance with respect
to SLn(Z)—are modular forms.

In this chapter, we similarly describe the replacement for the upper half-
plane for a general reductive group G. In this overview, we consider the case
F = Q, shunting to the chapter for the details over number fields. We first
describe the general setup, then descriptions in terms of lattices.

Let G∞ := G(R) denote the real points of G, a real Lie group with finitely
many connected components. Let K∞ ⊂ G∞ be a maximal compact subgroup.
Let D be the global Riemannian space attached to G∞; we have D = G∞/K∞
when G is semisimple.

Then G∞ is a real Lie group with finitely many connected components.
Let K∞ ⊂ G∞ be a maximal compact subgroup and let A∞ ⊂ G∞ be the
connected component of the group of real points of a maximal Q-split torus in
the center of G; if G is semisimple, then A∞ = {1}. Then the quotient D =
G∞/A∞K∞ is a global Riemannian symmetric space. For example, if G = SL2
then K∞ = SO2(R) ⊂ SL2(R) = G∞ and the quotient D can be identified
with the upper half-plane H. If G = Sp2n then K∞ = Un(R) ⊂ Sp2n(R) = G∞
and the corresponding symmetric space D is the Siegel upper half-space of real
dimension n(n + 1), complex dimension n(n + 1)/2.

For the classical groups, these symmetric spaces can be related to framed
lattices (lattices with basis) in many cases.

G/K is contractible and Γ acts with finite stabilizers, so Y (Γ) := Γ\G/K is
an orbifold K(Γ, 1)-space (almost an Eilenberg-MacLane space)—at least that
seems to be true. If Γ is torsion free, then Y (Γ) is genuinely such, which is why
we expect to understand the quotient Y in the same way as understanding Γ.

49
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8.2 Symmetric domain

We mostly follow [BHC62, BS73]. Our goal is to define a natural, nice space
on which G acts. We start with the real points.

Let F be a number field and let

F∞ := F ⊗Q R. (8.2.1)

Then F∞ ≃
∏

v|∞ Fv where Fv ≃ R,C according as if v is a real or complex
place.

Let G be a reductive algebraic group over F .
Remark 8.2.2. In many treatments, it is assumed that G is connected. In
general, by Proposition 7.3.9 G is a finite disjoint union of cosets of the con-
nected component of the identity G0, and accordingly we will just end up with
a disjoint union of symmetric spaces.

For each v | ∞, define
Gv := G(Fv); (8.2.3)

we put them together into

G∞ := G(F∞) ≃
∏
v|∞

G(Fv). (8.2.4)

We have Gv ≃ G(R) or G(C), thinking of F as a subfield of R or C under
the embedding given by the place v. In particular, Gv is a real Lie group or
complex Lie group (so also a real Lie group, but with a preferred complex
structure).

Example 8.2.5. Of course if G = GLn then Gv ≃ GLn(R), GLn(C) and
G∞ ≃ GLn(R)r ×GLn(C)c.

Example 8.2.6. If Q is a nondegenerate quadratic form over F of rank n
and G = O(Q), then for each real v we have a signature Gv ≃ O(pv, qv) with
pv + qv = n.

Example 8.2.7. If G is the group associated to B× where B is a quaternion
algebra over F , then at each ramified real place we have Gv ≃ H×; at each
split real place we have Gv ≃ GL2(R); and at each complex place we have
Gv ≃ GL2(C).

In other words, if G is a form then we can get genuinely different Lie groups
depending on the embedding, and this is a feature!

Real and complex reductive Lie groups can be understood through their
Lie algebras, which are classified.

Recalling our goal, we might as well start contracting what we can from
this space. Indeed, a key part of the classification is as follows: the Lie group
Gv has a maximal compact subgroup (in the real or complex topology), unique
up to conjugation in Gv. Such a maximal connected compact arises as the
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fixed subgroup of a Cartan involution θ. When Gv is connected, this is the end
of the story; but when Gv is not connected, we allow Kv to be any subgroup
containing the maximal connected compact subgroup, necessarily finite index
in the maximal compact subgroup. It is helpful to have such a choice, indeed
we can think of it as being the archimedean component of the level structure
which we choose over the finite adeles.

When Gv is semisimple, this is already enough. But if Gv is reductive,
then there is an additional factor: roughly speaking, Gv/Kv decomposes as
a product of a Euclidean space by a nonpositively curved part which is of
genuine interest (coming from the derived group). The Euclidean factor gives
directions in which the center of G acts noncompactly; the action of the central
torus commutes with everything and just translates along these flat directions,
and here we throw away this global scale parameter (it will not feature in the
modular forms we want to compute).

We let
K∞ :=

∏
v|∞

Kv ≤ G∞. (8.2.8)

Let SG be the maximal F -split torus in the center Z(G), and let

AG,∞ = A∞ := SG(F∞)0 (8.2.9)

be the connected component of the group of F∞-points of this split central
torus. We have A∞ ≤ Z(G∞) inside the center of G∞. (Might need to recon-
sider notation here, since we might as well define AG and write A0

G,∞?)

Example 8.2.10. Suppose F has r real embeddings and c complex embed-
dings. For G = GL2,F ,

D
∼−→ (H2)r × (H3)c

where H2,H3 are hyperbolic spaces of dimension 2, 3 (real dimension 2r + 3c).

Remark 8.2.11. To work over Q instead (as in section 7.4), we could replace
G over F by ResF |Q(G). But then the maximal F -split torus in Z(G) can
differ from the maximal Q-split torus in Z(ResF |Q(G)). For example, for G =
GL1,F = Gm,F itself an F -split torus we have SG = G and AG,∞ = (F×

∞)0 ≃
(R×

>0)r × (C×)c. However, for G = ResF |Q(GL1,F ) we have G(Q) = F× and so
the maximal Q-split torus is just SG = Gm,Q and accordingly SG(R)0 = R>0.

For G = GL2,F with F totally real, we get a Hilbert modular variety.
Taking the restriction of scalars G = ResF |Q(GL2,F ) we instead get a torus
bundle over a Hilbert modular variety (so in general not an algebraic variety).
For G = SL2,F and its restriction of scalars, we again get the Hilbert modular
variety.

Because A∞ is central, right multiplication by A∞ on G∞ commutes with
right multiplication by K∞, and it descends to a well-defined right action on
G∞/K∞

(gK∞) · a = gaK∞
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for a ∈ A∞.
We then define

Dv := Gv/Kv

D∞ :=
∏
v|∞

Dv
(8.2.12)

and call D∞ a global symmetric domain attached to G (for the subgroup
K∞).

Proposition 8.2.13. Every connected component of D∞ is diffeomorphic to
Euclidean space.

Proof. Without loss of generality we may suppose that K∞ is a maximal com-
pact subgroup. Choose a Cartan involution θ of G∞ with fixed subgroup K∞,
and let g = k ⊕ p be the corresponding decomposition of Lie algebras. The
global Cartan decomposition gives a diffeomorphism

p
∼−→ G∞/K∞

X 7→ exp(X)K∞.
(8.2.14)

Thus G∞/K∞ ≃ Rp where p = dim p.
The central split torus A∞ is stable under θ, acting freely and properly on

G∞/K∞ by right translation; its orbits correspond to translations along an
affine subspace of p. Hence the quotient (G∞/K∞)/AG ≃ G∞/(AGK∞) is
again diffeomorphic to a Euclidean space, now of dimension p− dim A∞.

In particular, each component of D∞ is connected and contractible. Now
G∞ is locally compact (as a real or complex Lie group), so it has a Haar
measure unique up to scaling. This descends to D∞, giving each component
the structure of a uniquely geodesic space.

8.3 Spaces of lattices and quadratic forms

In this section, we consider the case G∞ = GLn(R), for example coming from
G = GLn over F = Q and we characterize the global symmetric space using
lattices.

8.3.1. For g ∈ G∞, the rows of g span a lattice Λ ⊆ Rn (of rank n); so we
can think of G∞ as being the space of framed lattices (i.e., lattice with basis).
The group K∞ = O(n) acts by reflection and rotation of the lattice from the
ambient Rn and the group A∞ ≃ R>0 corresponds to rescaling the lattice,
corresponding to forgetting about the particular choice coordinates on Rn. So
we can think of D∞ as being the space of shapes of framed lattices (with the
shape being determined by the relative legnths and angles of the vectors in the
frame).

If instead we take G = SLn, then we get G∞ = SLn(R), K∞ = SOn(R) and
A∞ = {1}; we can always rescale a lattice to have absolute determinant 1, so
now D∞ gives the space of shapes of oriented framed lattices.
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To get explicit coordinates on this space, we use the QR decomposition
(or more precisely, the LQ decomposition): every matrix A ∈ Mn(R) can
be written uniquely in the form A = LQ where Q is orthogonal and L is
lower triangular (the transpose of the QR decomposition). This is algorithmic
and efficient, indeed it is the output of the Gram–Schmidt orthogonalization
process.

Thus the (real) dimension is

dim DGLn,Q,∞ = dim DSLn,Q,∞ = n(n + 1)
2 − 1 (8.3.2)

(the minus 1 coming from the determinant or covolume), which gives dimension
2, 5, 9, 14, 20, . . . for n = 2, 3, 4, 5, . . . .

In the next section (??), we remove the choice of frame by taking a further
quotient by change of basis of the lattice!

Example 8.3.3. In the case n = 2, given a framed lattice of rank 2 then we
can rotate until the first vector lies along the positive real line, rescale so that
it is (1, 0), and then reflect if necessary to get the second basis vector in the
upper half-plane, which is D∞! For SL2, we are assured without reflection
that the second basis vector is automatically in the upper half-plane, by the
orientation.

Example 8.3.4. Now for n = 3 and G = SL3, we have six real parameters:
by RQ decomposition, a point of D∞ can be represented by t1 0 0

x12 t2 0
x13 x23 t3

 , t1, t2, t3 > 0, x12, x13, x23 ∈ R.

We think of t1, t2, t3 as being scale parameters, encoding lengths of the ba-
sis vectors; and x12, x13, x23 as being shear parameters, encoding the angles
between the basis vectors.

Geometrically, after rotating R3 so that the first basis vector lies on the x-
axis and the second lies in the xy-plane, the columns define an upper-triangular
matrix. For general n, this is what is provided by Gram-Schmidt orthogonal-
ization.

8.3.5. Continuing with the previous paragraph of G = GLn over F = Q, we
reinterpret the shape by encoding it as a quadratic form. Given g ∈ G∞ =
GLn(R), define

Tg := ggt (8.3.6)
Then Tg is symmetric and positive definite with det Tg = (det g)2, so Tg

defines a quadratic form by Qg(x) = xtTgx for x ∈ Rn (column vectors). It is
sometimes useful to divide Q by 2, but nevermind!

The reason this encodes shape: multiplying on the right by k ∈ K∞ =
On(R) yields

Tgk = (gk)(gk)t = gkktgt = ggt = Tg (8.3.7)
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since kkt = 1 (the condition characterizing belonging to On(R)!).
Conversely, given a symmetric positive-definite matrix T ∈ Mn(R), there

exists g ∈ GLn(R) such that T = Tg by the Cholesky decomposition, and g is
well-defined up to right multiplication by On(R).

Thus we have an identification

D∞
∼←→ Mn(R)sym,>0/R>0 (8.3.8)

of D∞ with positive-definite, symmetric real matrices up to scaling (homoth-
ety). Strictly speaking, the scalar matrix t acts by rescaling Tg 7→ t2Tg, which
is good because it should preserve the positive-definiteness.

For SLn(R), we have the same, but with unimodular lattices.
In particular, this gives a fast way to remember dim D∞ = n(n + 1)/2− 1.

Example 8.3.9. When n = 2, given g =
(

1 0
a b

)
∈ GL2(R) we get

Tg =
(

a2 + 1 ab
ab b2

)
and the quadratic form

(a2 + 1)x2 + 2abxy + b2y2.

8.4 Hyperbolic spaces

There is a nice sequence of models, generalizing the familiar upper half-plane,
for the local symmetric space when the group Gv has real rank one, classified
in Proposition 7.6.2.

Example 8.4.1. Real hyperbolic space has three possible models. First, there
is the upper half-space model

Hn := Rn−1 × R>0 (8.4.2)

for which we have seen H2 and H3. The action of SO(n, 1)0 is by Möbius
transformations of Rn−1 ∪ {∞} extended to the interior: see work of Dupuy–
Hilado–Ingalls–Logan [DHIL24] for the action of the spin group by linear frac-
tional transformations coming from the Clifford algebra.

Second, there is the hyperboloid model

Ln := {(t, x1, . . . , xn) ∈ Rn+1 : Q(x) = 1, t > 0} (8.4.3)

where
Q(t, x1, . . . , xn) = t2 − x2

1 − x2
2 − · · · − x2

n. (8.4.4)
The isometry group SO(n, 1)0 acts linearly on Rn+1.

Finally, there is the Poincaré ball model

Dn := {u ∈ Rn : ∥u∥ < 1}, (8.4.5)
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and the Klein/projective model; you get it by projecting the hyperboloid
through the origin to the affine slice t = 1. Accordingly the group acts by
projective transformations.

For comparisons of these in the case n = 2 see [Voi21, §33.7].

Example 8.4.6. Next is complex hyperbolic space. We replace the quadratic
form (8.4.4) with the Hermitian form

Q(z1, . . . , zn) = |z1|2 − |z2|2 − · · · − |zn|2 (8.4.7)

with zi ∈ C, and define

Hn
C := {(z1 : · · · : zn) ∈ Pn(C) : Q(z) < 0}.

Then (n, 1) acts by projective linear transformations preserving the form. There
is a model like the upper half-space model.

There is also quaternionic hyperbolic space, replacing C by H to get Sp(n, 1),
and finally a Cayley hyperbolic plane to get an exceptional rank-one space.

8.5 Representations

Algebraic representations, highest weight vectors, and things that are more
general. Ultimately these will correspond to the weight of the modular form.

8.6 Arithmetic groups

For arithmetic subgroups and reduction theory over number fields see [PR94,
Bor69].

The group G∞ acts by left-multiplication on the global symmetric domain
D∞ (8.2.12) by isometries, analogous to the action of GL2(R) on the upper
half-plane [Voi21, 33.3.10]. (To get the union of upper and lower half-planes,
we can take K∞ = SO(2) instead of O(2), no longer a maximal compact. Are
there other examples where it is good to work with subcompacts?)
Remark 8.6.1. Let Γ ≤ G∞ be a discrete group. Then Γ acts properly on D∞?

Let
G := G(F ) (8.6.2)

be the F -rational points. Under the diagonal embedding we have naturally
G ≤ G∞.

Definition 8.6.3. A subgroup Γ ≤ G = G(F ) is arithmetic if Γ is commen-
surable with G(ZF ) ≤ GLn(ZF ) for some F -embedding G ↪→ GLn.

Recall that two groups are commensurable if the intersection is finite in-
dex in both; it is an exercise to show that if Γ is commensurable with GLn(ZF )
under some F -embedding then it is so under all.
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Let Γ ≤ G be an arithmetic subgroup. We then form the locally sym-
metric domain

Y = Y (Γ) := Γ\D∞. (8.6.4)

The domain Y is a good orbifold, analogous to the open modular curve. If
further Γ is torsion-free then Y is a manifold.

Later, when we work with compactifications, we will need a stronger con-
dition which precludes boundary stabilizers as well.

Definition 8.6.5. We say that Γ is neat if for every γ ∈ Γ the subgroup of
(Qal)× generated by the eigenvalues of γ (in a faithful representation of G)
contains no nontrivial roots of unity.

Immediately neat implies torsion-free, but it is strictly stronger; and the
condition of being neat is independent of the representation.

Proposition 8.6.6. Every arithmetic subgroup Γ contains a neat subgroup of
finite index.

Proof.

Theorem 8.6.7. The quotient Y has finite volume.

Proof. See Borel–Harish-Chandra [BHC62].

When G is semisimple, we sometimes then say that Γ ≤ G∞ is a lattice
(as another way of saying that the quotient has finite volume). So not just
discrete (like Z ⊆ R2), but big enough (like Z2 ⊆ R2)!
Remark 8.6.8. In general, we will want to reduce to the case where Γ is torsion-
free, which feels like some loss of generality. But in truth we work like we
would with a stack: we pass to Γ′ ≜ Γ of finite index and then get what we
need geometrically or topologically, then take the quotient Γ/Γ′. In this way,
we can pass to Γ′ neat without loss of generality.

As with modular curves, we are primarily interested in those finite index
subgroups

Definition 8.6.9. Let N ⊆ R be a nonzero ideal. The principal congruence
subgroup of level N is the kernel of the map G(R)→ G(R/N).

Definition 8.6.10. An arithmetic group Γ is congruence if it contains a
principal congruence subgroup for some N.

Remark 8.6.11. Not all arithmetic groups are congruence: already there are
a wealth of noncongruence subgroups of SL2(Z). But for SLn(Z) with n ≥ 3
or Sp2n(Z) for n ≥ 2, every arithmetic group is congruence; and in many
other cases, the failure of arithmetic groups to be congruence is measured
(globally) by a finite group. So although congruence subgroups are special
among arithmetic groups, for our purposes we have not lost anything.
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8.7 Hermitian symmetric domains

8.7.1. The symmetric space Dv for a maximal compact Kv is of Hermi-
tian type when it carries a G-invariant Hermitian (complex) structure. This
happens exactly when the center of the Lie algebra of Kv is nontrivial, or equiv-
alently when Z(Kv) has a circle factor. The simple real groups of Hermitian
type are those whose Lie algebras match the Lie algebras of:

• SO(2, n)0 with n ≥ 1 (not simple for n = 2), with

D = SO(2, n)0/(SO(2)× SO(n))

a tube domain;
• SU(p, q) with p, q ≥ 1, with D = SU(p, q)/S(U(p) × U(q)), a complex

Grassmannian domain;
• Sp(2n,R) with n ≥ 1, with D = Sp(2n,R)/U(n) the Siegel upper half-

space;
• the quaternionic orthogonal group SO∗(2n); or
• two real forms of the exceptional groups E6 and E7.

In these cases, Y (Γ) is a quasi-projective variety, a locally symmetric
variety or a Shimura variety.

Sorry about the notation Sp(2n,R) for the subgroup of GL2n(R) which
preserves the standard nondegenerate alternating form: we might write Sp(2n)
but apparently this can be confused for the compact form (quaternionic unitary
group).

Example 8.7.2. For Sp(2n,R) the Siegel upper half-space is now a target for
moduli spaces of abelian varieties.

Example 8.7.3. For SO(2, n), a tube domain, following Bruinier, with the
special cases n = 2, 3 related to previous.

Hermitian symmetric domains are also the natural target for period maps,
as in the case of elliptic curves!

8.8 Borel–Serre compactification

A reference for this section is the original paper by Borel–Serre [BS73]; we also
follow Goresky [Gor05, §4].

Example 8.8.1. For G = SL2 over Q, we have D∞ ≃ H2. For Γ = SL2(Z),
there is one Γ-conjugacy class of proper parabolics, represented by the upper
triangular Borel subgroup. The unipotent radical is U(R) ≃ R and Γ∩U(Q) ≃
Z. Thus the Borel–Serre boundary stratum is a circle:

(Γ ∩ U(Q))\U(R) ≃ Z\R ≃ S1. (8.8.2)
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Geometrically, a cusp neighborhood in Y = Γ\H is (S1) × (T,∞) and the
Borel–Serre compactification replaces it by (S1) × [T,∞], adding a boundary
circle.

If you were hoping for the one-point compactification, maybe that is ad-
dressed by the reductive Borel–Serre compactification, or something else?

Do we get the same thing for GL2? The additional element in GL2(Z) ∖
SL2(Z) does not seem to matter.

Example 8.8.3. Next GL2,F where F is an imaginary quadratic field. We
saw in section 6.1 that the cusps are in natural bijection with the ideal class
group of ZF . Each cusp is stabilized by a parabolic subgroup, and so the orbits
are specified by conjugacy classes of such. For example, the trivial ideal class
is stabilized by the upper-triangular subgroup, which is an extension of Z×

F by
ZF .

The Borel–Serre compactification adds the quotient of ZF ⊗ R ≃ C by the
translation group of the parabolic, which is a real 2-torus in fact C/a which
has the struture of a complex elliptic curve with CM by ZF . Thus XBS is a
compact 3-manifold with boundary a disjoint union indexed by cusps.

Example 8.8.4. Next we consider G = SLn over Q. Then parabolics corre-
spond to flags in Qn, or equivalently to block upper triangular subgroups. If
P corresponds to a partition n = n1 + · · · + nr, then UP is the block-upper
unipotent group and LP is SLn(Z) ∩

∏r
i=1 GLni

. The boundary stratum is a
bundle over a product of lower-rank locally symmetric spaces, with compact
fiber ΓU\UP(R). Corners correspond to refining flags.

Example 8.8.5. For Sp2g over Q, D is Siegel upper half-space Hg. Parabol-
ics correspond to isotropic flags, UP is typically a Heisenberg-type unipotent
group, and boundary strata again form nilmanifold bundles over Siegel varieties
of smaller genus.

In this case, there are other compactifications, including reductive Borel–
Serre (see our end remark), Baily–Borel, and toroidal compactifications, and
they can be compared explicitly.

Theorem 8.8.6 (Borel–Serre). The space D∗
∞ is a smooth manifold with cor-

ners containing D∞ as a dense open submanifold. The action of Γ on D∞
extends to a proper action on D∗

∞, and the quotient

XBS(Γ) = X(Γ) := Γ\D∗
∞

is compact. If Γ is neat, then X(Γ) is a compact manifold with corners whose
interior is Y (Γ) = Γ\D∞. Moreover, the inclusion D∞ ↪→ D∗

∞ is a Γ-
equivariant homotopy equivalence, hence Y (Γ) ↪→ X(Γ) is a homotopy equiva-
lence.

Proof sketch. The manifold-with-corners structure is local in the cusp direc-
tions and comes from the local models UP (F∞)×(R≥0)rP ×DP in horospherical
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coordinates. Contractibility follows from a Γ-equivariant deformation retrac-
tion that pushes points off the boundary in the (R≥0)rP -coordinates and uses
compatibility under gluing. Compactness of the quotient is where reduction
theory enters: one covers D by finitely many Γ-translates of Siegel sets, and the
only noncompactness is divergence in AP /AG-directions, which become com-
pact after replacing (R>0)rP by (R≥0)rP and gluing faces across parabolics.

We conclude with a description of the boundary strata and their structure.
Finally, there is some combinatorics in the boundary, which can be described

via buildings (see [BT65]). Let B(G) be the spherical Tits building of G over
F , whose simplices correspond to proper F -parabolics.

Theorem 8.8.7. The boundary bd(D∗
∞) := D∗

∞ \ D has the homotopy type
of B(G). In particular, it is homotopy equivalent to a wedge of spheres of
dimension rkF (G)− 1.

Proof sketch. One covers bd D∗
∞ by closed subsets indexed by maximal proper

parabolics, arranged so that all finite intersections are either empty or con-
tractible and correspond exactly to common refinements. The nerve of this
cover is the building, hence the boundary has the same homotopy type. Fi-
nally, Solomon–Tits computes the homotopy type of the building.

We will attach natural families of relative cycles to parabolics, generalizing
modular symbols. We will return to this perspective in Chapter 3 once we define
Hecke operators as double cosets and compare them with correspondences on
X(Γ).

8.9 Reductive Borel–Serre compactification

There are other compactifications which are also useful; we record a bit here,
following Goresky [Gor05] and Borel–Ji [BJ02].

The Borel–Serre boundary strata are quotients of nonreductive groups, bun-
dles with unipotent fibers. The idea of Zucker is to collapse these unipotent
fibers, leaving strata that are themselves locally symmetric for Levi quotients.

Example 8.9.1. In the modular curve example, Borel–Serre adds boundary
circles at cusps, while reductive Borel–Serre collapses each circle to a point.

8.10 Compactifications in the Hermitian case

When D∞ is Hermitian (see 8.7.1), then there are two further compactifica-
tions: the Baily–Borel (Satake) compactification which is a complex projective
algebraic variety, usually singular, and toroidal compactifications (providing
various resolutions of singularities of the Baily–Borel).
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Exercises

8.1. In Example 8.3.9, show directly that every positive-definite binary quadratic
form is of the given form, and interpret this in terms of the Cholesky de-
composition.



Chapter 9

Adelic quotients

9.1 Overview

Computational application and conceptual mathematical understanding rein-
force and extend one another. For this reason, we cannot neglect the role of
the adeles: they not only explain issues with class groups and field of defini-
tion, but they help in the abstraction of Hecke operators. All of these can be
translated into explicit algorithms.

9.2 Level structure

There are many good references for adeles and ideles; for continuity we follow
Voight [Voi21, Chapter 27]. Our main motivation is to separate local compu-
tations (at a single prime) from global bookkeeping.

Let
F̂ :=

∏′

p

Fp (9.2.1)

be the finite adeles of F , the restricted direct product under the compact
product

∏
p Rp. The finite adeles pair with the infinite adeles to give the full

adele ring
F := F̂ × F∞ =

∏′

v

Fv. (9.2.2)

Let G ≤ GLn,F be an embedded reductive group over F . As above, this
gives an integral model G of G with for example G(R) = G(F ) ∩GLn(R).

For each prime p, the group G(Fp) is locally compact and the subgroup
G(Rp) ≤ G(Fp) is a compact open subgroup.

We then similarly form

Ĝ :=
∏′

p

G(Fp) (9.2.3)

with respect to the compact product
∏

p G(Rp). This restricted direct product
is independent of the choice of representation (any two will yield a different
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integral structure at only finitely many primes). We have already made friends
with G∞.

A level is a compact open subgroup K̂ ≤ Ĝ.
The finite and infinite parts go together to form

G := G(F ) = Ĝ×G∞. (9.2.4)

It is convenient to have a description which treats archimedean and nonar-
chimedean places in a parallel fashion; but in truth, they behave complelely
differently in the description of automorphic forms, so we also have good no-
tation for the two pieces.

9.3 Double cosetification

Here come the double cosets! The OG double coset is the class group of a
number ring R, as follows. A fractional R-ideal a is locally principal, so if we
choose a generator ap = apRp the element ap ∈ F×

p is well-defined up to multi-
plication by R×

p , and we have ap = 1 (or ap ∈ R×
p ) for all but finitely many p.

Thus we get a map from the group of fractional R-ideals to F̂×/R̂×, and indeed
this is an isomorphism. If we want ideal classes, then we impose the equiva-
lence relation obtained by multiplication by F×. We obtain an isomorphism
Cl R

∼−→ F×\F̂×/R̂×.
This way of organizing things has a vast generalization. Let K̂ ≤ Ĝ be a

level. We then form

Y = Y (K̂) := G\(Ĝ/K̂ ×D∞) (9.3.1)

where G acts diagonally. Recall that D∞ is almost G∞/K∞, so the two factors
are quite parallel!

The natural projection

G\(Ĝ/K̂ ×D)→ G\Ĝ/K̂ (9.3.2)

is continuous. We can think of G\Ĝ/K̂ as a class set attached to G and K̂: it
measures a failure of a local-global principle.

Theorem 9.3.3. The set G\Ĝ/K̂ is finite.

Example 9.3.4. For example, if G = GLn,F and K̂ = GLn(R̂), then by strong
approximation the determinant map

det : GLn(F )\GLn(F̂ )/ GLn(R̂)→ F×\F̂×/R̂× = Cl R (9.3.5)

is an isomorphism onto the class group of R.

Proof sketch, Theorem 9.3.3. Since K̂ ≤ Ĝ is open, the quotient Ĝ/K̂ is quite
intense: it has the discrete topology (every set is open). Indeed, every coset of
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K̂ is open (by translation) which (by the quotient topology) implies that every
point in Ĝ/K̂ is open!

So if we can show that the quotient G\Ĝ/K̂ is compact, then it is finite. To
show cocompactness, we show that every double coset has a representative in a
fixed compact subset of Ĝ: there exists a compact subset C such that GCK̂ =
G\Ĝ/K̂, i.e., every class in G\Ĝ/K̂ has a representative in C, reminiscent of
how we prove the finiteness of the class group.

Once we know Example 9.3.4, then we can conclude using a faithful repre-
sentation ρ : G→ GLn,F .

In light of Theorem 9.3.3, we may choose a finite set of representatives

G\Ĝ/K̂ =
<∞⊔

i

Gβ̂iK̂ (9.3.6)

with β̂i ∈ Ĝ. We then define

Γi := β̂iK̂β̂−1
i ∩G. (9.3.7)

Then Γi is a congruence arithmetic group.
Moreover,

Y (K̂) =
⊔

i

Y (Γi) (9.3.8)

where Y (Γi) = Γi\D∞ is a good orbifold as previously considered. (Usually,
K∞ is a maximal compact so D∞ is connected, in which case these are the
connected components of Y (K̂).)

In other words, the introduction of the adeles so far has helped us to avoid
an ugly class number 1 hypothesis by indicating how the naturally defined
symmetric space, incorporating all places of F , is naturally a disjoint union of
locally symmetric spaces indexed by a class set.

9.4 Hecke operators

Not only do adeles help organize according to class groups, it also provides a
cleaner definition of Hecke operators.

Hecke operators can be thought of in many equivalent ways: as correspon-
dences, as averaging over neighors. Here we think of them group-theoretically.

Let H(K̂) be the space of locally constant, compactly supported, K̂-bi-
invariant functions on Ĝ. Then H(K̂) is a ring under convolution, called the
(spherical?) Hecke algebra, and is generated by the characteristic functions
T (ĝ) of double cosets K̂ĝK̂ for ĝ ∈ Ĝ.

For ĝ ∈ Ĝ, the double coset K̂ĝK̂ defines a correspondence

X(K̂)← X(K̂ ∩ ĝ−1K̂ĝ)→ X(K̂), (9.4.1)
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obtained from pull back under the first projection and then pushforward under
the second projection. Ultimately, this will induce operators on functions and
(co)homology, at the chain level it becomes a finite sum over coset representa-
tives analogous to the usual definition for classical modular forms.



Chapter 10

Modular forms on reductive
groups

10.1 Automorphic forms

To a first approximation, automorphic forms are analytic functions on the
adelic points of a reductive group.

Let F be a number field and let G be a reductive group over F with F∞ =
F ⊗Q R and finite adele ring F̂ . Recalling our notation, we let G∞ = G(F∞),
Ĝ = G(F̂ ), G = G(F ) = G∞ × Ĝ, and finally G = G(F ). Then G acts
diagonally on the left on G∞ × Ĝ by left multiplication.

Let K∞ ≤ G∞ contain the maximal connected compact subgroup and let
K̂ ≤ Ĝ be a compact open subgroup. The globally symmetric space is D∞ =
G∞/(A∞K∞) and the locally symmetric space is Y (K̂) = G\(D∞ × Ĝ/K̂).

A K∞-type is a finite-dimensional complex representation τ : K∞ → GL(V ).
For brevity, we will often abbreviate this by just V but we have not forgotten
the representation it affords. A K∞-type defines a homogeneous vector bundle
V on Y (K̂)

G\(Ĝ/K̂ ×G∞/A∞ × V )/K∞ → Y (K̂) = G\(Ĝ/K̂ ×G∞/A∞)/K∞

where G acts diagonally on Ĝ/K̂ ×G∞/A∞ and trivially on V , and K∞ acts
on the right trivially on Ĝ/K̂ and by

(g∞, v)k∞ = (g∞k∞, τ(k∞)−1v).

A section of V is therefore a V -valued invariant function on Ĝ/K̂ ×G∞/A∞,
i.e.,

f(g(x̂, g∞)k∞) = τ(k∞)−1f(x̂, g∞) (10.1.1)

for all g ∈ G, x̂ ∈ Ĝ, g∞ ∈ G∞, and k∞ ∈ K∞.
We view (10.1.1) as the generalization of weight k invariance for classical

modular forms.
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Definition 10.1.2. An automorphic form of level K̂ and K∞-type V is a
function

f : G(F ) = G∞/A∞ × Ĝ→ V

which is smooth on G∞, locally constant on Ĝ, and satisfies the following
properties:

(i) f(gx) = f(x) for all g ∈ G and x ∈ G (left G-invariant);
(ii) f(xk̂) = f(x) for all k̂ ∈ K̂ (right K̂-invariant);
(iii) f(xk∞) = τ(k∞)−1f(x) for all k∞ ∈ K∞ (right K∞-equivariant);
(iv) f is Z(U(gC))-finite, where gC := Lie(G∞) ⊗R C (f satisfies a “nice”

differential equation); and
(v) f has moderate growth.

Condition (iv) says that f lies in a finite-dimensional generalized eigenspace
for the action of Z(U(gC)) and implies that in fact f is real analytic. Both
conditions (iv) and (v) are important, but certainly not the focus of these
notes.

Definition 10.1.2 generalizes the very useful “sections of a line bundle” point
of view; this can be reinterpreted back in terms of C-valued functions on G∞
by asking that that they are K∞-finite, then decomposing according to repre-
sentations of K∞, and then we are back to the above definition.

Similarly, if we do not want to specify K̂ in advance, we can also consider
the larger space of functions without condition (ii); but such functions f are
locally constant and so constant on the cosets of a compact open subgroup
K̂ ≤ Ĝ, so arise with some level. Hence this larger space is the direct limit
(union) of spaces with level.

This definition is really great in its generality, but it does not look altogether
amenable to computation: after all, in these notes we are looking for some kind
of finite-dimensional vector space with a Hecke action and algorithms!

To zoom in on something that can be made computational: we recall our
success in the first part computing modular forms by working with modular
symbols with coefficients in a representation. Via the Eichler–Shimura isomor-
phism, we also reinterpreted this as arising in cohomology. On the one hand it
is a bit sad that we are losing our direct connection to sections over Y (K̂); but
on the other hand, we should not feel like we need to apologize for cohomology!

10.2 Quick review on cohomology

10.3 Cohomology

The Hecke algebra for K̂ (and G) acts on spaces of automorphic forms and
on cohomology; this permits an identification which connects these two worlds
through linear algebra.

A weight is a finite-dimensional complex representation G → GL(W ),
usually taken to be irreducible. An irreducible weight is specified by highest
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weights at each of the the archimedean places. Again associated to W is a
bundle W .

Definition 10.3.1. Let f be an automorphic form of level K̂ that is a Hecke
eigenform. We say that f is cohomological of weight W and degree r ∈ Z≥0
if the Hecke eigensystem associated to f occurs in Hr(Y (K̂), W ).

In other words, there exists a class [c] ∈ Hr(Y (K̂), W ) such that Tα̂f =
Tα̂[c] for all Hecke operators Tα̂. It might be better to define Hecke irreducible
subspaces, and implicitly this is respect to some choice of embedding Eal ↪→ C
for this.

For purely psychological reasons, we will also use the abbreviation

MW,r(K̂) := Hr(Y (K̂), W ) (10.3.2)

for the space of cohomological automorphic forms of level K̂, weight W , and
degree r (obtained from the span of eigenforms).

Importantly, not all automorphic forms are cohomological—among classi-
cal modular forms, they are exactly those of weight k ≥ 2. We also have not
even started talking about Maass forms (or any other more general class!).
Nevertheless, to avoid tripping our tongues, in these notes we will call a co-
homological automorphic form just a modular form. Sorry to the forms of
weight 1 and all the others, we mean no disrespect! This abbreviation is only
as serious as restricting attention to commutative rings or finite-dimensional
algebras but not wanting to repeat the adjective each time!

So in this approach, we algorithmically first try to construct Hecke modules;
then, if desired and where possible, we try to reconstruct the automorphic form
using some kind of series expansion. This is like going from the eigenvalues an

to a classical modular form, which even in that case is not always a trivial step
(unless we have a standard congruence subgroup)!

We do not attach a single pair of weight and degree to an automorphic
form, as the same system of Hecke eigenvalues may occur in more than one
such. There is a well-defined set of degrees computed by Vogan–Zuckerman.

In the same way, we should not confuse the K∞-type with the weight:
the weight and degree determine the K∞-type, and in general the matching
between the two is again given in representation-theoretic terms.

From a double coset decomposition (9.3.8), we obtain a decomposition

Hr(Y (K̂), V ) ∼−→
⊕

i

Hr(Γi\D∞, V ). (10.3.3)

Since D∞ is contractible, we have an isomorphism Hr(Γi\D∞, V ) ≃ Hr(Γi, V ).
This is true even if Γi has torsion, since have taken our weight representation
to have complex coefficients.

In this way, we have in principle turned our problem of computing modular
forms into something which we could imagine inputting into a computer: the
groups Γi are finitely presented, the weight is an algebraic representation, and
we are asking for group cohomology—yas!
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Remark 10.3.4. The discrepancy between these two over say finite fields en-
codes interesting torsion and congruences phenomena which is unfortunately
neglected here.

Only finitely many values of q will produce nonzero spaces of modular forms,
by a theorem of Borel– Serre: we have Hr(Y, V ) = 0 whenever q is at least the
virtual cohomological dimension of Γ, equal to the dimension of D minus
the rank of a maximal F -split torus in G.

10.4 (g, K)-cohomology

In this section, we sketch the connection between automorphic forms and co-
homology using tools from representation theory. The algorithmically inclined
reader is encouraged to skip this section!

One way to think about (g, K∞)-cohomology is that it is the representation-
theoretic model for the de Rham cohomology of the locally symmetric space
(with coefficients), giving rise to harmonic differential forms. So from our point
of view, it provides the right generalization of classical modular forms of weight
k ≥ 2.

10.5 Cuspidal and Eisenstein cohomology

We have a decomposition of H∗(Y, V ) into a direct sum of cuspidal cohomol-
ogy and Eisenstein cohomology. Cuspidal cohomology corresponds to cuspidal
automorphic forms; the remaining Eisenstein cohomology is built up from au-
tomorphic forms on subquotients of G.
Remark 10.5.1. We could remember this cohomological degree by adding sepa-
rate data: instead of defining only functions (0-forms), we replace the target W
by Hom(∧qp, W ) where g = k⊕ p and work with the natural K∞-equivariance.
Then “cohomological in degree q” becomes the condition that the resulting
W -valued q-form is closed (and harmonic).

10.6 Hecke operators

The cohomology groups Hr(Y, V ) =
⊕

i Hr(Γi, V ) are equipped with an action
of Hecke operators for each double coset K̂π̂K̂ with π̂ ∈ Ĝ by correspondences.

Explicitly, given a characteristic function T (π̂) as in section 9.4, we decom-
pose the double coset K̂π̂K̂ into a disjoint union of right cosets

K̂π̂K̂ =
⊔
j

π̂jK̂. (10.6.1)

We can then define the action of T (π̂) on f ∈MW (K̂) by

(T (π̂)f)(ĝ) =
∑

j

f(ĝπ̂j). (10.6.2)
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This action is well-defined (independent of the choice of representative π̂ and
representatives π̂j) by the right K̂-invariance of f . The Hecke operators gen-
erate an associative Z-algebra in End(Hr(Y, W )).

10.7 Degeneracy maps





Chapter 11

Computing modular forms

11.1 Computational problem

The input is:

• A number field F ,
• A reductive group G over F ,
• A level K̂ ≤ Ĝ,
• A weight W (with G ⟳ W ),
• A degree r ≥ 0.

As output, we mean to compute with the space MW,r(K̂) = Hr(YG(K̂), W )
of modular (cohomological automorphic) forms of weight W , and degree r, and
level K̂. As for classical modular forms (section 2.9), our suite of tasks:

1. compute dimension data, organized by spaces of lifts, and the decompo-
sition into Hecke irreducible subspaces;

2**. compute the Hecke action on MW,r(K̂);
3. extract Hecke eigensystems using linear algebra;
4. perform a decomposition into oldforms and newforms; and
5. write out series expansions.

Again the computations do not stop here! But we try to stay within scope.
For the purposes of these notes, the output of the algorithm is a Hecke

module, meaning a finite-dimensional vector space V over a finitely generated
field of characteristic 0 equipped with a procedure that, given a double coset
K̂π̂K̂ with π̂ ∈ Ĝ, computes the associated Hecke operator as an endomorphism
of V , i.e., a matrix with entries in E (the base field of W ) in the specified basis
for V .

Described in this way, this sure does seem like a difficult problem in general!
Nevertheless, we propose the following conjecture.

Conjecture 11.1.1. There exists an algorithm that, given a reductive group G
over a number field F , a level K̂, a weight W , and r ≥ 0, computes the space
MW,r(K̂) as a Hecke module.

71



72 CHAPTER 11. COMPUTING MODULAR FORMS

By inductive calls, we may isolate the cuspidal cohomology from the Eisen-
stein cohomology (arising from groups of lower rank).

11.2 Algorithm overview

There are roughly four classes of algorithms for computing modular forms.

1. Definite methods (algebraic modular forms)
2. Modular symbols and the Voronoï complex
3. Trace formulas
4. Explicit lifts and multiplication

Over the next two lectures, we will focus on the first two.

11.3 Discussion



Part III

Algebraic modular forms
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Chapter 12

Theta series and Brandt matrices

12.1 Theta series and lattice methods

Theta series give modular forms attached to lattices (and more generally to
automorphic representations). In computational practice they serve two roles:
they provide explicit modular forms to test algorithms against, and they often
span interesting subspaces (Eisenstein and sometimes cusp forms). In higher
rank, theta lifting is also a way to produce forms with known Hecke eigenvalues.

12.2 Brandt matrices

See [Voi21, Chapter 41].
For F = Q and disc B = p, the Brandt matrix is the adjacency matrix

of the directed ℓ-isogeny graph among isomorphism classes of supersingular
elliptic curves over Fal

p (specified by j-invariant). This connects with the other
lectures!

75





Chapter 13

Definite setting

There is a special and very interesting class of reductive groups G for which we
can compute modular forms, in the sense of these notes: where the real points
G∞ = G(R) modulo its center is compact. In this case, the associated global
symmetric space DG,∞ has dimension zero—it is a finite set of points! (How
great is that?!)

Gross [Gro99] investigated the associated modular forms, which are just in-
variant functions on a finite set—with the geometry essentially gone, he dubbed
them algebraic modular forms. In this case, the Hecke operators can be com-
puted using purely algebraic means, making it particularly well-suited for com-
putations.

Is this chapter, we set up the basic infrastructure for these forms, followed
by several chapters explaining special interesting cases.

13.1 The totally definite setting

References for this section are the fundamental article of Gross [Gro99] and an
expository account by Loeffler [Loe08].

Let G be a reductive group over a number field F . Recall that we associate
a symmetric domain D∞ = G∞/(A∞K∞) obtained from the quotient of the
real points G∞ = G(F∞) by the product of K∞ (a subgroup containing the
maximal connected compact subgroup of G∞) together with A∞ = SG(R)0

(the connected component of the real points of a maximal F -split torus in G).
So to make D∞ of small dimension, we want the compact K∞ and the real
torus A∞ to be of large dimension.

The smallest it could be is dimension 0, of course, and that situation is
described by the following equivalence. As before, let G = G(F ) and Ĝ = G(F̂ ).

Proposition 13.1.1. The following statements are equivalent.

(i) DG,∞ has (real) dimension 0 (for all K∞).
(ii) SG(R) is a maximal split torus in G∞.
(iii) The derived group Gder has Gder(F∞) compact.
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(iv) Every arithmetic subgroup Γ ≤ G is finite.
(v) The trivial group Γ = {1} is an arithmetic subgroup of G.
(vi) G is a discrete subgroup of Ĝ.
(vii) G is a discrete subgroup of Ĝ and the quotient G\Ĝ is compact.

Moreover, if G is almost simple, then these are further equivalent to

(viii) G∞ is compact.

If a reductive group G enjoys the equivalent properties in Proposition 13.1.1,
we say that G is totally definite; others might say compact at ∞ mod center.

In light of the classification of reductive groups G, we can triumphantly
identify those groups which enjoy the properties in Proposition 13.1.1.

Corollary 13.1.2. If G is almost simple and totally definite, then F is totally
real and for all real places v, the Lie algebra of G(Fv) agrees with the (simple)
Lie algebra of one of the following groups (n ≥ 1): SU(n + 1), SO(2n + 1),
Sp(n), SO(2n), E6, E7, E8, F4, G2.

Proof. See e.g. Helgason [Hel01, §X.6].

13.2 Algebraic modular forms

As in the previous section, let G be a totally definite reductive group over F ,
totally real.

When we specialize the definition of automorphic form (Definition 10.1.2)
to this case, many nice things happen. First, there is no analytic condition on
the finite set D∞, and when G∞ is connected and K∞ is maximal, D∞ = {1}
so there really is no symmetric domain to think about, just class sets. In
particular, there are no technical conditions on automorphic forms. Moreover,
all forms are cohomological (arising in H0). Let K̂ ≤ Ĝ be a level and ρ : G→
W be a weight.

Definition 13.2.1. An algebraic modular form of weight W and level
K = K̂ ×K∞ is a modular form of degree 0, i.e., a function

f : D∞ × Ĝ/K̂ →W

such that f is locally constant and G-invariant, i.e.,

f(gx̂K̂) = gf(x̂K̂) (13.2.2)

for all g ∈ G and x̂K̂ ∈ Ĝ/K̂.

As before, we write MG,W (K) for the space of modular forms of weight K

and level K, writing just MW (K̂) when G and K∞ are clear from context.
So an algebraic modular form is just a modular form on a totally definite

group. In particular, an algebraic modular form is determined by its values the
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set Y = G\(D∞ × Ĝ/K̂), which is finite since D∞ is finite (Theorem 9.3.3),
so MG,W (K) is finite-dimensional. When W = E is the trivial representation
over a field E, then MG,W (K) is simply the space of E-valued functions on Y .

More precisely, let h = #Y . Writing

D∞ × Ĝ =
h⊔

i=1
Gβ̂iK̂, (13.2.3)

with β̂i ∈ D∞ × Ĝ, it follows from the definition that any f ∈ MW (K̂) is
determined by the elements f(β̂i) with i = 1, . . . , h. Let

Γi = G ∩ β̂iK̂β̂−1
i .

Each arithmetic group Γi is finite (Proposition 13.1.1). As a result, we can see
these in cohomology as follows.

Lemma 13.2.4. The map

MW (K̂) ∼−→
h⊕

i=1
H0(Γi, W )

f 7→ (f(β̂1), . . . , f(β̂h))

is an isomorphism of E-vector spaces, where

H0(Γi, W ) = {v ∈W : γv = v for all γ ∈ Γi}.

Proof. Immediate from the definition of group cohomology.

The space M(W, K̂) comes equipped with the action of Hecke operators,
defined in section 10.6. A straightforward calculation shows that the map in
Lemma 13.2.4 is equivariant for the Hecke operators.

13.3 Algorithmic details

Having discussed the theory in the previous sections, we now present a general
formulation for algebraic groups.

Recall we are computing the space MW (K̂) of algebraic modular forms of
weight W and level K̂ on a group G. To begin with, we must decide upon a
way to represent in bits the group G, the open compact subgroup K̂, and the
G-representation W so we can work explicitly with these objects.

Then, to compute the space MW (K̂) as a module for the Hecke operators,
we carry out the following tasks:

1. Compute representatives x̂iK̂ (i = 1, . . . , h) for G\Ĝ/K̂, as in (13.2.3),
compute Γi = G ∩ x̂iK̂x̂−1

i , and initialize

H =
h⊕

i=1
H0(Γi, W ).
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Choose a basis of (characteristic) functions f of H.
2. Determine a set of Hecke operators T (π̂) that generate H(K̂), as in sec-

tion 10.6. For each such T (π̂):
a. Decompose the double coset K̂π̂K̂ into a union of right cosets π̂jK̂,

as in (10.6.1);
b. For each x̂i and π̂j , find γij ∈ G and j∗ so that

x̂iπ̂jK̂ = γij x̂j∗K̂.

c. Return the matrix of T (π̂) acting on H via the formula

(T (π̂)f)(x̂i) =
∑

j

γijf(x̂j∗)

for each f in the basis of H.

13.4 Change of level

Following Greenberg–Voight [GV11] (see also Dembélé–Voight [DV13, §8]),
there is a natural map which relates modular forms of higher level to those
of lower level by modifying the coefficient module, as follows.

Suppose that K̂ ′ ≤ K̂ is a finite index subgroup. Decomposing as in
(13.2.3), we obtain a bijection

G\Ĝ/K̂ ′ =
h⊔

i=1
G\

(
Gx̂iK̂

)
/K̂ ′ ∼−→

h⊔
i=1

Γi\K̂i/K̂ ′
i

G(γx̂iû)K̂ ′ 7→ Γi(x̂iûx̂−1
i )K̂ ′

i

for γ ∈ G and û ∈ K̂. This yields

M(W, K̂ ′) ∼−→ H0(Γi, Hom(K̂i/K̂ ′
i, W )) ∼=

h⊕
i=1

H0(Γi, CoindK̂i

K̂′
i

W ).

Via the obvious bijection
K̂i/K̂ ′

i
∼= K̂/K̂ ′, (13.4.1)

letting W = CoindK̂

K̂′ W we can also write

M(W, K̂ ′) ∼=
h⊕

i=1
H0(Γi, Wi) (13.4.2)

where Wi is the representation W with action twisted by the identification
(13.4.1). Moreover, writing K̂ = (Kp)p in terms of its local components, for
any Hecke operator T (π̂) such that



13.5. ORTHOGONAL GROUPS AND LATTICES 81

if π̂ ̸∈ K ′
p then Kp = K ′

p

(noting that π̂ ∈ K ′
p for all but finitely many primes p), the same definition

(10.6.2) applies and by our hypothesis we have a simultaneous double coset
decomposition

K̂ ′π̂K̂ ′ =
⊔
j

π̂jK̂ ′ and K̂π̂K̂ =
⊔
j

π̂jK̂.

Now, comparing (13.4.2) to the result of Lemma 13.2.4, we see in both cases
that modular forms admit a uniform description as h-tuples of Γi-invariant
maps. For this reason, a special role in our treatment will be played by maximal
open compact subgroups.

13.5 Orthogonal groups and lattices

Having set up the general theory in the previous section, we now specialize to
the case of the orthogonal group; next up after that will be the unitary group,
and a few comments on the symplectic group.

The orthogonal groups form come in at least four flavors:

On, SOn, GOn, GSOn .

13.6 Unitary groups

13.7 Exceptional isomorphisms

The Clifford functor provides exceptional isomorphisms between orthogonal
modular forms and other (more familiar) spaces of modular forms.

For n = 2, we have so2 ≃ R and get Hecke Grossencharacters [VW25].
For n = 3, we have so3 ≃ sl2 (B1 = A1), so we obtain in this way classical

modular forms (Birch [Bir91], Hein [Hei16], Hein–Tornaría–V [HTV25]).
For n = 4, we have so4 ≃ sl2 × sl2 (D2 = A1 × A1), and we obtain Hilbert

modular forms.
For n = 5, we have so5 ≃ sp4 (B2 = C2), so we obtain Siegel (para)modular

forms. In this case, we can get dimensions and Hecke eigenvalues, but not (yet)
Fourier expansions.





Part IV

Geometry and cohomology
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Chapter 14

Fundamental domains

When G∞ is not totally definite, our proposed method to compute automorphic
forms on arithmetic groups relies upon an algorithm for computing fundamental
domains. We now introduce how this method works for Fuchsian groups and
propose some generalizations.

14.1 Computing fundamental domains

Let Γ ⊂ PSL2(R) be a Fuchsian group such that X(Γ) = Γ\H has finite
hyperbolic area; we say Γ has cofinite area. Suppose that p ∈ H has trivial
stabilizer Γp = {1}. Then the set

D(p) = {z ∈ H : d(z, p) ≤ d(gz, p) for all g ∈ Γ},

known as a Dirichlet domain, is a hyperbolically convex fundamental domain
for Γ. Our main theorem is as follows [Voi09].

Theorem 14.1.1. There exists an algorithm that, given a Fuchsian group Γ
of cofinite area and a point p ∈ H with Γp = {1}, returns the Dirichlet domain
D(p) and a finite presentation of Γ together with a solution to the word problem
for Γ.

The solution to the word problem (for the computed presentation of Γ)
means the following: there is an algorithm that, given an element γ ∈ PSL2(R),
determines if γ ∈ Γ and, if so, writes γ as a word in the given generators. This
algorithm, as mentioned above, has been implemented in Magma and has been
fine-tuned for certain parameters to make it practical.

We now consider the setting of an arbitrary arithmetic group. The space
D = G∞/AGK∞ has a metric d and the notion of Dirichlet domain D(p)
extends immediately: it is again a closed and convex domain that admits a
finite description [Voi21, §37].

85



86 CHAPTER 14. FUNDAMENTAL DOMAINS

Conjecture 14.1.2. There exists an algorithm that, given a reductive group
G, an arithmetic subgroup Γ ⊂ G, and a point z0 ∈ D∞ returns the Dirich-
let domain D(z0) and a finite presentation for Γ with a solution to the word
problem for Γ.

The algorithm simply enumerates elements of Γ until the associated in-
tersection of hyperplane bisectors is described by a face pairing with correct
volume. To make this practical, we consider enumerate with respect to suitable
majorants (positive definite quadratic forms) that measure the contribution to
the fundamental domain. We see the beginning of a kind of “noncommutative
Arakelov theory”.

14.2 Computing in cohomology

We can directly then compute in H1(Γ, V ) = Z1(Γ, V )/B1(Γ, V ) as the quo-
tient of 1-cochains by 1-coboundaries. A 1-cochain is represented by its values
on the generators of Γ and similarly a spanning set for B1(Γ, V ) is constructed
from generators of Γ. The Hecke operators act on H1(Γ, V ) via double cosets
and the reduction theory allows us to write an arbitrary 1-cochain as a linear
combination of the given basis of characteristic q-cochains.

14.3 Shimura curves

Exercises

14.1.



Chapter 15

Generalized modular symbols

In this chapter, we make our first step towards a general definition of modular
symbol.

Recall how modular symbols were built: they arose from homology classes
supported on the boundary of the modular curve. Mazur in a unpublished
typewritten letter [Maz] put forward a generalization of modular symbols, ex-
plaining how the Borel–Serre compactification provides the same infrastructure
in relative (co)homology, with cycles coming from parabolics: Hecke correspon-
dences acting on those cycles generalizes modular symbols. This was followed
by work of Ash–Borel [AB90] and Ash–Rudolph [AR79] pursuing this with
higher-dimensional modular symbols and continued fractions, leading to com-
putations of Ash–Grayson–Green for SL3(Z) [AGG84].

In a nutshell, we compute a basis, apply Hecke operators, and reduce to a
preferred set of “small” (unimodular) generators.

What can we hope to get out of this direct approach? We recall that the
Borel–Serre compactification is contractible but has a boundary encoding all
of the cusp directions; combinatorailly, this boundary is controlled by ratio-
nal parabolics, and homotopically it is the Tits building. For G = SLn, the
Solomon–Tits theorem says that the building has the homotopy type of a wedge
of (n− 2)-spheres, so its reduced homology lives in a single top degree and its
homology is the Steinberg module. Duality theorems then imply that modular
symbols (coinvariants of the Steinberg module) compute in top degree cohomol-
ogy. For SLn with n ≥ 4, the computationally interesting cuspidal cohomology
occurs in lower degrees. To go deeper in cohomology, we build combinatorial
models: see the next chapter.

15.1 Cycles from parabolics

We follow Mazur [Maz], Ash–Borel [AB90], and Ash–Rudolf [AR79].
We recall our notation from the previous chapters. Let G be a reductive

algebraic group over a number field F .

D∞ = G∞/A∞K∞ (15.1.1)
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be a global symmetric domain. Let K̂ ≤ Ĝ = G(F̂ ) be compact open subgroup,
let G = G(F ), and

Y (K̂) = G\(Ĝ×D∞)/K̂ =
⊔

i

Γi\D∞ (15.1.2)

where the groups Γi arise from a choice of representatives of G\Ĝ/K̂, so well-
defined up to conjugacy in G.

Let D∗
∞ be the Borel–Serre compactification of D∞ and define similarly

X(K̂) = G\(Ĝ/K̂ ×D∗
∞) (15.1.3)

The boundary bd X(K̂) is a union of strata indexed by F -rational parabolic
subgroups of G. For technical reasons we suppose that X(K̂) is oriented, for
example each Γi is neat (it is enough that each Γi contains no orientation-
reversing elements).

In the classical modular curve case, the cusps (i.e., the boundary above) are
stable under Hecke correspondences, but boundary (co)homology is governed
by Eisenstein (lower-rank) phenomena. To isolate cuspidal information, we
must pass to relative (co)homology, i.e., classes that restrict trivially to the
boundary. This will give us a higher-rank analogue of taking modular symbols
modulo boundary, which will amount to working with compactly supported
(also sometimes called parabolic) cohomology.

To that end, we define nontrivial homology classes. In fact, we can define
these more generally for subgroups. Let φ : G′ ↪→ G be an injective morphism
of reductive groups over F . We choose data for G′ compatible with G as follows:
we define

K ′
∞ = ϕ−1(K∞) ≤ G′

∞

K̂ ′ = ϕ−1(K̂) ≤ Ĝ′.
(15.1.4)

We suppose that K∞ contains the maximal connected compact subgroup of
G′

∞ and that K̂ ′ is compact and open in Ĝ′.
Repeating the construction,

D′
∞ := G′

∞/A′
∞K ′

∞ (15.1.5)

admits a natural totally geodesic inclusion D′
∞ ↪→ D∞ and this extends to the

Borel–Serre compactifications

(D′
∞)∗ → D∗

∞. (15.1.6)

Consequently for
X(K̂ ′) := G′\(Ĝ′/K̂ ′ × (D′

∞)∗) (15.1.7)
we obtain an induced map of compactifications

X(K̂ ′)→ X(K̂) (15.1.8)

Ash–Borel give a nice geometric construction of this in important cases via
fixed-point loci of involutions.

Let m′ := dim Y (K̂ ′).
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Definition 15.1.9. The (generalized) modular symbol attached to φ is
the relative homology class

[φ] := (ϕ∗)([X(K̂ ′)]) ∈ Hm′(X(K̂), bd X(K̂);Q)

where the inside [X(K̂ ′)] denotes the fundamental class.

Keeping track of stabilizers, we could take the class in integral homology.
Let m := dim X(K̂). By Poincaré–Lefschetz duality, the class [φ] corre-

sponds to a compactly-supported cohomology class

[φ]∨ ∈ Hm−rHr(X(K̂), bd X(K̂);Q) =: Hm−m′

c (Y (K̂),Q).

Finishing our parallel with modular symbols, we will primarily be interested
in the parabolic cohomology

H∗
par(Y (K̂),Q) = ker

(
H∗(Y (K̂),Q)→ H∗(bd X(K̂),Q)

)
(equivalently, the image of the compactly supported cohomology).

Example 15.1.10. Take F = Q and G = GL2 with K∞ = O2(R) (or
G = SL2). Then DG,∞ ≃ H2 is the upper half-plane. Let Γ ⊆ SL2(Z) be
a congruence subgroup, so Y (Γ) = Γ\H2.

The Borel–Serre compactification X(Γ) is a compact surface with boundary;
its boundary bd X(Γ) is a disjoint union of circles, one for each cusp of Γ. (Sorry
about that!)

Let G′ ⊂ G be the standard split torus (diagonal subgroup). Then D′
∞ ≃

R, and the inclusion D′
∞ ↪→ D∞ is a geodesic. More precisely, under the

identification of the upper half-plane via moving i, this is the oriented vertical
line through i; its closure in D∗

G,∞ is a compact arc meeting the boundary in
two points.

By GL2(Q)-conjugacy, one then obtains geodesics with endpoints at arbi-
trary cusps in P1(Q).

Indeed, for α, β ∈ P1(Q) let {α, β} ∈ H1(X(Γ), bd X(Γ);Z) denote the
relative homology class of the (oriented) geodesic from α to β. The boundary
map in the long exact sequence of the pair yields

∂{α, β} = [β]− [α] ∈ H0
(
bd X(Γ);Z

)
,

so the classes with trivial boundary (i.e. in ker(∂)) are precisely the cuspidal
modular symbols. Via Poincaré–Lefschetz duality, these are dual to H1

c (Y (Γ)),
and after passing to the image in H1(Y (Γ)) one recovers parabolic (cuspidal)
cohomology.

Example 15.1.11. For G = GLn (or G = SLn) over F = Q, we obtain the
top-degree modular symbols following Ash–Rudolph.

Example 15.1.12. If G′ is (the derived group of) a Levi factor of a parabolic
subgroup of G, the resulting classes recover the Ash–Borel generalized modular
symbols.
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In a limited set of circumstances, modular symbols generate homology, and
the image of cuspidal modular symbols by duality generate parabolic cohomol-
ogy. Still, we wonder if these classes give enough of a handle so that they could
be multiplied and their Hecke translates might span spaces in higher weight.
Remark 15.1.13. If we only took action on the boundary of the modular curve
(as opposed to paths in the modular curve), that would only give Eisenstein
series.

15.2 Hecke correspondences

Hecke operators, defined via correspondences, act on modular symbols: we
translate the geometric cycle, decompose into finitely many components mod-
ulo Γ, and rewrite in the chosen basis of symbols. In principle, this implies
that cohomology reduces to Hecke on a finite symbol module plus reduction.

15.3 Shapiro’s lemma

Although it looks like we have a lot to do for each level structure K̂, we recall
from modular symbols that in fact we can just change the coefficient module
and always work with any supergroup.

More precisely, for Γ′ ≤ Γ of finite index and a Γ-module M , Shapiro’s
lemma gives a canonical isomorphism

H∗(Γ′, M) ∼= H∗(Γ, CoindΓ
Γ′ M) (15.3.1)

at least away from H0, but there is another way to interpret that as well. In
particular, the fact that it is canonical means that the Hecke module structure
transports.

This has the interesting consequence that the reduction in Hecke operators
only needs to happen once and then for every weight and level, we just act
appropriately on the representation.

Explicitly connect coset representatives and how the boundary maps are
assembled.

15.4 Computations in practice

We now discuss feasibility and known explicit computations in small rank (and
level). Check implementation, torsion, coefficient systems, higher rank, etc.
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Complexes
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Extensions
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Part V

Projects (with Eran Assaf)
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Chapter 18

Projects

In this chapter joint with Eran Assaf, we list some potential projects. We plan
on selecting a subset of these based on the students who are selected—matching
interest, preparation, etc.

These notes are of course an important reference for the projects, but we
also list other relevant references for further background, context, and details
for the specific project directions.

18.1 AWS proposed project 1: Picard from Hecke

Tagline

Compute q-expansions for Picard modular forms (associated to U(2, 1)) using
Hecke data from U(3).

Estimated difficulty

Medium? Mostly learning about q-expansions for unitary groups and some
hopefully straightforward Magma coding.

Suggested background

• For general background on Picard modular surfaces and Ball quotients,
we recommend [Hol98] and [Hol95].

• For specific examples, in particular the Gaussian integers Z[i] , and the
Eisenstein integers Z[ζ3], see [Run96], [CvdG13], and [CvdG23].

• For a more general approach, those with more background in algebraic
geometry should see [dSG19]. For a more direct approach, see [Shi78].

• For algorithmic and implementation aspects, as well as examples of com-
putations of algebraic modular forms for U(3), see [Loe08] and [GV14].

• For background on the representation theory of U(3), see [FH91, §13].

97



98 CHAPTER 18. PROJECTS

Project overview
In this project, you will compute q-expansions of Picard modular forms, and
obtain equations for Picard modular surfaces, which are moduli spaces param-
eterizing abelian 3-folds with CM.

Let F = Q(
√

d) ⊇ Q be an imaginary quadratic field of discriminant d <
0, let R = ZF . Let V be a 3-dimensional F -vector space equipped with a
Hermitian form Φ: V × V → F of signature (2, 1). Let Λ ⊆ V be an R-
lattice (a finitely generated, projective R-module such that FΛ = V ), such
that Φ(Λ, Λ) ⊆ R.

For example, we can take Φ(x, y) = x1y1 + x2y2 − x3y3 and Λ = Z3
F the

standard lattice.
For simplicity, impose the additional restriction that R has class number

1. (This skips adelic stuff for now to get to the point, but we should put that
back in at some point.)

Let UF |Q,3(V ) = U(V ) be the unitary algebraic group associated to V , so
in particular

U(V )(F ) = {g ∈ GL(V )(F ) : Φ(gx, gy) = Φ(x, y) for all x, y ∈ V }.

Let ΓΛ := {g ∈ U(V )(F ) : g(Λ) = Λ} be the stabilizer of Λ.
Let k ∈ Z3 be such that k1 ≥ k2 ≥ k3 be a weight, and let ρk : U(V ) →

GL(Wk) be the irreducible representation of highest weight k of U(V ). (As
a special case, we can take k ∈ Z as a short-hand for (k, k, k), in which case
ρk = detk.

In this project, you will compute a basis of q-expansions for the space Mk(Λ)
of Picard modular forms of weight k and level ΓΛ.

Steps
1. Define the space Mk(Λ) of modular forms of weight ρk and level ΓΛ, as

well as its cuspidal subspace Sk(Λ). Compare with [CvdG13] for the case
ρ(j+k,k,k), and with [dSG19] for a more general setup.

2. Let f ∈ Mk(Λ). Show that f has a Fourier–Jacobi expansion f(u, v) =∑∞
n=0 fn(u)e2πinδ−1v, where δ =

√
d and fn(u) satisfies a quasi-periodicity

condition. Compare with [Fin98] and [CvdG23] when R = Z[ζ3].
3. For a prime p = pp which is split in K, let Tp,1 be the Hecke oper-

ator associated to diag(1, 1, π/π) where p = πR and similarly Tp,2 be
associated to diag(1, π/π, π/π). For an inert prime p, write Tp,1 for
the Hecke operator for diag(1, 1, p). Given a Fourier–Jacobi expansion
f(u, v) =

∑∞
n=0 fn(u)e2πinδ−1v, find formulas for the Fourier–Jacobi ex-

pansion of Tp,if for i = 1, 2.
4. Assume that f ∈ Mk(Λ) is a Hecke eigenform with eigenvalues Tp,if =

λp,if for all primes p and i = 1, 2. Find an expansion for fn(u) in
terms of the λp,i. See [Fin98] for the scalar valued case and [CvdG23] for
R = Z[ζ3].
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5. Using Magma, compute Hecke eigenvalues for algebraic modular forms
for a compact form of G for various weights k and lattices Λ. Several
examples are given in [Loe08] and [GV14]. Use your results to write
Fourier–Jacobi expansions for these forms. Implement a function that
given k, Λ, and bounds on precision, returns the Fourier–Jacobi expansion
up to that bound of every eigenform in Sk(Λ).

The real payoff

Graded rings give equations for Picard modular surfaces, which would be inter-
esting to study geometrically and have applications as moduli spaces of abelian
threefolds.

Additional possible directions

1. Use the construction of Eisenstein series in [Shi78] to construct a basis
for the Eisenstein subspace Ek(Λ) ⊆ Mk(Λ). Implement a function that
given k, Λ and bounds on precision, returns Fourier–Jacobi expansions of
a basis for Mk(Λ) up to the given bounds.

2. Implement basic arithmetic of Fourier–Jacobi expansions, so that given
the Fourier–Jacobi expansions of f ∈ Mk(Λ) and g ∈ Ml(Λ), one can
compute fg ∈Mk+l(Λ), and if k = l, one can compute af + bg ∈Mk(Λ)
for any a, b ∈ Q.

3. The graded ring
M∗(Λ) =

⊕
k∈Z

Mk(Λ),

gives rise to the Bailey–Borel compactification of the moduli space, the
Picard modular surface X(Λ) = Proj M∗(Λ). Implement a function that,
given Λ, computes the graded ring M∗(Λ), hence a presentation of the
Picard modular surface. Compare with the results in [Run96]. Connect
explicitly with the moduli theory and the universal abelian variety in
cases where it is possible.

4. Compute minimal models of the associated Picard modular surfaces and
compute certain geometric properties of these surfaces that cannot be
deduced simply from their numerical invariants.

5. Repeat for U(3, 1)?

18.2 AWS proposed project 2: Siegel stability under
specialization

Tagline

Compute Siegel paramodular forms of weight 2 (associated to abelian surfaces)
using Hecke stability under specialization to a modular curve.
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Estimated difficulty
Medium-hard? Some coding with some formulas that are a bit complicated.

Suggested background
• Brumer–Pacetti–Poor–Tornaría–Voight–Yuen [BPPTVY19] for background,

context and motivation, and for the restriction map.
• Poor–Yuen [PY15] and Poor–Shurman–Yuen [PSY20, PSY24] for com-

puting paramodular cusp forms in weight 2, and their data

http://siegelmodularforms.org/pages/degree2/
paramodular-wt2-all/index.html

• Schaeffer [Sch15] for Hecke stability for classical modular forms.

Project overview
Using algebraic modular forms, either using a definite form of GSp4 or SO5
(and using the exceptional isomorphism B2 = C2 giving PGSp4(R) ≃ SO5(R),
split form), we can compute Hecke eigensystems for (cohomological) Siegel
paramodular forms. But only those of weight (k, j) with k ≥ 3.

At the same time, the paramodular conjecture predicts that typical abelian
surfaces A over Q are modular, matching up with Siegel paramodular forms of
weight (2, 0), just below what we can achieve cohomologically. Bummer! This
is just like the case of classical modular forms of weight 1, they are apparently
too cool to be computed like the others.

Schaeffer [Sch15] gives a method for computing weight 1 classical modular
forms using Hecke stability. In a nutshell, given a nonzero form f ∈M1(Γ), by
division we have M1(Γ) ⊆ f−1M2(Γ). But we also know that M1(Γ) is stable
under the Hecke operators, and Schaeffer shows that the maximal Hecke stable
subspace of f−1M2(Γ) coincides with M1(Γ). Algorithmically, this means we
need to compute M2(Γ), find a nonzero f and divide q-expansions, then hit
the result with Hecke operators and intersect until it remains stable.

In this project, we try to make this work for Siegel modular forms, com-
puting in weight 2 = 4− 2. Poor–Yuen do this [PY15] by first spanning weight
4 forms (in a nutshell, by taking the Hecke span of products of lifts), then
dividing by forms in weight 2 (writing f = h1/g1 = h2/g2). We will explore
how computing the Hecke stable subspace compares to their approach.

Already it will be interesting to implement multiplication of Siegel modular
forms in Magma with an eye to efficiency—this is some fixed (universal) bilinear
form. There may be some lessons to learn from multiplying q-expansions of
Hilbert modular forms [A+26].

However, series expansions of Siegel modular forms are quite costly to work
with, so we will then try to do this by specializing to a modular curve. Indeed,
there is a homomorphism of graded rings [BPPTVY19, Lemma 6.3.3] and a
relation involving the Hecke operators [BPPTVY19, Proposition 6.3.8] (see also

http://siegelmodularforms.org/pages/degree2/paramodular-wt2-all/index.html
http://siegelmodularforms.org/pages/degree2/paramodular-wt2-all/index.html
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[PSY20, §5]). By specialization, we can compute the Hecke eigenvalue ap,1 in
time O(p2) (instead of O(p3), using the definition).

Can all this be made practical? For example, we should do these computa-
tions first all modulo a random prime to avoid coefficient blow up, then after
repeat in characteristic 0 once we know the result we are after.

Steps
1. Learn some Magma and develop a basic type for working with Fourier

expansions of modular forms on G = GSp4 over F = Q. Here is a stub
(sorry it isn’t great, but it’s a place to start!): https://github.com/
jvoight/jacobi_siegel.

2. Add basic Siegel modular forms, for example the usual Eisenstein se-
ries for Sp4(Z). Connect with Igusa invariants [Voi21, §43.5] and verify
other computations in level 1 (https://smf.compositio.nl/Fourier/
Level1).

3. Implement multiplication and division (when holomorphic at∞) of Siegel
modular forms.

4. Specialize some basic Siegel modular forms to a modular curve, and check
that multiplication commutes with specialization in examples.

5. Implement the dimension formula for Siegel paramodular cuspforms of
weight k ≥ 4 (https://math.ou.edu/~rschmidt/dimension_formulas/).

6. Find the first level N not covered by Poor–Yuen with a nonlift cuspform
in weight k = 2 (looks like they focus on nonsquarefree level, for example,
so it might be N = 388?), associated to an abelian surface. Find that
form!

7. Estimate the running time of some of the above algorithms.

The real payoff
It is like we are at the “Antwerp tables” stage with classical modular forms:
we have done a lot already in low level, but there are loads of questions about
abelian surfaces that would gain insight from taking larger level.

In that direction: if the algorithms scale, we could predict the isogeny
classes of all abelian surfaces with good reduction away from 2 by computing
in paramodular levels N a bounded power of 2, working towards an answer to
a question of Poonen.

We might also be able to approach the question: what is the (conjecturally)
smallest conductor of an abelian fourfold of GSp4-type? (The answer for clas-
sical modular forms is level N = 13, for the form 13.2.e.a.)

Additional possible directions
1. Can we get in a direct manner the specialization of the Gritsenko lift?

Then maybe we don’t need Siegel modular forms at all (until the end
when we write down the answer)?

https://github.com/jvoight/jacobi_siegel
https://github.com/jvoight/jacobi_siegel
https://smf.compositio.nl/Fourier/Level1
https://smf.compositio.nl/Fourier/Level1
https://math.ou.edu/~rschmidt/dimension_formulas/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/13/2/e/a/
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2. Implement Fourier expansions of Siegel paramodular Eisenstein series of
weight k ≥ 4 with character [PS25] and maybe look into Eisenstein series
of lower weight [Kal77]?

3. Does specialization to CM points provide a further reduction in com-
plexity? See Colman–Ghitza–Ryan [CGR19] for an analytic version, but
perhaps the theory of CM abelian surfaces provides further relationships
amongst the specialized coeffiicents (analogous but extending what was
observed for specialization to a modular curve) so it is only O(p) to com-
pute ap,1?!

4. Compute graded rings of Siegel paramodular forms in small level. Start
by reverifying ones that are known (levels N = 2, 3, 5?). Relate this via
isogeny to the moduli space of genus 2 Jacobians with a cyclic N -subgroup
(defined over the ground field), can you compute the map algebraically?
Even for N = 2?

5. Because dimensions are smaller, the linear algebra would be easier if we
could work in weight 2 = 3 − 1. What is the deal with Siegel modular
forms of weight (1, 0) (on a potentially smaller arithmetic group?)?

18.3 AWS proposed project 3: Binary Hermitian

Tagline
Identify forms on U(2) amongst Bianchi modular forms and quaternary orthog-
onal modular forms.

Estimated difficulty
Medium-easy?

Suggested background
• See Loeffler [Loe08] and Greenberg–Voight [GV14] for algebraic modular

forms on unitary groups.

Project overview
Let Q : V → F be a (finite-dimensional) definite Hermitian form relative to an
imaginary quadratic field F ⊇ Q. Then the algebraic group G = UK|Q(Q) over
Q is totally definite.

If dimK V = 1, then G∞ = G(R) ≃ U(1) ≃ SO(2), and so the associ-
ated modular forms arise from class field theory as Hecke quasicharacters (also
known as characters and Grossencharacters) [VW25, §7.2].

So we move up to dimK V = 2. Loeffler [Loe08, §10] suggested by example
an interpretation of forms on U(2): they are exactly the Bianchi modular
forms whose 2-dimensional Galois representations over K are conjugate self-
dual: swapping the Frobenius elements at split primes corresponds to a Tate
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twist and dual of the original Galois representation. In his example, the Hecke
eigenvalues are equal at (split) primes, ap(f) = ap(f), and the associated form
looks like a base change. We seek to generalize this observation and see how
close we can get to a proof (assuming conjectures if necessary).

Second, a binary Hermitian form gives by extension of scalars a quaternary
quadratic form, giving a map from the class set of a binary Hermitian lattice to
a quaternary orthogonal lattice. By pullback, this gives a map from a space of
quaternary orthogonal modular forms to a space of binary Hermitian modular
forms. We would similarly like to identify the image.

Steps

1. Replicate Loeffler’s example [Loe08, §9] in Magma.
2. Write out explicitly the condition on Hecke eigenvalues that is implied by

the polarization (conjugate self-dual up to twist) and verify that it holds
in further examples.

3. Compute more examples (including higher weight) to find a conjugate
self-dual form which is not a base change. Can you find an example that
is not a twisted base change (i.e., a form obtained from base change after
twist by a Hecke character)?

4. Through examples, investigate how the (weight and) level changes in the
base change map: in Loeffler’s example, the modular form of level 11
becomes level 1 over Q(

√
−11)!

5. Make a conjecture providing an explicit relationship between binary Her-
mitian forms and Bianchi modular forms, addressing level and weight.

6. Turn now to the map from unitary to orthogonal. Implement in Magma
an algorithm that takes as input a binary Hermitian lattice relative to the
ring of integers of an imaginary quadratic field and returns an orthogonal
lattice over Z.

7. Provide a local characterization of the lattices one can obtain in the pre-
vious step. Which ones can you get and which ones cannot be obtained?
Give a name to these which is better than “obtainable”.

8. Apply this to Loeffler’s example and compute the associated space of
orthogonal modular forms in Magma. How does it compare to [GV14,
Example 7.2]?

9. Prove that the map from the class set of a binary Hermitian lattice to
the class set of an orthogonal lattice is injective. Conclude that we get
an injective map on the associated spaces of modular forms. Through
examples, investigate how the (weight and) level changes in this change
of groups.

10. Make a conjecture providing an explicit relationship between obtainable
spaces orthogonal modular forms and binary Hermitian forms, addressing
level and weight. Prove your conjecture by showing Hecke equivariance?
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The real payoff
Current implementations of Bianchi modular forms are limited in terms of
level, weight, and character, presenting an obstruction to explicit methods.
Extending methods to work more generally may be a significant project, so we
want to see what we can already get from totally definite groups. This becomes
even more true when we consider working over a general CM extension K ⊇ F
and F ̸= Q; then associated methods on symmetric spaces will be even more
challenging, but nothing changes for the algebraic modular forms!

Whatever we get, it is important for functoriality reasons to know how
spaces of modular forms associated to groups of low rank explicltly relate to
one another!

Additional possible directions
1. How does the situation change for GU and SU? We have SU(2) ≃ H1 →

SO(3) which points us back to classical modular forms.
2. Adapt the above to work for a more general CM extension K ⊇ F .
3. Generalize the above to rank n ≥ 3 (both related to GLn and O2n.
4. More generally, study explicit functoriality of lifts on (algebraic) modular

forms. First, given a Lie algebra g of a reductive group G over a number
field F , develop an algorithm to compute all sub Lie algebras g′ ⊆ g
corresponding to reductive groups G′ over number fields F ′. Write out the
predictions of Langlands functoriality by increasing complexity (applying
the above algorithm to candidate L-homomorphisms, maps between dual
groups that are trivial on the Weil group) and find out when these are
known.

18.4 AWS proposed project 4: Eisenstein in average
polynomial time

Tagline
Compute Hecke eigenvalues for classical modular forms in average polynomial
time.

Estimated difficulty
Medium-easy: analyzing algorithmic complexity and providing/adapting an
implementation.

Suggested background
• A toy version of the high-precision q-expansion pipeline (relations on

XΓ plus Newton iteration) is described in [MSV21, §2], specifically the
subsection High-accuracy q-expansions.
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• [RZB15] discusses computing modular forms for X0(N) to determine 2-
adic images. This work implicitly demonstrates the necessity of efficient
basis generation when verifying congruences between Galois representa-
tions and modular forms at high levels.

• [Zyw24, §4] explains how to obtain modular forms for a congruence group
from Eisenstein series on Γ(N) and in particular indicates the need for
efficient lifting.

Project overview
For a GL2 modular form over a number field F , many algorithms compute the
Hecke operator Tp in time roughly (Nm p)1+o(1) (as this is the number of cosets
in the double coset decomposition).

For many applications we want not just one eigenvalue but to compute
the entire sequence of eigenvalues. In the classical case, the direct calculation
gives a method to compute ap for all primes p < B in approximately O(B2)
time. This quadratic scaling becomes prohibitive for applications requiring
large datasets, such as L-function or period computations.

In this project, we compute the full set of eigenvalues ap with p < B in
total time B(log B)O(1). This complexity corresponds to an average time per
prime that is polynomial in log B (quasi-linear total time).

The proposed approach expresses the target modular form in terms of “ac-
cessible” forms—specifically Eisenstein series—whose Fourier coefficients can
be computed efficiently (e.g., via sieve methods). Previous methods proceeded
in two phases:

1. Relation finding: Eisenstein series are used to produce low-degree alge-
braic relations on the modular curve XΓ.

2. Newton lifting: Once a relation and a short initial truncation of the form
are known (computed via standard modular symbols), Newton iteration
is used to lift the q-expansion to precision B in quasi-linear time.

Here we will adapt the above by writing the candidate modular form as a
polynomial in Eisenstein series (of weight 1) for Γ(N), skipping the Newton
lift.

The initial phase involves estimating the running time for computing a basis
of modular forms via Eisenstein series, depending on the genus and congruence
subgroup invariants (cf. [RZB15, Zyw24]). Subsequently, we aim to demon-
strate that the q-expansion of any modular form can be computed up to O(qB)
in time quasi-linear in B (cf. [MSV21]), thereby yielding the desired average
polynomial time algorithm for Hecke eigenvalues.

Steps
1. Extract the implementation due to Zywina of Eisenstein series (https://

github.com/davidzywina/Modular/blob/main/main/Modular.m) into a
standalone function and experiment with it.

https://github.com/davidzywina/Modular/blob/main/main/Modular.m
https://github.com/davidzywina/Modular/blob/main/main/Modular.m
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2. Given as input a congruence subgroup of level N (specified by KN ≤
GL2(Z/NZ), analyze the complexity of computing of q-expansions at ∞
for Mk(Γ) with k ≥ 2 using Eisenstein series on Γ(N) up to precision
O(qB) using sieve or divisor-sum methods.

3. Now given Hecke eigenvalues of a purported modular form f ∈ Mk(Γ),
estimate the running time to certify f ∈ Mk(Γ) written as an explicit
polynomial in Eisenstein series. How does this depend on the parameters
(genus, number of cusps, etc.)? Then compare this running time to the
method of modular symbols and the method of the trace formula [BB+20,
Table 5.2.3].

4. Complete the analysis of the algorithm that, on input Hecke eigenvalues
for a form f ∈ Mk(Γ), computes the q-expansion for f up to precision
O(qB). Compare this approach to the one explained in [MSV21] using
rational functions.

The real payoff
The primary benefit of this approach is the ability to generate massive datasets
of Hecke eigenvalues for high-weight or high-level forms where standard mod-
ular symbol algorithms are too slow.

Additional possible directions
1. Are there any ways to improve the algorithm or steps that simplify when

Γ is a standard congruence subgroup?
2. Can this method be extended to Hilbert or Siegel modular forms, where

the geometric complexity is significantly higher?

18.5 AWS proposed project 5: Symplectic lattices

Tagline
Compute algebraic modular forms for (the compact form of) symplectic groups.

Estimated difficulty
Theoretically easy; implementation details: medium.

Suggested background
• [Voi21, Chapters 9, 10, 20] and [Shi63] for the underlying theory of lattices

over quaternion orders. See also [Coh93] as a reference for analogous
algorithms in the commutative case.

• [GV14] for an overview of lattice methods for algebraic modular forms,
with details on the orthogonal and unitary case.
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• [Chi14] for specializing the lattice method to work for the symplectic
group by considering quaternionic lattices.

• [LP02] for a group-theoretic method to produce algebraic modular forms
based on the root data.

• [Sch18] for an improvement over [LP02], and some results for symplectic
groups.

• [CD09] works over F = Q(
√

5) in rank 2, working under the assumption
that the associated class set is trivial, without lattices.

Project overview
In this project, you will compute spaces of modular forms for the compact form
of the symplectic group Sp(n) using lattice methods: so instead of usual lattices
(for the orthogonal group) or Hermitian lattices (for the unitary group), we
work with quaternion lattices! This generalizes Brandt matrices, which work
with ideals (lattices of rank 1) to the general case.

Let B be a definite quaternion algebra, let O ⊆ B be an order, and let Λ
be an O-lattice, i.e., a finitely generated projective left O-module, of rank n,
equipped with a symplectic form on V = Λ⊗Q taking values in Z on Λ.

The symplectic group Spr,B|Q(V ) = Sp(V ) is a totally definite (compact
at ∞) reductive algebraic group with a distinguished arithmetic subgroup
Sp(Λ) ⊆ Sp(V ). Thus, it gives rise to spaces of algebraic modular forms
MW (Λ) = MW (Sp(Λ)), for any finite dimensional representation ρ : Sp(V ) →
GL(W ).

In this project, you will develop and implement an algorithm to compute
bases for the finite dimensional spaces MW (Λ), as well as systems of Hecke
eigenvalues in these spaces.

Steps
1. Implement a user-defined type in Magma of a lattice over a quaternion

order. You may want to restrict to a nice enough class of quaternion or-
ders (e.g. maximal orders or Bass orders). Following [Shi63], implement
an algorithm that returns a pseudobasis for such a lattice. The descrip-
tion of an analogous algorithm in the commutative case in [Coh93] may
be helpful.

2. Develop and implement an algorithm to compute a Hermite normal form
of a quaternion lattice. The theoretical foundation can be found in
[Shi63], and again both [Coh93] can prove helpful.

3. Following [Chi14], develop and implement an algorithm to enumerate the
p-neighbors of a given quaternionic lattice, and generalize it to compute
Hecke operators acting on the space of algebraic modular forms MW (Λ).
The analogous case of orthogonal and unitary groups has been done in
[GV14] and may prove to be a useful resource.

4. Compare your algorithm and results to previous computations both in
[LP02] and in [Sch18].
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The real payoff
We would like to computing Siegel modular forms over more totally real fields
and in larger rank in a more robust and scalable fashion! It is also important
to see in the implementation how lattice methods extend to the quaternion
case. Finally, algorithms for working with higher rank lattices over quaternion
orders have already found and will find applications outside the modular forms
context.

Additional possible directions
1. Implement the algorithm described in [LP02] for computing algebraic

modular forms using group-theoretic methods and compare its perfor-
mance to lattice methods.

2. Extend lattice methods to work with the (compact form of the) algebraic
group G2. What are p-neighbors? How would you enumerate them? The
embedding G2 ↪→ SO(7) can help, but notice that you may want also
a certain cubic form to be preserved. You may want to implement a
variation of the algorithm presented in [PS97].

18.6 AWS proposed project 6: Bad, bad Hecke

Tagline
Compute Hecke operators Tp on spaces Mk(Γ) with Γ a congruence subgroup
for bad primes p (when p divides the level N).

Estimated difficulty
Medium?

Suggested background
• [DS05, §6] for the relation between modular forms and the Jacobians of

modular curves, and [DS05, §8] for the Eichler–Shimura relation at the
good primes. For those with background in representation theory and
the Langlands program, see [Car86] for an indirect proof that this holds
also at bad primes for modular forms associated to elliptic curves.

• [RSZB22] for a definition of the modular curve associated to general con-
gruence subgroups.

• [Shi71] for definition and first properties of Hecke operators on spaces of
modular forms.

• [KM85] for the description of modular curves as schemes over Z with
a moduli interpretation. See [Kat72] for some basic properties and the
action of Frobenius.

• [Gor02, §4] for Hecke operators in characteristic p on spaces of modular
forms for Γ0(N).
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• [Ass21] for the identification of the Hecke operators Tp for arbitrary con-
gruence groups at good primes p | N and their realization on spaces of
modular symbols.

• [ES93] and [PS25] for an example application.

Project overview
As described in the notes, let K̂ ≤ GL2(Ẑ) be an open subgroup of level N with
projection KN ≤ GL2(Z/NZ) and let X(K̂) be the corresponding modular
curve. Let J(K̂) = J(X(K̂)) be its Jacobian. The LMFDB provides many
examples of such curves (where K̂ is called H). One defines Hecke operators
Tα̂ : Mk(K̂) → Mk(K̂) for any α̂ ∈ GL2(Q̂), represented by an element α ∈
GL2(Q)>0 which we may assume has α ∈ M2(Z).

In the “usual” case where det(α) = p ∤ N , there is a unique such Hecke
operator Tp = Tα̂ (as explained in the notes): these operates together are all
semisimple, normal, and commute with one another.

But in the special case when det(α) = p | N , there are more than one
operator in general, they are not semisimple in general, and they need not do
not commute. At least in the special case where K̂ is the standard congruence
group giving Γ0(N), both Hecke operators Tp for diag(1, p) and Up for diag(p, 1)
do in fact commute with the other Hecke operators.

More generally, as J(K̂) is a scheme defined over Z, it has Frobenius endo-
morphisms at every prime p, and the Hecke operators Tp correspond to these
endomorphisms via the Eichler–Shimura relation [DS05, Section 8.7].

In this project, you will compute the Hecke operator at p corresponding
to the Frobenius automorphism by identifying a matrix α when p divides the
level of the (general congruence) subgroup K̂. In a nutshell: the moduli functor
identifies points as corresponding to elliptic curves with level structure, we can
tell what Frobenius does to that level structure, so we just need to reinterpret
that action by a matrix.

Steps
1. Let p | N . Recall that the Eichler–Shimura relation [DS05, §8.7] states

that the Hecke operator Tp : J0(N)→ J0(N) satisfies Tp mod p = Frobp.
Using Magma, verify that this holds for various levels N and primes
p, by using the canonical models of the modular curves, and directly
constructing the Frobenius on the reduction mod p.

2. Let p be a prime dividing N . Let Tp : J0(N) → J0(N) be the Hecke
operator corresponding to diag(1, p). Is it still true that Tp mod p =
Frobp, where Frobp is the Frobenius endomorphism of the fiber J0(N)×
Fp? Test your hypothesis by explicit computation. See [KM85] for the
description of X0(N) as a scheme over Z, [Gor02, §4.3] for a nice overview
and summary of operators in characteristic p, and the appendices in
[Kat72] for some useful related background.

https://beta.lmfdb.org/ModularCurve/Q/
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3. Let X+
ns(N) be the extended non-split Cartan modular curve of level N ,

as in [RSZB22]. Consider an element α ∈ M2(Z) of determinant p such
that the image of α modulo N lies in KN . Is is true that Tα commutes
with Tq for q ∤ N? Is it true that Tα mod p = Frobp?

4. Using data from the LMFDB to get equations for modular curves and
characteristic polynomials of Frobenius, and using Magma (this package
might be useful) to compute Hecke operators Tα for various elements
α ∈ M2(Z) of determinant p on spaces of modular symbols, find which
Tα correspond to the actions of Frp. Formulate a conjecture.

5. By tracing through the definition of XH as a scheme over Z in [KM85],
figure out which Tα should correspond to the Frobenius action at p | N
on this scheme. Use this description to prove your conjecture.

The real payoff
Efficient algorithms to decompose the Jacobians of modular curves, as in [ES93]
and [PS25].

Additional possible directions
1. Consider applications to computing the equations of the modular curves

XH . These should be compared to existing algorithms, see [Box21] and
[Zyw24].

https://beta.lmfdb.org/ModularCurve/Q/
https://github.com/assaferan/ModFrmGL2
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