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Preface

This booklet is a supplement to the book Quaternion algebras, containing some
additional material (statements and proofs, some remarks) and comments on exercises.

Thanks to Joe Quinn for his comments on some of the exercises. Please contact
me at jvoight@gmail.com if you find mistakes or have other suggestions.
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Algebra
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Chapter 3

Involutions

3.6 Algorithmic aspects

In this section, we exhibit an algorithm to determine if an algebra has a standard
involution (and, if so, to give it explicitly as a linear map) [Voi2013, §2]; in the next
section we will use this to recognize quaternion algebras. We begin with some basic
definitions.

Definition 3.6.1. A field 𝐹 is computable if 𝐹 comes equipped with a way of encod-
ing elements of 𝐹 in bits (i.e. the elements of 𝐹 are recursively enumerable, allowing
repetitions) along with deterministic algorithms to perform field operations in 𝐹 (ad-
dition, subtraction, multiplication, and division by a nonzero element) and to test if
𝑥 = 0 ∈ 𝐹; a field is polynomial-time computable if these algorithms run in polynomial
time (in the bit size of the input).

For precise definitions and a thorough survey of the subject of computable rings
we refer to Stoltenberg-Hansen–Tucker [SHT99] and the references contained therein.

Example 3.6.2. A field that is finitely generated over its prime ring is computable by
the theory of Gröbner bases [vzGG03]. Any uncountable field is not computable.

Let 𝐵 be an 𝐹-algebra with dim𝐹 𝐵 = 𝑛 and basis 𝑒1, 𝑒2, . . . , 𝑒𝑛 as an 𝐹-vector
space. Suppose 𝑒1 = 1. A multiplication table for 𝐵 is a system of 𝑛3 elements
(𝑐𝑖 𝑗𝑘 )𝑖, 𝑗 ,𝑘=1,...,𝑛 of 𝐹, called structure constants, such that multiplication in 𝐵 is
given by

𝑒𝑖𝑒 𝑗 =

𝑛∑︁
𝑘=1

𝑐𝑖 𝑗𝑘𝑒𝑘

for 𝑖, 𝑗 ∈ {1, . . . , 𝑛}.
An 𝐹-algebra 𝐵 is represented in bits by a multiplication table and elements of

𝐵 are represented in the basis 𝑒𝑖 . Basis elements in 𝐵 can be multiplied directly by
the multiplication table but multiplication of arbitrary elements in 𝐵 requires 𝑂 (𝑛3)
arithmetic operations (additions and multiplications) in 𝐹; in either case, note the
output is of polynomial size in the input for fixed 𝐵.
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4 CHAPTER 3. INVOLUTIONS

We now exhibit an algorithm to test if an 𝐹-algebra 𝐵 (of dimension 𝑛) has a
standard involution.

First, we note that if 𝐵 has a standard involution : 𝐵 → 𝐵, then this involution
and hence also the reduced trace and norm can be computed. Let {𝑒𝑖}𝑖 be a basis for
𝐵; then trd(𝑒𝑖) ∈ 𝐹 is simply the coefficient of 𝑒𝑖 in 𝑒2

𝑖
, and so 𝑒𝑖 = trd(𝑒𝑖) − 𝑒𝑖 for

each 𝑖 can be precomputed for 𝐵; one recovers the involution on 𝐵 for an arbitrary
element of 𝐵 by 𝐹-linearity. Therefore the involution and the reduced trace can be
computed using 𝑂 (𝑛) arithmetic operations in 𝐹 and the reduced norm using 𝑂 (𝑛2)
operations in 𝐹.

Algorithm 3.6.3. This algorithm takes as input 𝐵, an 𝐹-algebra given by a multipli-
cation table in the basis 𝑒1, . . . , 𝑒𝑛 with 𝑒1 = 1. It returns as output true if and only if
𝐵 has a standard involution, and if so returns the standard involution as a linear map.

1. For 𝑖 = 2, . . . , 𝑛, let 𝑡𝑖 ∈ 𝐹 be the coefficient of 𝑒𝑖 in 𝑒2
𝑖
, and let 𝑛𝑖 = 𝑒2

𝑖
− 𝑡𝑖𝑒𝑖 .

If some 𝑛𝑖 ∉ 𝐹, return false.
2. For 𝑖 = 2, . . . , 𝑛 and 𝑗 = 𝑖 + 1, . . . , 𝑛, let 𝑛𝑖 𝑗 = (𝑒𝑖 + 𝑒 𝑗 )2 − (𝑡𝑖 + 𝑡 𝑗 ) (𝑒𝑖 + 𝑒 𝑗 ).

If some 𝑛𝑖 𝑗 ∉ 𝐹, return false. Otherwise, return true, and the linear map
defined by 𝑒𝑖 ↦→ 𝑡𝑖 − 𝑒𝑖 .

Proof of correctness. Let 𝐹 [𝑥] = 𝐹 [𝑥1, . . . , 𝑥𝑛] be the polynomial ring over 𝐹 in 𝑛
variables, and let 𝐵𝐹 [𝑥 ] = 𝐵 ⊗𝐹 𝐹 [𝑥]. Let 𝜉 = 𝑥1 + 𝑥2𝑒2 + · · · + 𝑥𝑛𝑒𝑛 ∈ 𝐵𝐹 [𝑥 ] , and
define

𝑡𝜉 =

𝑛∑︁
𝑖=1

𝑡𝑖𝑥𝑖

and

𝑛𝜉 =

𝑛∑︁
𝑖=1

𝑛𝑖𝑥
2
𝑖 +

∑︁
1≤𝑖< 𝑗≤𝑛

(𝑛𝑖 𝑗 − 𝑛𝑖 − 𝑛 𝑗 )𝑥𝑖𝑥 𝑗 .

Let

𝜉2 − 𝑡𝜉 𝜉 + 𝑛𝜉 =

𝑛∑︁
𝑖=1

𝑐𝑖 (𝑥1, . . . , 𝑥𝑛)𝑒𝑖

with 𝑐𝑖 (𝑥) ∈ 𝐹 [𝑥]. Each 𝑐𝑖 (𝑥) is a homogeneous polynomial of degree 2. The
algorithm then verifies that 𝑐𝑖 (𝑥) = 0 for 𝑥 ∈ {𝑒𝑖}𝑖 ∪ {𝑒𝑖 + 𝑒 𝑗 }𝑖, 𝑗 , and this implies that
each 𝑐𝑖 (𝑥) vanishes identically. Therefore, the specialization of the map 𝜉 ↦→ 𝜉 = 𝑡𝜉−𝜉
is the unique standard involution on 𝐵. �

3.6.4. Algorithm 3.6.3 requires 𝑂 (𝑛) arithmetic operations in 𝐹, since 𝑒2
𝑖

can be
computed directly from the multiplication table and hence

(𝑒𝑖 + 𝑒 𝑗 )2 = 𝑒2
𝑖 + 𝑒𝑖𝑒 𝑗 + 𝑒 𝑗𝑒𝑖 + 𝑒2

𝑗

can be computed using 𝑂 (4𝑛) = 𝑂 (𝑛) operations.



Chapter 4

Quadratic forms

4.6 Algorithmic aspects

We conclude with two comments on algorithms arising naturally from the above; for
an overview, see Voight [Voi2013].

First, the proof that a quadratic form can be diagonalized (Lemma 4.3.1) is algo-
rithmic, requiring 𝑂 (𝑛3) field operations in 𝐹.

Second, Main Theorem 4.4.1 yields the following algorithm for algorithmic recog-
nition of a quaternion algebra.

Algorithm 4.6.1. This algorithm takes as input 𝐵, an 𝐹-algebra with dim𝐹 𝐵 = 4,
specified by a multiplication table. It returns as output true if and only if 𝐵 is a
quaternion algebra, and if so returns an isomorphism 𝐵 ' (𝑎, 𝑏 | 𝐹).

1. Verify that 𝐵 has a standard involution by calling Algorithm 3.6.3. If not, return
false.

2. Compute a diagonalized basis 1, 𝑖, 𝑗 , 𝑘 for the quadratic form nrd: 𝐵→ 𝐹.
3. Compute 𝑑 := disc(nrd) ∈ 𝐹/𝐹×2. If 𝑑 ≠ 0, return true and the quaternion

algebra (𝑎, 𝑏 | 𝐹) given by the standard generators 𝑖, 𝑗 . Otherwise, return
false.
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Chapter 5

Ternary quadratic forms and
quaternion algebras

5.7 Algorithmic aspects

In this section, we show how the equivalences of Main Theorem 5.4.4 involved in
identifying the matrix ring (splitting of a quaternion algebra) can be made algorithmic.

Algorithm 5.7.1. This algorithm takes as input 𝛼 ∈ 𝐵 a zerodivisor and returns as
output a nonzero element 𝜖 ∈ 𝐵 such that 𝜖2 = 0.

1. If trd(𝛼) = 0, return 𝛼.
2. Compute 0 ≠ 𝛽 ∈ 𝐵 orthogonal to 1, 𝛼 with respect to the quadratic form nrd.

If 𝛼𝛽 = 0, return 𝛽; otherwise, return 𝛼𝛽.

Proof of correctness. The element 𝛼 ≠ 0 is a zerodivisor if and only if nrd(𝛼) = 𝛼𝛼 =

0. Since 𝛽 is orthogonal to 1, 𝛼 we have 𝛽 = −𝛽 and trd(𝛼𝛽) = − trd(𝛼𝛽) = 0.
If 𝛼𝛽 = 0 then 𝛽 is as desired. If 𝛼𝛽 ≠ 0 then nrd(𝛼𝛽) = nrd(𝛼) nrd(𝛽) = 0, as
desired. �

Algorithm 5.7.2. This algorithm takes as input 𝜖 ∈ 𝐵 satisfying 𝜖2 = 0 and returns as
output a standard representation 𝐵 ' (1, 1 | 𝐹) ' M2 (𝐹).

1. Find 𝑘 ∈ {𝑖, 𝑗 , 𝑖 𝑗} such that trd(𝜖 𝑘) = 𝑠 ≠ 0. Let 𝑡 := trd(𝑘) and 𝑛 := nrd(𝑘),
and let 𝜖 ′ := (1/𝑠)𝜖 .

2. Let 𝑗 ′ := 𝑘 + (−𝑡𝑘 + 𝑛 + 1)𝜖 ′ and let

𝑖′ := 𝜖 ′𝑘 − (𝑘 + 𝑡)𝜖 ′

Return 𝑖′, 𝑗 ′.

Proof of correctness. In Step 1, if trd(𝜖 𝑘) = 0 for all such 𝑘 then 𝜖 ∈ rad(nrd),
contradicting Main Theorem 4.4.1. We have trd(𝜖 ′𝑘) = trd(𝑘𝜖 ′) = 1 so trd(𝜖 ′𝑘) = −1.

Consider 𝐼 = 𝐹𝜖 ′ + 𝐹𝑘𝜖 ′. Note trd(𝑘𝜖 ′) ≠ 0 implies that 𝜖 ′, 𝑘𝜖 ′ are linearly
independent. Let 𝐴 be the subalgebra of 𝐵 generated by 𝜖 ′ and 𝑘 . We have 𝜖 ′𝑘 + 𝑘𝜖 ′ =

7



8 CHAPTER 5. TERNARY QUADRATIC FORMS AND QUATERNION ALGEBRAS

𝑡𝜖 ′ + 1 from (4.2.14) and 𝑘2 = 𝑡𝑘 − 𝑛, and thus we compute that left multiplication
yields a map

𝐴→ End𝐹 (𝐼) ' M2 (𝐹)

𝜖 ′, 𝑘 ↦→
(
0 1
0 0

)
,

(
0 −𝑛
1 𝑡

)
.

A direct calculation then reveals that 𝑗 ′ ↦→
(
0 1
1 0

)
and 𝑖′ ↦→

(
1 0
0 −1

)
. It follows at

once that 𝐴 = 𝐵, that 𝐼 = 𝐵𝜖 ′, and that the map 𝐵→ M2 (𝐹) is an isomorphism. �

In this way, we have seen that in deterministic polynomial time we can convert an
isotropic vector (i.e., an 𝐹-rational point on the associated conic) or a zerodivisor to
an explicit splitting 𝐵 ∼−→ M2 (𝐹) for all computable fields 𝐹 with char 𝐹 ≠ 2. On the
other hand, the problem of finding such an isotropic vector depends in a serious way
on the arithmetic of the field 𝐹 [Voi2013, §4].



Chapter 8

Simple algebras and involutions

8.6 Algorithmic aspects

In section 4.6, we showed how to recover an isomorphism 𝐵 ' M2 (𝐹) from a nonzero
nilpotent element 𝜖 ∈ 𝐵 (or more generally, a zerodivisor 𝜖 ∈ 𝐵). In a similar way, the
proof of Proposition 8.2.3 can be made algorithmic: if 𝐵1, 𝐵2 are quaternion algebras
over 𝐹, then given a nonzero nilpotent element 𝜖 ∈ 𝐵1 ⊗ 𝐵2, we can exhibit explicitly
a common embedded quadratic subfield. By the proof of Proposition 8.2.8, such a
nilpotent element is given by a zero of the Albert form 𝑄(𝐵1, 𝐵2) when char 𝐹 ≠ 2.
From Exercise 8.2, we then find an explicit isomorphism 𝐵1 ⊗ 𝐵2 ' M2 (𝐵3). We then
have 𝐵1 ' 𝐵2 if and only if 𝐵3 ' M2 (𝐹), so from this method we have reduced the
problem of testing for an isomorphism between quaternion algebras to the problem of
splitting a quaternion algebra. For a more general point of view on the algorithmic
problem of testing if two central simple algebras over a number field are isomorphic
using norm equations, see work by Hanke [Hanke2007].
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Part II

Arithmetic
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Chapter 9

Lattices and integral quadratic forms

9.7 Normalized form

We give an algorithmic proof of Proposition 9.8.4.

Algorithm 9.7.5. Let 𝑅 be a computable ring which is a local PID with (computable)
valuation 𝑣 : 𝑅 → Z≥0 ∪ {∞}.

Let 𝑄 : 𝑀 → 𝑅 be a quadratic form over 𝑅 and let 𝑒1, . . . , 𝑒𝑛 be a basis for 𝑀 .
This algorithm returns a basis of 𝑀 in which 𝑄 is normalized.

1. If 𝑇 (𝑒𝑖 , 𝑒 𝑗 ) = 0 for all 𝑖, 𝑗 , return 𝑓𝑖 := 𝑒𝑖 . Otherwise, let (𝑖, 𝑗) with 1 ≤ 𝑖 ≤ 𝑗 ≤
𝑛 be such that 𝑣𝑇 (𝑒𝑖 , 𝑒 𝑗 ) is minimal, taking 𝑖 = 𝑗 if possible and if not taking 𝑖
minimal.

2. If 𝑖 = 𝑗 , let 𝑓1 := 𝑒𝑖 and proceed to Step 3. If 𝑖 ≠ 𝑗 and 2 ∈ 𝑅×, let 𝑓1 := 𝑒𝑖 + 𝑒 𝑗
and proceed to Step 3. Otherwise, proceed to Step 4.

3. Let 𝑒𝑖 := 𝑒1. For 𝑘 = 2, . . . , 𝑛 let

𝑓𝑘 := 𝑒𝑘 −
𝑇 ( 𝑓1, 𝑒𝑘 )
𝑇 ( 𝑓1, 𝑓1)

𝑓1.

Let 𝑚 = 2 and proceed to Step 5.
4. (We have 2 ∉ 𝑅× and 𝑖 ≠ 𝑗 .) Let

𝑓1 :=
𝜋𝑣 (𝑇 (𝑒𝑖 ,𝑒 𝑗 ))

𝑇 (𝑒𝑖 , 𝑒 𝑗 )
𝑒𝑖 ,

𝑓2 := 𝑒 𝑗 , 𝑒𝑖 := 𝑒1 and 𝑒 𝑗 := 𝑒2. Let 𝑑 := 𝑇 ( 𝑓1, 𝑓1)𝑇 ( 𝑓2, 𝑓2) − 𝑇 ( 𝑓1, 𝑓2)2. For
𝑘 = 3, . . . , 𝑛, let

𝑡𝑘 := 𝑇 ( 𝑓1, 𝑓2)𝑇 ( 𝑓2, 𝑒𝑘 ) − 𝑇 ( 𝑓2, 𝑓2)𝑇 ( 𝑓1, 𝑒𝑘 )
𝑢𝑘 := 𝑇 ( 𝑓1, 𝑓2)𝑇 ( 𝑓1, 𝑒𝑘 ) − 𝑇 ( 𝑓1, 𝑓1)𝑇 ( 𝑓2, 𝑒𝑘 )

and let
𝑓𝑘 := 𝑒𝑘 +

𝑡𝑘

𝑑
𝑓1 +

𝑢𝑘

𝑑
𝑓2.

Let 𝑚 = 3.

13



14 CHAPTER 9. LATTICES AND INTEGRAL QUADRATIC FORMS

5. Recursively call the algorithm with𝑀 = 𝑅 𝑓𝑚⊕· · ·⊕𝑅 𝑓𝑛, and return 𝑓1, . . . , 𝑓𝑚−1
concatenated with the output basis.

Given such a basis, one recovers the normalized quadratic form by factoring out
in each atomic form the minimal valuation achieved. (One can also keep track of this
valuation along the way in the above algorithm, if desired.)
Remark 9.7.6. If 2 ∈ 𝑅×, then a quadratic form 𝑄 is atomic if and only if 𝑄(𝑥) = 𝑎𝑥2

for 𝑎 ∈ 𝑅×, so Algorithm 9.7.5 computes a diagonalization of the form 𝑄, ordering
the coefficients by their valuation.

Proof of correctness of Algorithm 9.7.5. In Step 3, we verify that

𝑣(𝑇 ( 𝑓1, 𝑓1)) ≤ 𝑣(𝑇 ( 𝑓1, 𝑒𝑘 )).

Indeed,
𝑇 ( 𝑓1, 𝑓1) = 𝑇 (𝑒𝑖 , 𝑒𝑖) + 2𝑇 (𝑒𝑖 , 𝑒 𝑗 ) + 𝑇 (𝑒 𝑗 , 𝑒 𝑗 )

and so 𝑣(𝑇 ( 𝑓1, 𝑓1)) = 𝑣(𝑇 (𝑒𝑖 , 𝑒 𝑗 )) by the ultrametric inequality and the hypotheses
that 𝑣(𝑇 (𝑒𝑖 , 𝑒 𝑗 )) < 𝑣(𝑇 (𝑒𝑖 , 𝑒𝑖)), 𝑣(𝑇 (𝑒 𝑗 , 𝑒 𝑗 )) and 𝑣(2) = 0. So Steps 2 and 3 give
correct output.

We have left to check Step 4. This is proven by letting 𝑓𝑘 = 𝑒𝑘 + 𝑡𝑘 𝑓1 + 𝑢𝑘 𝑓2
and solving the linear equations 𝑇 ( 𝑓1, 𝑓𝑘 ) = 𝑇 ( 𝑓2, 𝑓𝑘 ) = 0 for 𝑡𝑘 , 𝑢𝑘 . The result then
follows from a direct calculation, coupled with the fact that 𝑣(𝑑) = 2𝑣(𝑇 ( 𝑓1, 𝑓2)) ≤
𝑣(𝑡𝑘 ) (and similarly with 𝑢𝑘 ). This case only arises if (and only if)

𝑣(𝑇 ( 𝑓1, 𝑓2)) < 𝑣(𝑇 ( 𝑓1, 𝑓1)) = 𝑣(2𝑄( 𝑓1)) ≤ 𝑣(2𝑄( 𝑓2))

so the corresponding block is atomic. �

Algorithm 9.7.5 requires 𝑂 (𝑛2) arithmetic operations in 𝑅, and can be modified
suitably to operate directly on the Gram matrix (𝑇 (𝑒𝑖 , 𝑒 𝑗 ))𝑖, 𝑗 of the quadratic form 𝑄.



Chapter 12

Ternary quadratic forms over local
fields

12.5 Algorithmic aspects

In this section, we discuss algorithms for computing the Hilbert symbol. For more
details, see Voight [Voi2013, §5].

Let 𝐹 be a local field with char 𝐹 = 0 and 𝐹 ; C. If 𝐹 is nonarchimedean, let
𝑅 be the valuation ring, 𝔭 the maximal ideal, 𝜋 a uniformizer, 𝑘 := 𝑅/𝔭 the residue
field, and ord : 𝐹 → Z ∪ {∞} the valuation with ord𝔭 (𝜋) = 1. If 𝐹 is archimedean,
then 𝐹 ' R and we let 𝑅 = 𝐹 = 𝔭 and 𝜋 = −1 and let 𝑎 = (−1)ord(𝑎) |𝑎 | for 𝑎 ∈ 𝐹, so
ord(𝑎) = 0, 1 according as 𝑎 > 0 or 𝑎 < 0.

Remark 12.5.1. To be completely precise, a local field 𝐹 is uncountable, so it is not
computable. When we talk about computing in a local field, this can be interpreted
either to mean we work in finite precision (and there are several ways to interpret this,
giving different models) or we work in the algebraic closure of a global field (see
section 14.4) inside its completion at a prime 𝔭.

For 𝑎 ∈ 𝐹×, we define the square symbol

{
𝑎

𝐹

}
:=


1, if 𝑎 ∈ 𝐹×2;
−1, if 𝑎 ∉ 𝐹×2 and ord(𝑎) is even;
0, if 𝑎 ∉ 𝐹×2 and ord(𝑎) is odd.

We have
{
𝑎

𝐹

}
= −1 if and only if 𝐹 (

√
𝑎) is an unramified field extension of 𝐹 and{

𝑎

𝐹

}
= 0 if and only if 𝐹 (

√
𝑎) is ramified; when 𝐹 ' R is real, we follow the convention

that C is considered to be ramified over R. Accordingly, if 𝑣 is nonarchimedean, then{
𝑎

𝐹

}
= 0 if and only if ord(𝑎) is odd. The square symbol is not multiplicative.

15
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Proposition 12.5.2. Let 𝑎, 𝑏 ∈ 𝐹×. Then (𝑎, 𝑏)𝐹 = 1 if and only if{
𝑎

𝐹

}
= 1 or

{
𝑏

𝐹

}
= 1 or

{
−𝑎𝑏
𝐹

}
= 1 or

{
𝑎

𝐹

}
=

{
𝑏

𝐹

}
=

{
−𝑎𝑏
𝐹

}
= −1.

Proof. The result is immediately verified if 𝐹 is archimedean; if 𝐹 is nonarchimedean,
the result follows from (12.4.9). �

To conclude, we discuss the computability of the Hilbert symbol when char 𝑘 ≠ 2
using Proposition 12.5.2. We may suppose 𝐹 is nonarchimedean. Then we can

evaluate
{
𝑎

𝐹

}
by simply computing ord(𝑎) = 𝑒; if 𝑒 is odd then

{
𝑎

𝐹

}
= 0, whereas

if 𝑒 is even then
{
𝑎

𝐹

}
=

(
𝑎0
𝐹

)
where 𝑎0 = 𝑎𝜋−𝑒 ∈ 𝑅 and

(
𝑎0
𝑣

)
=

(
𝑎0
𝔭

)
is the usual

Legendre symbol, defined by(
𝑎0
𝔭

)
:=


0, if 𝑎0 ≡ 0 (mod 𝔭);
1, if 𝑎0 . 0 (mod 𝔭) and 𝑎0 is a square modulo 𝔭;
−1, otherwise.

. (12.5.3)

The Legendre symbol can be computed in deterministic polynomial time by Euler’s
formula (

𝑎0
𝔭

)
≡ 𝑎 (𝑞−1)/2

0 (mod 𝔭)

using repeated squaring, where 𝑞 = #𝑘 . We find that there exists a deterministic
polynomial-time algorithm to evaluate the Hilbert symbol when char 𝑘 ≠ 2.

The Hilbert symbol when char 𝑘 = 2 is somewhat more complicated; we follow
Voight [Voi2013, §6].

Algorithm 12.5.4. Suppose char(𝑘) = 2 and let 2𝑅 = 𝔭𝑒 so 𝑒 := ord𝔭 (2). Let 𝑎, 𝑏 ∈ 𝐹
be such that ord𝔭 (𝑎) = 0 and ord𝔭 (𝑏) = 1. This algorithm outputs a solution to the
congruence

1 − 𝑎𝑦2 − 𝑏𝑧2 ≡ 0 (mod 𝔭2𝑒)
with 𝑦, 𝑧 ∈ 𝑅/𝔭2𝑒 and 𝑦 ∈ (𝑅/𝔭)×.

1. Let 𝑓 ∈ Z≥1 be the residue class degree of 𝔭 (so that #(𝑅/𝔭) = 2 𝑓 ) and let
𝑞 = 2 𝑓 . Let 𝜋 be a uniformizer at 𝔭.

2. Initialize (𝑦, 𝑧) := (1/
√
𝑎, 0).

3. Let 𝑁 := 1 − 𝑎𝑦2 − 𝑏𝑧2 ∈ 𝑅/4𝑅 and let 𝑡 := ord𝔭 (𝑁). If 𝑡 ≥ 2𝑒, return 𝑦, 𝑧.
Otherwise, if 𝑡 is even, let

𝑦 := 𝑦 +
√︂

𝑁

𝑎𝜋𝑡
𝜋𝑡/2

and if 𝑡 is odd, let

𝑧 := 𝑧 +
√︂

𝑁

𝑏𝜋𝑡−1 𝜋
b𝑡/2c .

Return to Step 3.
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In this algorithm, when we write
√
𝑢 for 𝑢 ∈ (𝑅/𝔭2𝑒)× we mean a choice of a lift of√

𝑢 ∈ (𝑅/𝔭)× to 𝑅/𝔭2𝑒. We reduce to the above Hensel lift by the following algorithm.

Algorithm 12.5.5. Let 𝔭 an even prime with ramification index 𝑒 = ord𝔭 2 and
let 𝑎, 𝑏 ∈ 𝐹× be such that 𝑣(𝑎) = 0 and 𝑣(𝑏) ∈ {0, 1}. This algorithm outputs
𝑦, 𝑧, 𝑤 ∈ 𝑅/𝔭2𝑒 such that

1 − 𝑎𝑦2 − 𝑏𝑧2 + 𝑎𝑏𝑤2 ≡ 0 (mod 𝔭2𝑒)

and 𝑦 ∈ (𝑅/𝔭)×. Let 𝜋 be a uniformizer for 𝔭.

1. If 𝑣(𝑏) = 1, return the output (𝑦, 𝑧, 0) of Algorithm 12.5.4 with input 𝑎, 𝑏.
2. Suppose 𝑎 ∈ (𝑅/𝔭𝑒𝑅)×2 and 𝑏 ∈ (𝑅/𝔭𝑒𝑅)×2. Let (𝑎0)2𝑎 ≡ 1 (mod 𝔭𝑒) and
(𝑏0)2𝑏 ≡ 1 (mod 𝔭𝑒). Return

𝑦 := 𝑎0, 𝑧 := 𝑏0, 𝑤 := 𝑎0𝑏0.

3. Swap 𝑎, 𝑏 if necessary so that 𝑎 ∈ (𝑅/𝔭𝑒𝑅)× \ (𝑅/𝔭𝑒𝑅)×2. Let 𝑡 be the
largest integer such that 𝑎 ∈ (𝑅/𝔭𝑡 )×2 but 𝑎 ∉ (𝑅/𝔭𝑒)×2. Then 𝑡 is odd; write
𝑎 = 𝑎2

0 + 𝜋
𝑡𝑎𝑡 with 𝑎0, 𝑎𝑡 ∈ 𝑅. Let 𝑦, 𝑧 be the output of Algorithm 12.5.4 with

input 𝑎′ := 𝑎, 𝑏′ := −𝜋𝑎𝑡/𝑏. Return

𝑦′ :=
1
𝑎0
, 𝑧′ :=

𝜋 b𝑡/2c

𝑎0𝑧
, 𝑤′ :=

𝑦𝜋 b𝑡/2c

𝑎0𝑧

(reswapping if necessary).

For a proof of correctness of these two algorithms, see Voight [Voi2013, Algo-
rithms 6.2, 6.5].

Definition 12.5.6. We say that 𝜋−1 ∈ 𝐹× is an inverse uniformizer for the prime
𝔭 ⊆ 𝑅 if ord𝔭 (𝜋−1) = −1 and ord𝔮 (𝜋−1) ≥ 0 for all 𝔮 ≠ 𝔭.

We are now prepared to evaluate the even Hilbert symbol.

Algorithm 12.5.7. Let 𝐵 =

(
𝑎, 𝑏

𝐹

)
be a quaternion algebra with 𝑎, 𝑏 ∈ 𝐹×, and let 𝔭

be an even prime of 𝐹. This algorithm returns the value of the Hilbert symbol (𝑎, 𝑏)𝔭.

1. Scale 𝑎, 𝑏 if necessary by an element of Q×2 so that 𝑎, 𝑏 ∈ 𝑅.
2. Let 𝜋−1 be an inverse uniformizer for 𝔭. Let

𝑎 := (𝜋−1)2 bord𝔭 (𝑎)/2c𝑎 and 𝑏 := (𝜋−1)2 bord𝔭 (𝑏)/2c𝑏.

If ord𝔭 𝑎 = ord𝔭 𝑏 = 1, let 𝑎 := (𝜋−1)2 (−𝑎𝑏). Swap if necessary so that
ord𝔭 𝑎 = 0.

3. Call Algorithm 12.5.5, and let 𝑖′ := (1 + 𝑦𝑖 + 𝑧 𝑗 + 𝑤𝑖 𝑗)/2. Let 𝑓 (𝑇) = 𝑇2 − 𝑇 +
nrd(𝑖′) be the minimal polynomial of 𝑖′. If 𝑓 has a root modulo 𝔭, return 1.

4. Let 𝑗 ′ := (𝑧𝑏)𝑖− (𝑦𝑎) 𝑗 and let 𝑏′ := ( 𝑗 ′)2. If ord𝑣 𝑏′ is even, return 1, otherwise
return −1.
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Proof of correctness. If in Step 2 we have a root modulo 𝔭, then by Hensel’s lemma,
𝑓 has a root 𝑡 ∈ 𝐹𝔭, hence 𝑡 − 𝑖′ is a zerodivisor and we return 1 correctly. Otherwise,
𝐾𝔭 = 𝐹𝔭 [𝑖′] is the unramified field extension of 𝐹𝔭. We compute that trd( 𝑗 ′) =
trd(𝑖′ 𝑗 ′) = 0, so 𝐵𝔭 ' (𝐾𝔭, 𝑏

′ | 𝐹𝔭) and 𝐵𝔭 is split if and only if ord𝔭 𝑏′ is even. �



Chapter 14

Quaternion algebras over global fields

14.8 Algorithmic aspects

In this seciton, we show how to make the classification of quaternion algebras (Main
Theorem 14.1.3, and more generally Main Theorem 14.6.1) algorithmic, giving a
computable bijection between quaternion algebras and ramification sets.

First, we showed in Proposition 14.2.7 how to exhibit explicitly a quaternion algebra
𝐵 over Q with a given ramification set Ram 𝐵 = Σ. In general, we need to be able to
find a prime 𝑞 satisfying certain congruence conditions (14.2.11)–(14.2.12), and this
may be done with a probabilistic algorithm. The generalization of this algorithm to
number fields is as follows [GV2011, Algorithm 4.1].

We state Exercise 14.16 as an algorithm.

Algorithm 14.8.1. This algorithm takes as input a finite set Σ ⊂ Pl(𝐹) of noncomplex
places of a number field 𝐹 of even cardinality, and returns as output 𝑎, 𝑏 ∈ Z𝐹 such

that the quaternion algebra 𝐵 =

(
𝑎, 𝑏

𝐹

)
has Ram 𝐵 = Σ.

1. Let 𝔇 :=
∏

𝔭∈Σ 𝔭 be the product of the (finite) primes in Σ. Find 𝑎 ∈ 𝔇 such that
for all real places 𝑣 we have 𝑣(𝑎) < 0 for all 𝑣 ∈ Ram 𝐵 and such that 𝑎Z𝐹 = 𝔇𝔟

with 𝔇 + 𝔟 = Z𝐹 and 𝔟 odd.
2. Factor the ideal 𝔟 into primes. Find 𝑡 ∈ Z𝐹/8𝑎Z𝐹 such that the following hold:

a) For all primes 𝔭 | 𝔇, we have
(
𝑡

𝔭

)
= −1;

b) For all primes 𝔮 | 𝔟, we have
(
𝑡

𝔮

)
= 1; and

c) For all prime powers 𝔯𝑒 ‖ 8Z𝐹 with 𝔯 - 𝔇, we have 𝑡 ≡ 1 (mod 𝔯𝑒).
3. Find 𝑚 ∈ Z𝐹 such that 𝑏 := 𝑡 + 8𝑎𝑚 ∈ Z𝐹 satisfies the following conditions:

a) 𝑏 is prime (i.e., (𝑏) is a prime ideal);
b) 𝑣(𝑏) < 0 for all real places 𝑣 ∈ Ram 𝐵; and
c) 𝑣(𝑏) > 0 for all real places 𝑣 ∉ Ram 𝐵 such that 𝑣(𝑎) < 0.

19
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It can be verified in a manner similar to the proof overQ that the algebra 𝐵 =

(
𝑎, 𝑏

𝐹

)
output by Algorithm 14.8.1 has the correct set of ramified places.

The steps in Algorithm 14.8.1 for working with elements in 𝐹 and ideals in the
ring of integers Z𝐹 are standard, and they are described in the books on computational
algebraic number theory by Cohen [Coh93, Coh2000].
Remark 14.8.2. When possible, it is often helpful in practice to take 𝑎Z𝐹 = 𝔇 in
Algorithm 14.8.1: for example, if 𝔇 = Z𝐹 and there exists a unit 𝑢 ∈ Z×

𝐹
with the

right real signs as in Step 3 and such that 𝑢 ≡ 1 (mod 8), then we may simply take

𝐵 =

(
−1, 𝑢
𝐹

)
. In any event, in Step 2, one may find the element 𝑡 by deterministic or

probabilistic means; moreover, one may wish to be alternate between Steps 2 and 3 in
searching for 𝑏.

14.8.3. Algorithm 14.8.1 may be generalized to the case where 𝐹 is a global func-
tion field is analogous, but at the present time the literature is much less complete in
describing a suite of algorithms for computing with integral structures in such fields
analogous to those mentioned in section 9.8—particularly in the situation where one
works in a relative extension of such fields. (See Hess [Hess2002] for a start.) There-
fore, in this book we will often consider just the case of number fields and content
ourselves to notice that the algorithms we provide will generalize with appropriate
modifications to the global function field setting.

14.8.4. Next, the converse: given a quaternion algebra 𝐵 = (𝑎, 𝑏 | 𝐹) over a number
field 𝐹, we compute the ramification set Ram 𝐵. For this, we simply factor 2 and
(the numerator and denominator of) 𝑎 and 𝑏, and for each prime 𝔭 occuring in these
factorizations and each real place 𝑣 of 𝐹, we compute the corresponding Hilbert symbol
as described in section 12.5.

In the special case where this computation reveals that Ram 𝐵 = ∅, we may ask
further for an explicit isomorphism 𝐵 ∼−→ M2 (𝐹). (See Voight [Voi2013, Section 7]
for discussion of the algorithmic problem of “recognizing the matrix ring”.) There are
several points of view on this problem, relating it to important algorithmic problems
in algorithmic number theory. First, as discussed in 4.6, it is equivalent to compute a
zerodivisor in 𝐵. One method to find such a zerodivisor is to seek appropriate “small”
integral elements. Second, as explained in section 5.5, one can equivalently find a
rational point on a conic over 𝐹; in the case 𝐹 = Q, algorithms for this problem are
due to Cremona–Rusin [CR2003] and Simon [Sim2005], and they run in probabilistic
polynomial time given the factorization of 𝑎, 𝑏 ∈ Z (probabilism only occurs in the
need to compute square roots modulo 𝑝). Aspects of these approaches have been
extended to number fields, but there is no as yet definitive reference. Third and finally,
by Main Theorem 5.4.4, one can also equivalently solve a norm equation in a relative
quadratic extension 𝐾 ⊇ 𝐹; there are a number of approaches to this problem (see
Simon [Sim2002] and the references therein, and Bartels [Bar80] for more on the
theory). Unfortunately, the running time for these algorithms is often poor (as they
involve the computation of an S-unit and S-class group). Nevertheless, this point of
view generalizes cleanly to splitting central simple algebras over number fields (see
work of Hanke [Hanke2007]).



Chapter 15

Discriminants

15.7 Algorithmic aspects

Let 𝐹 be a number field and Z𝐹 its ring of integers. Let 𝐵 = (𝑎, 𝑏 | 𝐹) be a quaternion
algebra over 𝐹, and let O ⊂ 𝐵 be a Z𝐹 -order. Recall we represent O by a pseudobasis
(9.3.7)

O = Z𝐹 ⊕ 𝔞𝑖 ⊕ 𝔟 𝑗 ⊕ 𝔠𝑘

as in section 9.8.

15.7.1. The reduced discriminant discrd(O) can be computed using 15.2.8 and Lemma
15.4.7, without taking a square root:

discrd(O) = 𝔞𝔟𝔠𝑚(𝑖, 𝑗 , 𝑘).

We now discuss some algorithmic aspects of computing maximal orders in this
setting, following Voight [Voi2013, §7]. We say an order O ⊂ 𝐵 is 𝔭-maximal for a
prime 𝔭 of Z𝐹 if O𝔭 = O ⊗Z𝐹 Z𝐹,𝔭 is maximal. We begin with an order to start with:
rescaling we may suppose 𝑎, 𝑏 ∈ Z𝐹 , and then we may take O = Z𝐹 〈𝑖, 𝑗〉 where 𝑖, 𝑗
are standard generators.

Given an order O, to compute a maximal order O′ ⊇ O we compute the reduced
discriminant discrd(O), factor this ideal, and recursively compute a 𝔭-maximal order
for every prime 𝔭 | discrd(O), proceeding in two steps.

Definition 15.7.2. An order O is 𝔭-saturated if nrd |O𝔭
has a normalized basis 1, 𝑖, 𝑗 , 𝑘

(see Proposition 9.8.4) such that each atomic block has valuation at most 1; we then
say that 1, 𝑖, 𝑗 , 𝑘 is a 𝔭-saturated basis for O.

We compute a 𝔭-saturated order in the following straightforward way.

Algorithm 15.7.3. Let O = Z𝐹 ⊕ 𝔞𝑖 ⊕ 𝔟 𝑗 ⊕ 𝔠𝑘 ⊂ 𝐵 be an order and let 𝔭 be prime.
This algorithm computes a 𝔭-saturated order O′ ⊇ O and a 𝔭-saturated basis for O′.

1. Choose 𝑑 ∈ 𝔞 such that ord𝔭 (𝑑) = ord𝔭 (𝔞) and let 𝑖 := 𝑑𝑖; compute similarly
with 𝑗 , 𝑘 . Let O′ := O.
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2. Run Algorithm 9.7.5 over the localization Z𝐹, (𝔭) with the quadratic form nrd
on the basis 1, 𝑖, 𝑗 , 𝑘; let 1, 𝑖∗, 𝑗∗, 𝑘∗ be the output. Let 𝑐 ∈ Z𝐹 be such that
ord𝔭 𝑐 = 0 and such that 𝑐𝑖∗ ∈ O, and let 𝑖 := 𝑐𝑖∗; compute similarly with 𝑗 , 𝑘 .

3. Let 𝜋−1 be an inverse uniformizer for 𝔭. For each atomic form 𝑄 in nrdO, let
𝑒 be the valuation of 𝑄, and multiply each basis element in 𝑄 by (𝜋−1) b𝑒/2c .
Return O′ := O + (Z𝐹 𝑖 ⊕ Z𝐹 𝑗 ⊕ Z𝐹 𝑘) and the basis 1, 𝑖, 𝑗 , 𝑘 .

Proof of correctness. In Step 3, we verify that the output of Algorithm 9.7.5 leaves 1
as the first basis element. We note that ord𝔭 trd( 𝑗) ≤ ord𝔭 trd(𝑖(𝑖 𝑗)) since trd(𝑖(𝑖 𝑗)) =
trd(𝑖)2 − trd( 𝑗) nrd(𝑖) and similarly ord𝔭 trd(𝑖) ≤ ord𝔭 trd((𝑖 𝑗) 𝑗).

Let 1, 𝑖, 𝑗 , 𝑘 be the basis computed in Step 3. By definition, this basis is 𝔭-
saturated; we need to show that O is an order. But O is an order if and only if O𝔮

is an order for all primes 𝔮, and O𝔮 = Λ𝔮 for all primes 𝔮 ≠ 𝔭. For all 𝛼, 𝛽 ∈ 𝐵 we
have 𝛼𝛽 + 𝛽𝛼 = trd(𝛽)𝛼 + trd(𝛼)𝛽 − 𝑇 (𝛼, 𝛽), so if O is an order then O + Z𝐹𝛼 is
multiplicatively closed if and only if 𝑇 (𝛼, 𝛽) ∈ Z𝐹 for all 𝛽 ∈ O. We have 𝑇 (𝛼, 𝛽) = 0
if 𝛼, 𝛽 are orthogonal, and if 𝛼, 𝛽 are a basis for an atomic block 𝑄 then by definition
the valuation of 𝑇 (𝛼, 𝛽) is at least the valuation of 𝑄 and we can multiply each by
(𝜋−1) b𝑒/2c , preserving integrality. �

One can compute a 𝔭-maximal order as follows.

Algorithm 15.7.4. Let O be an order and let 𝔭 be prime. This algorithm computes a
𝔭-maximal order O′ ⊇ O.

1. Compute a 𝔭-saturated order O′ ⊇ O and let 1, 𝑖, 𝑗 , 𝑘 be a 𝔭-saturated basis for
O′. Let 𝜋−1 be an inverse uniformizer for 𝔭.

2. Suppose 𝔭 is odd. Swap 𝑖 for 𝑗 or 𝑘 if necessary so that 𝑎 := 𝑖2 has ord𝔭 (𝑎) = 0.

Let 𝑏 := 𝑗2. If ord𝔭 𝑏 = 0, return O′. Otherwise, if ord𝔭 𝑏 = 1 and
(
𝑎

𝔭

)
= 1,

solve
𝑥2 ≡ 𝑎 (mod 𝔭)

for 𝑥 ∈ Z𝐹/𝔭. Adjoin the element 𝜋−1 (𝑥 − 𝑖) 𝑗 to O′, and return O′.
3. Otherwise, 𝔭 is even. Let 𝑡 := trd(𝑖), let 𝑎 := − nrd(𝑖), and let 𝑏 := 𝑗2.

a. Suppose ord𝔭 𝑡 = 0. If ord𝔭 𝑏 = 0, return O′. If ord𝔭 𝑏 = 1 and there is a
solution 𝑥 ∈ Z𝐹 to 𝑥2− 𝑡𝑥 +𝑎 ≡ 0 (mod 𝔭), and return O+Z𝐹𝜋−1 (𝑥− 𝑖) 𝑗 .

b. Suppose ord𝔭 trd(𝑖) > 0. Let 𝑦, 𝑧, 𝑤 be the output of Algorithm 12.5.5
with input 𝑎, 𝑏. Let

𝑖′ := (𝜋−1)𝑒 (1 + 𝑦𝑖 + 𝑧 𝑗 + 𝑤𝑖 𝑗).

Adjoin 𝑖′ to O, and return to Step 1.

Proof of correctness. At every step in the algorithm, for each prime 𝔮 ≠ 𝔭 the order
O𝔮 does not change, so we need only verify that O𝔭 is a maximal order.

In Step 2, 𝑏 is a uniformizer for 𝔭 and discrd(O𝔭) = 4𝑎𝑏Z𝐹,𝔭. If ord𝔭 (𝑏) = 0 then
ord𝔭 discrd(O𝔭) = 0 so O is maximal. Otherwise, discrd(O𝔭) = 𝔭 and 𝐵𝔭 ' (𝐾𝔭, 𝑏 |
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𝐹𝔭) where 𝐾𝔭 = 𝐹𝔭 [𝑖]. We conclude that 𝐵𝔭 is a division ring (and hence O𝔭 is
maximal) if and only if (𝑎/𝔭) = −1. If (𝑎/𝔭) = 1 and 𝑗 ′ = 𝜋−1 (𝑥− 𝑖) 𝑗 , then 1, 𝑖, 𝑗 ′, 𝑖 𝑗 ′
form the Z𝐹,𝔭-basis for a maximal order, since ( 𝑗 ′)2 = (𝜋−1)2 (𝑥2 − 𝑎)𝑏 ∈ Z𝐹,𝔭 and
𝑗 ′𝑖 = −𝑖 𝑗 ′.

In Step 3, first note that 𝑖 𝑗 is also orthogonal to 1, 𝑖: since 𝑖 is orthogonal to 𝑗 we
get trd(𝑖 𝑗) = 0, so 𝑖 𝑗 is orthogonal to 1, and similarly trd(𝑖 𝑗𝑖) = trd(nrd(𝑖) 𝑗) = 0. In
particular, 𝐵𝔭 = (𝐾𝔭, 𝑏 | 𝐹𝔭) where 𝐾𝔭 = 𝐹𝔭 [𝑖]. By a comparison of discriminants,
using the fact that the basis is normalized, we see that 1, 𝑖, 𝑗 , 𝑖 𝑗 is a 𝔭-saturated basis
for O as well, so without loss of generality we may take 𝑘 = 𝑖 𝑗 .

Suppose first that ord𝔭 trd(𝑖) = 0, so we are in Step 3a. If ord𝔭 𝑏 = 0, then
ord𝔭 discrd(O𝔭) = 0 so O𝔭 is maximal. If ord𝔭 𝑏 > 0, then since the basis is 𝔭-
saturated, ord𝔭 𝑏 = 1. Thus as in the case for 𝔭 odd, 𝐵𝔭 is a division ring if and only if
𝐾𝔭 is not a field, and as above the adjoining the element 𝜋−1 (𝑥 − 𝑖) 𝑗 yields a maximal
order.

So suppose we are in Step 3b, so ord𝔭 trd(𝑖) > 0. Since 1, 𝑖, 𝑗 , 𝑘 is normalized,
ord𝔭 trd(𝑖) = ord𝔭 𝑇 (1, 𝑖) ≤ ord𝔭 𝑇 ( 𝑗 , 𝑘). Adjoining 𝑖′ to O gives a Z𝐹,𝔭-module
with basis 1, 𝑖′, 𝑗 , 𝑖′ 𝑗 since 𝑦 ∈ (Z𝐹/𝔭)×; adjoining 𝑗 ′ gives a module with basis
1, 𝑖′, 𝑗 ′, 𝑖′ 𝑗 ′ for the same reason. We verify that O𝔭 after these steps is an order:
trd(𝑖′) = 2(𝜋−1)𝑒 ∈ Z𝐹,𝔭 and nrd(𝑖′) = (𝜋−1)2𝑒 (1 − 𝑎𝑦2 − 𝑏𝑧2 + 𝑎𝑏𝑤2) ∈ Z𝐹,𝔭 by
construction, so at least Z𝐹,𝔭 [𝑖] = Z𝐹,𝔭 ⊕ Z𝐹,𝔭𝑖 is a ring. Similarly ( 𝑗 ′)2 = 𝑏′ ∈ Z𝐹,𝔭.
Finally, trd(𝑖′𝑖) = 2(𝜋−1)𝑒𝑦𝑎 and trd(𝑖′ 𝑗) = 2(𝜋−1)𝑒𝑧𝑏; it follows that trd(𝑖′ 𝑗 ′) = 0,
and hence 𝑗 ′𝑖′ = −𝑖′ 𝑗 ′ = −𝑖′ 𝑗 ′ − trd(𝑖′) 𝑗 ′, so we have an order. �

Remark 15.7.5. In the proof of correctness for Algorithm 15.7.4, in each case where 𝔭
is ramified in 𝐵 we have in fact written 𝐵𝔭 ' (𝐾𝔭, 𝜋 | 𝐹𝔭) where 𝐾𝔭 is the unramified
extension of 𝐹𝔭. The reader will note the similarity between this algorithm and the
algorithm to compute the Hilbert symbol: the former extends the latter by taking a
witness for the fact that the algebra is split, namely a zerodivisor modulo 𝔭, and uses
this to compute a larger order (giving rise therefore to the matrix ring).

15.7.6. Combining Algorithm 15.7.3 and 15.7.4, we have the following immediate
consequence: if O ⊂ 𝐵 is an order in a quaternion algebra 𝐵 over a number field 𝐹 and
𝔭 is prime of Z𝐹 which is unramified in 𝐵, then there exists an algorithm to compute
an explicit embedding O ↩→ M2 (O𝔭). Such an algorithm is sometimes called an
algorithm to recognize the 𝑝-matrix ring.

The algorithmic complexity in factoring cannot be avoided in this context, accord-
ing to the following theorem.

Theorem 15.7.7. For a fixed number field 𝐹, the problem of computing maximal
orders in quaternion algebras over 𝐹 is probabilistic polynomial-time equivalent to
the problem of factoring integers.

For a proof, see Voight [Voi2013, Theorem 7.15] (following a hint of Ronyai
[Ron92, §6]).
Remark 15.7.8. More generally, there are algorithms to compute maximal orders in
semisimple algebras over number fields that run in deterministic polynomial time
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given oracles for the problems of factoring integers and factoring polynomials over
finite fields: see Ivanyos–Rónyai [IR93, Theorem 5.3], Nebe–Steel [NS2009], and
Friedrichs [Fri2000].



Chapter 17

Classes of quaternion ideals

17.9 Algorithmic aspects

In this section, we exhibit an algorithm to compute the size of the class set of an order
in a totally definite quaternion algebra. A more sophisticated algorithm, inspired by
the notion of Hecke operators acting on modular forms, will be discussed in Chapter
41; our goal in this section is just to try to convince the reader that computations can
be carried out easily in practice.

Let 𝐹 be a number field with ring of integers 𝑅, let 𝐵 be a division quaternion
algebra over 𝐹, and let O ⊂ 𝐵 be an 𝑅-order. Then by Main Theorem 17.7.1, there is
an effective constant 𝐶 > 0 such that

ClsR O = {[𝐼]R : 𝐼 ⊆ O invertible and N(𝐼) ≤ 𝐶}.
We compute Cls O in two steps: first, we compute the set of invertible integral O-ideals
𝐼 ⊆ O with bounded absolute norm, and second we sort them according to their right
class.

For the first step, we first note that N(𝐼) = N(nrd(𝐼))2; we can loop over those
ideals 𝔞 ⊆ 𝑅 with bounded N(𝔞) by factoring in 𝑅, and so it suffices to enumerate
all invertible 𝐼 ⊆ O with nrd(𝐼) = 𝔞. In general, we appeal to a slight modification
of Exercise 16.6: every such ideal is represented as 𝐼 = 𝔞O + 𝛽O with 𝛽 ∈ O, and
conversely the 𝑅-lattice 𝔞O + 𝛽O is locally principal if nrd(𝛽)𝑅 + 𝔞 = nrd(𝛽). Since
𝛽 is well-defined as an element of O/𝔞O, we can simply enumerate representatives of
the finite quotient.

We can stay more organized in our task by factoring. If 𝐼 ⊆ O and 𝐼 ′ ⊆ O are
invertible integral O-ideals with reduced norms nrd(𝐼) = 𝔞 and nrd(𝐼 ′) = 𝔞′ such that
𝔞 + 𝔞′ = 𝑅, then 𝐼 ∩ 𝐼 ′ is an invertible integral O-ideal with reduced norm 𝔞𝔞′: this
follows by looking locally. Conversely, if 𝐽 has reduced norm 𝔞𝔞′ with 𝔞 + 𝔞′ = 𝑅,
then 𝐼 = 𝔞O + 𝐽 has reduced norm 𝔞. So it suffices to compute the set of ideals whose
reduced norm is a power of a prime 𝔭. When 𝔭 is unramified in 𝐵 and O is 𝔭-maximal
for all primes 𝔭 | 𝔞, we have more direct control over the set of right ideals as follows.

To compute the set of right O-ideals of reduced norm 𝔭𝑒 with 𝔭 unramified, using
15.7.6 we compute an embedding 𝜄𝔭 : O ↩→ M2 (𝑅𝔭), and then we take the set of ideals
𝐼 = 𝔭𝑒O + 𝛼O where 𝜄𝔭 (𝛼) is congruent to an element in the set (17.6.2) modulo 𝔭𝑒.

25
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Now we turn to the second step: given invertible right O-ideals 𝐼, 𝐽, we need to
check if [𝐼] = [𝐽] ∈ Cls O. We first appeal to (17.3.3): we see it is algorithmically
equivalent to check if (𝐽 : 𝐼)L is principal. The colon ideal itself can be computed using
standard methods for pseudobases. To check for principality, we follow Kirschmer–
Voight [KV2010, Algorithm 4.10] and employ tactics from lattice reduction.

Algorithm 17.9.1. Let 𝐼 be an integral 𝑅-lattice and suppose that 𝐼 is principal. Then
this algorithm exhibits a generator for 𝐼.

1. Compute nrd(𝐼) ⊂ 𝑅 and let 𝑐 ∈ 𝑅 be such that nrd(𝐼) = 𝑐𝑅. Initialize 𝛼 := 1.
If 𝑐 ∈ 𝑅×, return 𝛼.

2. View 𝐼 as a lattice equipped with the absolute reduced norm 𝑄 (17.7.11).
Reduce 𝐼 using the LLL algorithm [LLL82]. By exhaustively enumerating short
elements in 𝐼, find 𝛾 ∈ 𝐼 such that nrd(𝛾) = 𝑐𝑑 with N(𝑑) < N(𝑐). Let
𝛼 := 𝛾𝛼/𝑑, let 𝐼 := 𝑑𝛾−1𝐼, and let 𝑐 := 𝑑, and return to Step 2.

Proof. In Step 2 we have nrd(𝑑𝛾−1𝐼) = 𝑑2/(𝑐𝑑) nrd(𝐼) = 𝑑𝑅, and so if the algorithm
terminates then it gives correct output by Lemma 16.3.8 since 𝑑𝛾−1𝐼 = 𝛼O if and
only if 𝐼 = (𝛾𝛼/𝑑)O. The algorithm terminates because at each stage in Step 2,
N(𝑑) < N(𝑐) a decreasing sequence of positive integers so this is executed only
finitely many times, and if 𝐼 is principal a generator will be found eventually by
exhaustive enumeration. �

In practice, Algorithm 17.9.1 runs better than naive enumeration; however, we are
unable to prove a rigorous runtime bound. With that proviso, given the generator 𝑐
as in Step 1, we can measure the value of the LLL-step as follows [KV2010, Lemma
4.11].

Lemma 17.9.2. There exists 𝐶 ∈ R>0 such that for every invertible 𝑅-lattice 𝐼, the
first basis element 𝛾 in the 𝐿𝐿𝐿-reduced basis in Step 2 of Algorithm 17.9.1 satisfies

|Nm𝐵/Q (nrd(𝛾)) |2 ≤ 𝐶N(discrd(OR (𝐼))) · N(𝐼).

Proof. The output of the LLL algorithm [LLL82, Proposition 1.9] is an element 𝛾 ∈ 𝐼
which satisfies

𝑄(𝛾) ≤ 2(4𝑛−1)/2 covol(𝐼)1/(2𝑛) .

We argue as in Proposition 17.7.19:

covol(𝐼) = N(𝐼) covol(O)

so by (17.7.18)

|Nm𝐹/Q (nrd(𝛾)) |2 ≤ 1
𝑛2𝑛𝑄(𝛾)

2𝑛 ≤ 2(4𝑛−1)𝑛

𝑛2𝑛 N(𝐼) covol(O)

so the result follows taking

𝐶 =
2(4𝑛−1)𝑛

𝑛2𝑛
covol(O)

N(discrd(O)) . �
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Lemma 17.9.2 indicates that, up to a constant depending on the quaternion algebra
(choice of 𝑎, 𝑏), Algorithm 17.9.1 examines elements that are close to being generators.

Now suppose that 𝐵 is totally definite, so in particular 𝐹 is totally real. Then we
can improve on Algorithm 17.9.1 to provide a rigorous algorithm with an estimate on
the running time, as follows [KV2010, Algorithm 6.3]. In this case, we defined the
absolute reduced norm 𝑄 (17.7.11) independently of choices. For 𝑐 ∈ 𝐹×, we define
𝑄𝑐 (𝛼) := 𝑄(𝑐−1𝛼) for 𝛼 ∈ 𝐵.

Algorithm 17.9.3. Let 𝐵 be a totally definite quaternion algebra. Let 𝐼 ⊂ O be an
invertible 𝑅-lattice. This algorithm determines if 𝐼 is principal and, if so, returns a
generator for 𝐼.

1. Compute nrd(𝐼) ⊆ 𝑅 and test if nrd(𝐼) is principal; if not, then return false.
Otherwise, let 𝑐 ∈ 𝑅 be such that nrd(𝐼) = 𝑐𝑅. Initialize 𝛼 := 1.

2. Determine if there exists a unit 𝑢 ∈ Z×
𝐹

such that 𝑣(𝑢𝑐) > 0 for all real places 𝑣.
If so, let 𝑐 := 𝑢𝑐; if not, return false.

3. For each totally positive unit 𝑧 ∈ 𝑅×
>0/𝑅

×2:

a. Let 𝛼 be a shortest vector of the lattice 𝐼 with respect to the rational
quadratic form 𝑄𝑢𝑐𝑧 .

b. If 𝜑𝑢𝑐𝑧 (𝛼) = 𝑛 then return true and the element 𝛼.

4. Return false.

Remark 17.9.4. Note that if 𝐹 = Q then in Steps 3, 4 we have 𝑧 = 𝑢 = 1. Hence the
algorithm simply looks for a shortest vector in the lattice 𝐼 (with respect to the reduced
norm form).

Proof of correctness of Algorithm 17.9.3. In Step 1, if 𝐼 is principal, then nrd(𝐼) is
generated by a totally positive element 𝑢𝑐 where 𝑢 ∈ 𝑅×. Then Lemma (16.3.8)
implies that 𝛼 ∈ 𝐼 generates 𝐼 if and only if nrd𝛼 = 𝑢𝑐𝑧 for some 𝑧 ∈ 𝑅×

>0. To find
such an element 𝛼, we only need to search for elements of norm 𝑢𝑐𝑧 where 𝑧 runs
through some arbitrary transversal of 𝑅×

>0/𝑅
×2.

Let 𝑧 ∈ 𝑅×
>0 and 𝛼 ∈ 𝐼. Then nrd𝛼 ∈ nrd 𝐼 = (𝑢𝑐𝑧)𝑅, so 𝑚 = (𝑢𝑐𝑧)−1 (nrd𝛼) ∈ 𝑅

is totally positive. The arithmetic-geometric mean inequality implies

𝑛 ≤ 𝑛Nm𝐹/Q (𝑚)1/𝑛 ≤ Tr𝐹/Q 𝑚 = 𝑄𝑢𝑐𝑧 (𝛼).

Moreover, equality holds throughout if and only if 1 = Nm𝐹/𝑄 𝑚 and 𝑣(𝑚) = 𝑣′(𝑚)
for all real places 𝑣, 𝑣′, so equality holds if and only if 𝑚 = 1. Hence nrd(𝛼) = 𝑢𝑐𝑧 if
and only if 𝛼 ∈ 𝐼 satisfies 𝑄𝑢𝑐𝑧 (𝛼) = 𝑛 is a shortest vector. �

Algorithm 17.9.3 runs in deterministic polynomial time in the size of the input
for a fixed totally real field 𝐹 [KV2010, Proposition 6.9]: Steps 1,2 involve some
precomputation which can be done in constant time for fixed 𝐹, and the shortest vector
computation can be performed in constant time for a fixed dimensional lattice by
employing the LLL-algorithm [LLL82] (see e.g., Kannan [Kan87, Section 3]).
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17.9.5. By the surjective map ClsR O → Typ O in (17.4.14), these algorithms also
give representatives for Typ O: they are the set of orders {OL (𝐼) : [𝐼] ∈ ClsR O}, since
OL (𝐼) ' OL (𝐼 ′) for 𝐼, 𝐼 ′ invertible right O-ideals if and only if OL (𝐼) = 𝛼−1OL (𝐼 ′)𝛼 =

OL (𝛼−1𝐼 ′) if and only if [𝐼] = [𝐼 ′]. In other words, we need only check equality of
the left orders.



Chapter 20

Integral representation theory

20.5 Local Jacobson radical

We fill in some of the proofs in this section.

Theorem 20.5.1. Let 𝜙 : O→ O/𝔭O be reduction modulo 𝔭. Then

rad O = 𝜙−1 (rad O/𝔭O) ⊇ 𝔭O,

and (rad O)𝑟 ⊆ 𝔭O for some 𝑟 > 0.

Proof. We follow Reiner [Rei2003, Theorem 6.15]. We first show rad O ⊇ 𝔭O. Let
𝑀 = O𝑥 be a simple left O-module 20.4.2; then either 𝔭𝑀 = 𝑀 or 𝔭𝑀 = {0}. The
former implies the latter by Nakayama’s lemma. Thus by definition, we conclude

𝔭O ⊆ rad O. (20.5.2)

Next, we have a surjective homomorphism 𝜙 : O→ O/𝔭O. By Corollary 20.4.10,
we have 𝜙(rad O) ⊆ rad(O/𝔭O) and an induced map

𝜙 : O/rad O→ (O/𝔭O)/(rad O/𝔭O).

At the same time, we have an surjective map 𝜓 : O/𝔭O → O/rad O by (20.5.2).
By Lemma 20.4.7, O/rad O is Jacobson semisimple, so by Corollary 20.4.10 again,
𝜓(rad(O/𝔭O)) = {0}. Thus 𝜓 factors through a surjective map

𝜓 : (O/𝔭O)/rad(O/𝔭O) → O/rad O.

Putting 𝜙 and 𝜓 together as surjective homomorphisms between finite-dimensional 𝑘-
vector spaces, we conclude that both are isomorphisms, and rad O = 𝜙−1 (rad O/𝔭O).

Finally, rad O/𝔭O is a nilpotent ideal by Lemma 7.4.8, so (rad O/𝔭O)𝑟 = {0} for
some 𝑟 > 0. Thus 𝜙((rad O)𝑟 ) = {0}, and (rad O)𝑟 ⊆ 𝔭O. �

Corollary 20.5.5. Let 𝐼 ⊆ O be a two-sided ideal. Then the following are equivalent:

(a) 𝐼 ⊆ rad O;

29



30 CHAPTER 20. INTEGRAL REPRESENTATION THEORY

(b) 𝐼𝑟 ⊆ rad O for some 𝑟 > 0; and
(c) 𝐼 is topologically nilpotent.

Proof. We follow Reiner [Rei2003, Exercise 39.1, Exercise 6.3]. The implication (i)
⇒ (ii) is immediate. For (ii) ⇒ (iii), by Theorem 20.5.1, we have (rad O)𝑠 ⊆ 𝔭O
for some 𝑠 > 0. Therefore if 𝐼𝑟 ⊆ rad O then 𝐼𝑟𝑠 ⊆ (rad O)𝑠 ⊆ 𝔭O. Finally (iii)
⇒ (i), suppose 𝐼𝑟 ⊆ 𝔭O for some 𝑟 > 0. Let 𝜙 : O → O/𝔭O be the reduction map.
Then 𝜙(𝐼) is a nilpotent ideal in O/𝔭O, so 𝜙(𝐼) ⊆ rad(O/𝔭O); by Theorem 20.5.1,
𝐼 ⊆ 𝜙−1 (rad O/𝔭O) = rad O. �

20.6 Local integral representation theory

Let 𝐽 = rad O; then O/𝐽 is a semisimple 𝑘-algebra, by Corollary 20.5.2. We now
follow Hijikata–Nishida [HN94, §1].

Lemma 20.6.13. Let 𝐼 ⊆ 𝐵 be a left O-submodule.

(a) 𝐼 has a unique maximal O-submodule 𝐼 ′ ⊆ 𝐼 if and only if 𝐼/𝐽𝐼 is simple as a
O/𝐽-module. In this situation, 𝐼 is indecomposable and 𝐼 ′ = 𝐽𝐼.

(b) If 𝐼 is projective, then it has a unique maximal O-submodule if and only if it is
indecomposable.

Proof. Statement (a) follows since O/𝐽 is semisimple. Statement (b) follows from
Lemma 20.6.8. �

Corollary 20.6.14. Let 𝑀 be a left O-module with a unique maximal O-submodule,
and let 𝑉 := 𝑀 ⊗𝑅 𝐹. Suppose that ℓ(𝑉) ≥ ℓ(𝐵𝑒) for all primitive idempotents 𝑒 of
O. Then 𝑀 is projective and indecomposable.

Proof. By Lemma 20.6.13(a), 𝑀/𝐽𝑀 is simple and therefore 𝑀/𝐽𝑀 ' 𝐼/𝐽𝐼 for
some projective indecomposable 𝐼 by Lemma 20.6.8. Write 𝐼 = O𝑒 where 𝑒 is a
primitive idempotent, so we have a O-module homomorphism O𝑒 → 𝐼/𝐽𝐼 ' 𝑀/𝐽𝑀 .
Choosing a lift of the image of 𝑒, we get a map 𝜙 : O𝑒 → 𝑀 . By Nakayama’s
lemma, 𝜙 is surjective. Therefore induced map 𝜙𝐹 : 𝐵𝑒 → 𝑉 is a surjective 𝐹-
algebra homomorphism. But by hypothesis ℓ(𝐵𝑒) ≥ ℓ(𝑉), so 𝜙𝐹 is injective. Thus
𝜙 is injective and thus gives an isomorphism of 𝑀 with a projective indecomposable
module. �

Corollary 20.6.15. Let 𝑀 be a finitely generated left O-module. The following are
equivalent:

(a) 𝑀 has a unique composition series;
(b) 𝑀 ⊇ 𝐽𝑀 ⊇ 𝐽2𝑀 ⊇ . . . is a composition series; and
(c) 𝐽𝑖𝑀/𝐽𝑖+1𝑀 is simple for all 𝑖 ≥ 0.

If these equivalent conditions hold, then 𝑉 := 𝑀 ⊗𝑅 𝐹 is simple as a 𝐵-module.
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Proof. The equivalences are immediate from Lemma 20.6.13. For the second state-
ment, suppose 𝑉 is not simple, with 𝑉 ) 𝑊 ) {0}. We consider the O-submodule
𝑀 ∩𝑊 ⊆ 𝑀; since

⋂∞
𝑖=1 𝐽

𝑖𝑀 = {0} and nontriviality, there exists 𝑟 ≥ 0 such that
𝑀 ∩𝑊 ⊆ 𝐽𝑟𝑀 but 𝑀 ∩𝑊 * 𝐽𝑟+1𝑀 . Now consider the inclusion

𝐽𝑟+1𝑀 ( 𝐽𝑟+1𝑀 + (𝑀 ∩𝑊) ( 𝐽𝑟𝑀, (20.6.16)

the strictness of inclusions following the hypotheses. This contradicts uniqueness of
the composition series. �

20.6.17. Suppose that 𝑀 has a unique composition series. Then 𝔭𝑀 ⊆ 𝑀 is a
submodule, so by uniqueness 𝔭𝑀 = 𝐽𝑡𝑀 for some 𝑡 ≥ 1. We call 𝑡 the period of the
composition series.

20.6.18. Let 𝐼 ⊆ 𝐵 be a left O-module. Suppose that 𝐼/𝐽𝐼 is simple. Let 𝐼 ′ ⊇ 𝐼 be a
minimal O-supermodule.

We claim that if 𝐼 is the minimal O-supermodule of 𝐽𝐼, then 𝐼 is the maximal
O-submodule of 𝐼 ′. Indeed, 𝐽𝐼 ′ ( 𝐼 ′ so by minimality, 𝐽𝐼 ′ ⊆ 𝐼; since 𝐼/𝐽𝐼 is
simple, we have either 𝐽𝐼 ′ = 𝐼 or 𝐽𝐼 ′ = 𝐽𝐼. We rule out the former because then
𝐼 ′/𝐽𝐼 ′ = 𝐼 ′/𝐽𝐼 ' 𝐼 ′/𝐼⊕ 𝐼/𝐽𝐼 is decomposable, so 𝐼 is not the minimal O-supermodule.





Chapter 21

Hereditary and extremal orders

21.5 Classification of local hereditary orders

We provide a proof of the following result.

Theorem 21.5.1. Let 𝑅 be a complete DVR with 𝐹 = Frac 𝑅. Let 𝐵 be a finite-
dimensional 𝐹-algebra, and let O ⊆ 𝐵 be an 𝑅-order. Let 𝐽 = rad O. Then the
following are equivalent, along with the conditions ′ where ‘left’ is replaced by ‘right’:

(i) O is extremal;
(ii) Every projective indecomposable left O-submodule 𝑃 ⊆ 𝐵 is the minimum

O-supermodule of 𝐽𝑃;
(iii) Every projective indecomposable left O-module 𝑃 has a unique composition

series;
(iv) Every projective indecomposable left O-module 𝑃 has a unique composition

series consisting of projectives;
(v) O is hereditary;
(vi) 𝐽 is projective as a left O-module;
(vii) If 𝑃 is a projective indecomposable left O-module, then 𝐽𝑃 is also projective

indecomposable; and
(viii) 𝐽 is invertible as a (sated) two-sided O-ideal.

Proof. We follow Hijikata–Nishida [HN94, §1].
(i)⇒ (ii). Let 𝑃 = O𝑒 ⊆ O ⊆ 𝐵 (see 20.6.4) and suppose that (ii) does not hold

for 𝑃. Then there is a minimal O-supermodule 𝑀 ) 𝐽𝑃 = 𝐽𝑒 such that 𝑀 ≠ 𝑃. We
cannot have 𝑀 ⊆ 𝑃 = O𝑒 by minimality, so 𝑀 * O by projection onto 𝐵𝑒. Now
𝑀 + 𝐽 ) 𝐽 is a minimal O-supermodule because (𝑀 + 𝐽)/𝐽 ' 𝑀/𝐽𝑒 and 𝑀 ⊇ 𝐽𝑒
is minimal. Therefore by 20.6.12, we have 𝐽 (𝑀 + 𝐽) ⊆ 𝐽, i.e., 𝑀 + 𝐽 ⊆ OR (𝐽). But
𝑀 + 𝐽 * O, so OR (𝐽) ≠ O, contradicting Proposition 21.2.3.

(ii) ⇒ (iii). Among the projective indecomposables 𝑃 = O𝑒, we choose 𝑃 so
that ℓ(𝑉) is maximal, where 𝑉 = 𝐹𝑃. By (ii), there exists 𝑃 ⊇ 𝑃1 a minimal O-
supermodule. Then 𝑃 = 𝐽𝑃1 is the maximum O-submodule of 𝑃1. By Corollary
20.6.14, 𝑃1 is projective indecomposable since ℓ(𝑉) is maximal, and repeating the
process we get a period 𝑃 ⊆ 𝑃1 ⊆ · · · ⊆ 𝑃𝑟 where 𝑃𝑟 ⊆ 𝑃 as left O-modules,

33



34 CHAPTER 21. HEREDITARY AND EXTREMAL ORDERS

and 𝑃𝑟−1 = 𝐽𝑃𝑟 , and 𝑃 has a unique composition series. Therefore 𝑉 is a simple
𝐵-module, and ℓ(𝑉) = 1. Since ℓ(𝑉) ≥ ℓ(𝐵𝑒) for all 𝑒, we conclude ℓ(𝐵𝑒) = 1 for all
idempotents 𝑒.

Now let 𝑃 be a projective indecomposable. But we just showed that ℓ(𝐹𝑃) ≥
ℓ(𝐵𝑒) = 1 for all idempotents 𝑒, so the same argument applying Corollary 20.6.14 in
the previous paragraph works for 𝑃.

(iii)⇒ (iv). The same argument as in the previous implication applies.
(iv) ⇒ (v). Let 𝐼 be an indecomposable left O-ideal; writing 𝐼 as a direct sum

of indecomposables, we may suppose 𝐼 is indecomposable. The 𝐵-module 𝐹𝐼 has a
simple quotient. By (iv), 𝐼 has unique composition series, so 𝐹𝐼 = 𝐵𝑒 is simple. We
therefore have an exact sequence of 𝐵-modules

0→ ker 𝜙→ 𝐹𝐼
𝜙
−→ 𝐵𝑒 → 0

which intersectiong with O gives an exact sequence of O-modules

0→ 𝐼 ∩ ker 𝜙→ 𝐼
𝜙 |𝐼−−−→ 𝜙(𝐼) → 0.

We have 𝜙(𝐼) ⊆ 𝐼; by (iv), iterating, we conclude 𝜙(𝐼) is projective and so is a direct
summand. But 𝐼 is indecomposable, so 𝐼 ' 𝜙(𝐼) and 𝐼 is projective.

(v)⇒ (vi). Immediate.
(vi) ⇒ (iv). Let 𝑃 ' O𝑒 be a projective indecomposable; then 𝐽𝑃 = 𝐽𝑒 is the

maximum O-submodule. By (vi), 𝐽𝑃 is also projective; so we can iterate to a unique
composition series.

(vi)⇒ (vii). We have 𝑃 = O𝑒 for an idempotent 𝑒, so 𝐽𝑃 = 𝐽𝑒 and 𝐽 = 𝐽𝑒⊕𝐽 (1−𝑒).
(vii) ⇒ (vi). Write O '

⊕
𝑖 𝑃
⊕𝑛𝑖
𝑖

as a finite direct sum of indecomposable left
O-ideals 𝑃𝑖 . Then 𝐽 '

⊕
(𝐽𝑃𝑖)⊕𝑛𝑖 . By (vi), each 𝐽𝑃𝑖 is projective indecomposable,

so isomorphic to 𝑃𝜏 (𝑖) for some 𝜏(𝑖). Thus 𝐽 is projective.
(vii)⇒ (i). We continue with the previous paragraph, so we know (vi) and hence

(iv). Therefore 𝐽𝑃𝑖 ⊆ 𝑃𝑖 is the unique projective indecomposable, and so 𝜏 must be
a permutation of the indices. Therefore by 20.6.6, OL (𝐽) = O. It follows that O is
extremal, by Proposition 21.2.3.

For the left-right symmetry in (i)–(vii), we note that extremal (i) is left-right
symmetric, and we can repeat all of the above arguments on the right instead.

(i) + (vi) + (vi′)⇔ (viii): by Theorem 20.3.3, we have OL (𝐽) = OR (𝐽) = O and
O projective as a two-sided O-ideal if and only if 𝐽 is invertible as a (sated) two-sided
O-ideal. �



Chapter 22

Quaternion orders and ternary
quadratic forms

22.6 ∗ A functorial inverse to the even Clifford map

We have seen that the even Clifford functor associates to a nondegenerate ternary
quadratic module a quaternion 𝑅-order. In this section, we show how to do the
converse, furnishing an inverse to the Clifford functor. The construction is due to
Voight [Voi2011a, §2], following Bhargava [Bha2004b] (who considered the case of
commutative rings of rank 4) and a footnote of Gross–Lucianovic [GrLu2009, Footnote
2].

Let 𝑅 be a (noetherian) domain with 𝐹 = Frac 𝑅. Let O ⊂ 𝐵 be a projective
𝑅-order in a quaternion algebra 𝐵 over 𝐹.

Lemma 22.6.1. O/𝑅 is projective of rank 3 as an 𝑅-module.

Proof. For every prime ideal 𝔭 of 𝑅, there exists a basis for the algebra O𝔭/𝔭O𝔭 over
the field 𝑅𝔭/𝔭𝑅𝔭 which includes 1, and by Nakayama’s lemma this lifts to a basis for
O𝔭. In particular, the quotient O/𝑅 is locally free hence projective of rank 3. �

Proposition 22.6.2. There exists a unique quadratic map

𝜓 = 𝜓O :
∧2 (O/𝑅) →

∧4 O

with the property that
𝜓(𝑥 ∧ 𝑦) = 1 ∧ 𝑥 ∧ 𝑦 ∧ 𝑥𝑦 (22.6.3)

for all 𝑥, 𝑦 ∈ O.

Proof. We first prove the proposition for 𝐵 over 𝐹; then the restriction of the map to
O/𝑅 then has image in

∧4 O and satisfies (22.6.3).
We first define the map on sets:

𝜑 : 𝐵 × 𝐵→
∧4𝐵

(𝑥, 𝑦) ↦→ 1 ∧ 𝑥 ∧ 𝑦 ∧ 𝑥𝑦.
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The map 𝜑 descends to a map 𝜑 : 𝐵/𝐹 × 𝐵/𝐹 → ∧4 𝐵. We have 𝜑(𝑎𝑥, 𝑦) = 𝜑(𝑥, 𝑎𝑦)
for all 𝑥, 𝑦 ∈ 𝐵 and 𝑎 ∈ 𝐹. Furthermore, we visibly have 𝜑(𝑥, 𝑥) = 0 for all 𝑥 ∈ 𝐵,
so the map is well-defined on the source. Finally, the map 𝜑 when restricted to each
variable 𝑥, 𝑦 separately yields a quadratic map 𝐵/𝐹 → ∧4 𝐵.

Now let 1, 𝑖, 𝑗 , 𝑘 be an 𝐹-basis for 𝐵. Then 𝑖∧ 𝑗 , 𝑗 ∧ 𝑘, 𝑘∧ 𝑖 is a basis for
∧2 (𝐵/𝐹).

We define
𝜓 :

∧2 (𝐵/𝐹) →
∧4𝐵

𝜓(𝑖 ∧ 𝑗) = 𝜑(𝑖, 𝑗)
𝜓(𝑖 ∧ 𝑗 + 𝑗 ∧ 𝑘) = 𝜑(𝑖 − 𝑘, 𝑗) = 𝜑( 𝑗 , 𝑘 − 𝑖)

(22.6.4)

together with the cyclic permutations of (22.6.4); we obtain a uniquely defined
quadratic map by scaling and 𝑅-bilinearity (see Remark 9.7.2).

We claim that 𝜓(𝑥 ∧ 𝑦) = 𝜑(𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝐵. By definition and the skew
commutativity relation (4.2.16), we have that this is true if 𝑥, 𝑦 ∈ {𝑖, 𝑗 , 𝑘}. For every
𝑦 ∈ {𝑖, 𝑗 , 𝑘}, consider the maps

𝜑𝑦 , 𝜓𝑦 : 𝐵/𝐹 →
∧4𝐵

𝑥 ↦→ 𝜑(𝑥 ∧ 𝑦), 𝜓(𝑥 ∧ 𝑦)

restricted to the first variable. Note that each of these maps are quadratic and they
agree on the values 𝑖, 𝑗 , 𝑘, 𝑖 − 𝑘, 𝑗 − 𝑖, 𝑘 − 𝑗 , so they are equal. The same argument on
the other variable, where now we may restrict 𝜑, 𝜓 with 𝑥 ∈ 𝐵, proves the claim. �

Definition 22.6.5. The quadratic module 𝜓O :
∧2 (O/𝑅) →

∧4 O in Proposition
22.6.2 is called the canonical exterior form of O.

Proposition 22.6.6. The association O ↦→ 𝜓O yields a functor from the category of

projective quaternion orders over 𝑅, under isomorphisms

to the category of

nondegenerate ternary quadratic modules, under similarity.

Proof. An isomorphism 𝜙 : O→ O′ of quaternion 𝑅-orders induces a similarity∧2 (O/𝑅)
𝜓 //

∧2𝜙o
��

∧4 O

∧4𝜙o
��∧2 (O′/𝑅)

𝜓′ // ∧4 O′

because for all 𝑥, 𝑦 ∈ O we have

(∧4𝜙) (𝜓(𝑥 ∧ 𝑦)) = 1 ∧ 𝜙(𝑥) ∧ 𝜙(𝑦) ∧ 𝜙(𝑥𝑦)
= 1 ∧ 𝜙(𝑥) ∧ 𝜙(𝑦) ∧ 𝜙(𝑥)𝜙(𝑦)
= 𝜓 ′(𝜙(𝑥) ∧ 𝜙(𝑦)) = 𝜓 ′((∧2𝜙) (𝑥 ∧ 𝑦))

(22.6.7)

as desired. �
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22.6.8. Suppose that O is free with a good basis 1, 𝑖, 𝑗 , 𝑘 (see 22.4.7) and multiplication
laws (22.3.7). We now compute the canonical exterior form

𝜓 = 𝜓O :
∧2 (O/𝑅) →

∧4 O.

We choose bases, with∧2 (O/𝑅) ∼−→ 𝑅( 𝑗 ∧ 𝑘) ⊕ 𝑅(𝑘 ∧ 𝑖) ⊕ 𝑅(𝑖 ∧ 𝑗) = 𝑅𝑒1 ⊕ 𝑅𝑒2 ⊕ 𝑅𝑒3

and the generator −1 ∧ 𝑖 ∧ 𝑗 ∧ 𝑘 for
∧4 O.

With these identifications, the canonical exterior form 𝜓 : 𝑅3 → 𝑅 has

𝜓(𝑒1) = 𝜓( 𝑗 ∧ 𝑘) = 1 ∧ 𝑗 ∧ 𝑘 ∧ 𝑗 𝑘 = 1 ∧ 𝑗 ∧ 𝑘 ∧ (−𝑎𝑖) = 𝑎(−1 ∧ 𝑖 ∧ 𝑗 ∧ 𝑘)

and

𝜓(𝑒1 + 𝑒2) − 𝜓(𝑒1) − 𝜓(𝑒2) = 𝜓(𝑘 ∧ (𝑖 − 𝑗)) − 𝜓( 𝑗 ∧ 𝑘) − 𝜓(𝑘 ∧ 𝑖)
= −1 ∧ 𝑘 ∧ 𝑗 ∧ 𝑘𝑖 − 1 ∧ 𝑘 ∧ 𝑖 ∧ 𝑘 𝑗
= −𝑤(1 ∧ 𝑘 ∧ 𝑖 ∧ 𝑗) = 𝑤(−1 ∧ 𝑖 ∧ 𝑗 ∧ 𝑘).

Continuing in this way, we see that

𝜓(𝑥( 𝑗 ∧ 𝑘) + 𝑦(𝑘 ∧ 𝑖) + 𝑧(𝑖 ∧ 𝑗)) = 𝑄(𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3) = 𝑄(𝑥, 𝑦, 𝑧)

with
𝑄(𝑥, 𝑦, 𝑧) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 𝑢𝑦𝑧 + 𝑣𝑥𝑧 + 𝑤𝑥𝑦, (22.6.9)

so that
Clf0 (𝜓O) ' O. (22.6.10)

Therefore 𝜓 furnishes an inverse to the map in Main Theorem 22.4.1 when 𝑅 is a
PID, and combined with Proposition 22.4.4 provides another proof of this theorem. In
particular, we have obtained the same quadratic form as constructed in 22.4.8, so

𝑁 nrd(O♯) ∼ 𝜓O (22.6.11)

In particular, from Proposition 22.4.12 we have for every nondegenerate ternary
quadratic form 𝑄 : 𝑅3 → 𝑅 we have 𝜓Clf0 (𝑄) is similar to 𝑄. (We reprove this
for general 𝑅 in the next section.)

22.6.12. Suppose that 𝑅 is a Dedekind domain with field of fractions 𝐹. By Exercise
22.5, there is a good pseudobasis for O

O = 𝑅 ⊕ 𝔞𝑖 ⊕ 𝔟 𝑗 ⊕ 𝔠𝑘. (22.6.13)

The canonical exterior form of O, by the same argument as in 22.6.8 but keeping
track of scalars, is given by

𝜓O : 𝔟𝔠𝑒1 ⊕ 𝔞𝔠𝑒2 ⊕ 𝔞𝔟𝑒3 → 𝔞𝔟𝔠
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under the identification ∧4 O ∼−→ 𝔞𝔟𝔠

1 ∧ 𝑖 ∧ 𝑗 ∧ 𝑘 ↦→ −1;
(22.6.14)

we again have

𝜓O (𝑥𝑒1 + 𝑦𝑒2 + 𝑧𝑒3) = 𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 + 𝑢𝑦𝑧 + 𝑣𝑥𝑧 + 𝑤𝑥𝑦

as in (22.6.9), but now with 𝑥, 𝑦, 𝑧 are restricted to their respective coefficient ideals.
Repeating the same argument as in 22.6.8, we obtain again a similarity

nrd(O♯) ∼ 𝜓O (22.6.15)

as in (22.6.11).

22.7 ∗ Twisting and final bijection

We are now ready for the final bijection, one that uses the canonical exterior form from
the previous section.

The even Clifford algebra and the canonical exterior form carry with them one
global property (Steinitz class) that must be taken into account before we obtain an
equivalence of categories. Briefly, in addition to similarities one must also take into
account twisted similarities, obtained not by a global map but by twisting by an
invertible module.

Definition 22.7.1. A quadratic module 𝑑 : 𝑃 → 𝐼 with 𝑃, 𝐼 projective of rank 1 is
called a twisting quadratic module if the associated bilinear map 𝑃 ⊗ 𝑃 → 𝐼 is an
𝑅-module isomorphism.

Example 22.7.2. The quadratic module 𝑑 : 𝑅 → 𝑅 by 𝑧 ↦→ 𝑧2 is a (trivial) twisting.
If 𝑃 is an invertible 𝑅-module, then the quadratic module

𝑃→ 𝑃⊗2

𝑧 ↦→ 𝑧 ⊗ 𝑧
(22.7.3)

is twisting.

Definition 22.7.4. Let 𝑄 : 𝑀 → 𝐿 be a quadratic module and let 𝑑 : 𝑃 → 𝐼 be a
twisting quadratic module. The twist of 𝑄 by 𝑑 is the quadratic module

𝑄 ⊗ 𝑑 : 𝑀 ⊗ 𝑃→ 𝐿 ⊗ 𝐼
𝑥 ⊗ 𝑧 ↦→ 𝑄(𝑥) ⊗ 𝑑 (𝑧).

A twisted similarity between quadratic modules𝑄 : 𝑀 → 𝐿 and𝑄 ′ : 𝑀 ′→ 𝐿 ′ is
tuple ( 𝑓 , ℎ, 𝑑) where 𝑑 : 𝑃→ 𝐼 is a twisting quadratic module and ( 𝑓 , ℎ) is a similarity
between 𝑄 ⊗ 𝑑 and 𝑄 ′.
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Example 22.7.5. Let𝑄 : 𝑀 → 𝐿 be a quadratic module and let 𝔞 ⊆ 𝑅 be an invertible
fractional ideal of 𝑅. Then 𝑑 : 𝔞 → 𝔞2 is twisting, and the twist of 𝑄 by 𝔞 can be
identified with

𝑄 ⊗ 𝑑 : 𝔞𝑀 → 𝔞2𝐿

𝑧𝑥 ↦→ 𝑧2𝑄(𝑥).

If 𝔞 = 𝑎𝑅 is principal, then 𝑄 is similar to 𝑄 ⊗ 𝑑 via the similarity ( 𝑓 , ℎ) obtained by
scaling by 𝑎. However, if 𝔞 is not principal, then 𝑄 may not be similar to 𝑄 ⊗ 𝑑.

Lemma 22.7.6. Let 𝑄 : 𝑀 → 𝐿 be a quadratic module and let 𝑑 : 𝑃→ 𝐼 be twisting.
Then there is a canonical isomorphism of 𝑅-algebras

Clf0 (𝑄) ∼−→ Clf0 (𝑄 ⊗ 𝑑).

Proof. First, we have a canonical isomorphism

(𝑀 ⊗ 𝑃) ⊗ (𝑀 ⊗ 𝑃) ⊗ (𝐿 ⊗ 𝐼)∨ ∼−→ 𝑀 ⊗ 𝑀 ⊗ 𝐿∨ (22.7.7)

coming from rearranging, the canonical map 𝑑 : 𝑃⊗ 𝑃→ 𝐼 followed by the evaluation
map 𝐼 ⊗ 𝐼∨ ∼−→ 𝑅. Now recall the definition of the even Clifford algebra Clf0 (𝑄) and
(22.3.3):

Clf0 (𝑄) = Ten0 (𝑀; 𝐿)/𝐼0 (𝑄).

The canonical isomorphism (22.7.7) induces an isomorphism Ten0 (𝑀 ⊗ 𝑃; 𝐿 ⊗ 𝐼) that
maps 𝐼0 (𝑄 ⊗ 𝑑) ∼−→ 𝐼0 (𝑄), and the result follows. �

We are now ready to state the final result of this chapter.

Main Theorem 22.7.8. Let 𝑅 be a noetherian domain. Then the associations{ Nondegenerate ternary quadratic
modules over 𝑅

up to twisted similarity

}
↔

{ Projective quaternion
orders over 𝑅 up to

isomorphism

}
𝑄 ↦→ Clf0 (𝑄)

𝜓O← � 𝜓O

(22.7.9)

are mutually inverse, discriminant-preserving bijections that are also functorial with
respect to 𝑅.

Before we begin the proof of the theorem, we need one preliminary lemma.

Lemma 22.7.10. Let 𝑀 be a projective 𝑅-module of rank 3. Then there are canonical
isomorphisms ∧3 (∧2𝑀

) ∼−→ (∧3𝑀
) ⊗2 (22.7.11)∧2 (∧2𝑀

) ∼−→ 𝑀 ⊗
∧3𝑀. (22.7.12)
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Proof. The proof is a bit of fun with multilinear algebra; the details are requested
in Exercise 22.14. To illustrate, we give the proof in the special case where 𝑀 is
completely decomposable 𝑀 = 𝔞𝑒1 ⊕𝔟𝑒2 ⊕ 𝔠𝑒3—so in particular the result holds when
𝑅 is a Dedekind domain (and, more generally, see Remark 22.7.13). In this case, we
have ∧2𝑀 ' 𝔞𝔟(𝑒1 ∧ 𝑒2) ⊕ 𝔞𝔠(𝑒1 ∧ 𝑒3) ⊕ 𝔟𝔠(𝑒2 ∧ 𝑒3)

and so ∧3 (∧2𝑀
)
' (𝔞𝔟𝔠)2 (𝑒1 ∧ 𝑒2) ∧ (𝑒1 ∧ 𝑒3) ∧ (𝑒2 ∧ 𝑒3)

agreeing with (∧3𝑀
) ⊗2 ' (𝔞𝔟𝔠)2 (𝑒1 ∧ 𝑒2 ∧ 𝑒3)⊗2

by rearranging the tensor in a canonical way. The second isomorphism follows simi-
larly. �

Remark 22.7.13. There is a general method, called the splitting principle (see e.g.
Elman–Karpenko–Merkurjev [EKM2008, Proposition 53.13] or Fulton [Ful96, §2]),
that allows one to reduce questions about modules (or vector bundles) to the case of
a sum of invertible modules (line bundles). For more on the connection to symmetric
powers of wedge powers of modules and the relationship to problem of inner plethysm
(related to Proposition 22.6.2), see Weyman [Wey2003, p. 63]. For a 𝐾-theory version
of the splitting principle, see Atiyah [Ati67, Corollary 2.7.11].

22.7.14. The canonical map ∧3 O→
∧4 O

𝑥 ∧ 𝑦 ∧ 𝑧 ↦→ 1 ∧ 𝑥 ∧ 𝑦 ∧ 𝑧

by Lemma 22.6.1 induces a canonical 𝑅-module isomorphism∧3 (O/𝑅) ∼−→
∧4 O

of invertible 𝑅-modules.

Proof of Main Theorem 22.7.8. We have two functors, by Theorem 22.3.1 and Propo-
sition 22.6.6, that are functorial with respect to the base ring 𝑅.

We now compose them. Let𝑄 : 𝑀 → 𝐿 be a quadratic module with O = Clf0 (𝑄),
and consider its canonical exterior form 𝜓 :

∧2 (O/𝑅) →
∧4 O. As 𝑅-modules, we

have canonically
O/𝑅 '

∧2𝑀 ⊗ 𝐿∨. (22.7.15)

By the isomorphism 22.7.12 of Lemma 22.7.10, we have as the domain of 𝜓 the
𝑅-module ∧2 (O/𝑅) '

∧2 (
∧2𝑀 ⊗ 𝐿∨) '

∧2 (
∧2𝑀) ⊗ (𝐿∨)⊗2

' 𝑀 ⊗
∧3𝑀 ⊗ (𝐿∨)⊗2 (22.7.16)



22.8. ∗ RIGIDIFYING WITH ISOMETRIES AND CLASS SETS 41

and as codomain we have by 22.7.14 and the isomorphism (22.7.11) of Lemma 22.7.10∧4 O '
∧3 (O/𝑅) '

∧3 (
∧2𝑀 ⊗ 𝐿∨) '

∧3 (
∧2𝑀) ⊗ (𝐿∨)⊗3

' (
∧3𝑀)⊗2 ⊗ (𝐿∨)⊗3.

(22.7.17)

Now we twist. Let
𝑃 :=

∧3𝑀 ⊗ (𝐿∨)⊗2

and let 𝑑 : 𝑃∨ → (𝑃∨)⊗2 be the natural twisting quadratic module. Then the twist
𝜓 ⊗ 𝑑 has domain and codomain canonically isomorphic to∧2 (O/𝑅) ⊗ 𝑃∨ ' 𝑀∧4 O ⊗ (𝑃∨)⊗2 ' 𝐿

(22.7.18)

by (22.7.16)–(22.7.17) so we have a quadratic form 𝜓Clf0 (𝑄) ⊗ 𝑑 : 𝑀 → 𝐿.
We show that the composition𝑄 ↦→ Clf0 (𝑄) = O ↦→ 𝜓O is naturally isomorphic to

the identity, via the twist 𝑑. But to do this (and show the induced maps are similarities),
since the above construction is canonical, we can base change to 𝐹 and check within
the quadratic space 𝑄𝐹 : 𝑉 → 𝐹 where 𝑉 := 𝑀 ⊗𝑅 𝐹. Choosing a basis, we find that
the composition is the identity by 22.6.8.

We may then conclude that the map of sets in (22.7.9) is a well-defined bijection:
functoriality shows that the map is well-defined and that both maps are injective, and
the composition shows that it is surjective. �

22.7.19. One can also prove Main Theorem 22.7.8 by extending the definition in 22.4.8
using the reduced norm to a domain 𝑅 as follows: we define

nrd♯ (O) : (O♯)0 → discrd(O)−1

𝛼 ↦→ nrd(𝛼).

The fact that (O♯)0 is projective of rank 3, that discrd(O) is invertible as an 𝑅-module,
and that the quadratic module takes values in discrd(O) follow locally, the latter from
(22.4.14). Locally, this form is similar to the canonical exterior form (22.6.11), so this
should come as no surprise.

Remark 22.7.20. When 2 ∈ 𝑅× (and more generally for certain schemes with 2
invertible), Balmer–Calmès [BC2012] develop a categorical theory of lax-similitude
that coincides with our notion of twisting.

22.8 ∗ Rigidifying with isometries and class sets

In this section, we shift to isometries and upgrade the bijection to an equivalence of cat-
egories; this has the further consequence of relating the class set of a ternary quadratic
module (Definition 9.7.13) and the type set of a quaternion order. Throughout, 𝑅 is a
noetherian domain with 𝐹 = Frac 𝑅.
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Remark 22.8.1. In section 5.6, we used orientations to get an equivalence of categories:
the crux of the problem being that the isometry −1 : 𝑉 → 𝑉 maps to the identity map
on Clf0𝑉 under the Clifford functor. However, −1 acts nontrivially on the odd Clifford
module Clf1𝑉 , and the point of an orientation is to keep track of this action on piece
of Clf1𝑉 coming from the center. In this section, we avoid orientations and add a
different structure on quaternion orders to allow for these extra morphisms.

Let 𝑄 : 𝑀 → 𝐿 be a nondegenerate quadratic module with 𝑀 of finite odd rank
𝑛. When we restrict to morphisms as isometries, we require that the map act as the
identity on the codomain 𝐿; to this end, we will have to somehow remember this
codomain, and its compatibility with the other structures of the even Clifford algebra.
We make the following definition.

Definition 22.8.2. Let 𝑁 be an invertible 𝑅-module. A parity factorization of 𝑁 is
a pair of invertible 𝑅-modules 𝑃, 𝐿 and an isomorphism 𝑝 : 𝑁 ∼−→ 𝑃⊗2 ⊗ 𝐿. If 𝑁 has
a parity factorization, we call it paritized.

An isomorphism (𝑁, 𝑝) to (𝑁 ′, 𝑝′) of paritized invertible 𝑅-modules is a pair of
isomorphisms 𝑁 ' 𝑁 ′, 𝑃 ' 𝑃′ such that the diagram

𝑁
𝑝 //

o
��

𝑃⊗2 ⊗ 𝐿

o
��

𝑁 ′
𝑝′ // 𝑃′⊗2 ⊗ 𝐿

(22.8.3)

commutes.

We do want to fix the module 𝐿 in order to work with isometries; this serves as an
anchor for our construction.

Definition 22.8.4. Let O be a quaternion 𝑅-order. Then O is paritized if O is equipped
with a parity factorization of

∧4 O. An isomorphism of paritized quaternion orders
is an isomorphism 𝜙 : O ' O′ and an isomorphism of parity factorizations with the
isomorphism

∧4 O '
∧4 O′ given by ∧4𝜙.

22.8.5. Every invertible 𝑅-module 𝑁 has the identity parity factorization, with 𝑃 = 𝑅

and 𝐿 = 𝑁; up to isomorphism, every other differs by a choice of isomorphism class
of 𝑃. So parity factorizations can be thought of as factorizations according to parity
inside Pic 𝑅.

22.8.6. The main example of a parity factorization comes from the even Clifford
construction. Let 𝑄 : 𝑀 → 𝐿 be a nondegenerate ternary quadratic module. Let
O = Clf0 (𝑄), and let 𝑃 =

∧3𝑀 ⊗ (𝐿∨)⊗2. Then by (22.7.17), we have a canonical
parity factorization

𝑝𝑄 :
∧4O ' (

∧3𝑀)⊗2 ⊗ (𝐿∨)⊗3 ' 𝑃⊗2 ⊗ 𝐿. (22.8.7)

Lemma 22.8.8. Let (O, 𝑝) be a paritized quaternion 𝑅-order. Then

Aut𝑅 (O, 𝑝) ' Aut𝑅 (O) × {±1}.
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Proof. By definition, an automorphism of (O, 𝑝) is a pair of automorphisms (𝜙, ℎ)
with 𝜙 ∈ Aut𝑅 (O) and ℎ ∈ Aut𝑅 (𝑃) such that the diagram∧4O

𝑝 //

∧4𝜙 o
��

𝑃⊗2 ⊗ 𝐿

o
��∧4O

𝑝 // 𝑃⊗2 ⊗ 𝐿

commutes. The choice 𝜙 = idO and ℎ = −1 gives us an automorphism we denote by
−1. Since 𝐿 is fixed, it plays no role in this part.

We claim that if 𝜙 ∈ Aut𝑅 (O) is an 𝑅-algebra isomorphism, then there is a unique
ℎ ∈ Aut𝑅 (𝑃) up to −1 such that (𝜙, ℎ) ∈ Aut𝑅 (O, 𝑝). We will prove this over each
localization 𝑅(𝔭) , including 𝑅(0) = 𝐹: once we choose such an ℎ over 𝐹, it follows
that ±ℎ ∈ Aut𝑅(𝔭) (𝑃(𝔭) ) and hence by intersecting ℎ ∈ Aut𝑅 (𝑃). So we may suppose
O is free with good basis and 𝑃 ' 𝑅, and

∧4𝜙 acts by det 𝜙; we want to show
that det 𝜙 = ℎ2 is a square. This follows from 22.3.15: we have 𝜙 = adj(𝜌) where
𝜌 ∈ GL3 (𝑅) is the action on the ternary quadratic module 𝑀 ' 𝑅3 associated to O,
and det 𝜙 = det adj(𝜌) = (det 𝜌)2. �

22.8.9. We recall the twist construction employed in (22.7.17) that we now define
in the above terms. Let (O, 𝑝) be a paritized quaternion 𝑅-order, with the parity
factorization

𝑝 :
∧4 O ∼−→ 𝑃⊗2 ⊗ 𝐿.

Let 𝜓O, 𝑝 :
∧2 (O/𝑅) →

∧4 O be the canonical exterior form. We then define the
quadratic module

𝜓O, 𝑝 := 𝑝 ◦ 𝜓O ⊗ 𝑃∨ :
∧2 (O/𝑅) ⊗ 𝑃∨ → 𝐿 (22.8.10)

where 𝑝 induces an isomorphism
∧4 O ⊗ (𝑃∨)⊗2 ' 𝐿.

We now have the following theorem.

Theorem 22.8.11. The associations

𝑄 ↦→ (Clf0 (𝑄), 𝑝𝑄)
𝜓O, 𝑝 ← � (O, 𝑝)

are functorial and provide a discriminant-preserving equivalence of categories be-
tween

nondegenerate ternary quadratic modules over 𝑅
under isometries

and

paritized projective quaternion 𝑅-orders under isomorphisms

that is functorial in 𝑅.
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Proof. First, we show the associations are functorial. If𝑄 : 𝑀 → 𝐿 and𝑄 ′ : 𝑀 ′→ 𝐿

are isometric (nondegenerate ternary) quadratic modules under 𝑓 : 𝑀 → 𝑀 ′, then by
functoriality of the even Clifford algebra, this induces an isomorphism 𝑓 : O ' O′ and
thereby an isomorphism

𝑃 =
∧3𝑀 ⊗ (𝐿∨)⊗2 ' 𝑃′ =

∧3𝑀 ′ ⊗ (𝐿∨)⊗2

and then of parity factorizations

∧4 O
𝑝𝑄 //

o
��

𝑃⊗2 ⊗ 𝐿

o
��∧4 O′

𝑝𝑄′ // 𝑃′⊗2 ⊗ 𝐿

.

(22.8.12)

Conversely, if (O, 𝑝) and (O′, 𝑝′) are isomorphic paritized quaternion 𝑅-orders under
𝜙 : O→ O′ and 𝑃 ' 𝑃′, then we get an isometry

∧2O/𝑅 ⊗ 𝑃∨
𝜓O, 𝑝 //

o
��

𝐿

∧2O′/𝑅 ⊗ (𝑃′)∨
𝜓O′, 𝑝′ // 𝐿

(22.8.13)

by Proposition 22.6.6 (see (22.6.7)): the similitude factor is the identity by construction.
We now tackle the two compositions and show they are each naturally isomorphic

to the identity. Let (O, 𝑝) be a paritized quaternion 𝑅-order. We first associate
(𝜓O, 𝑝 , id), and let 𝑀 =

∧2O/𝑅 ⊗ 𝑃∨ be the domain of 𝜓O, 𝑝 . We then associate its
even Clifford algebra. As 𝑅-modules, we have canonical isomorphisms

Clf0 (𝜓O, 𝑝) = 𝑅 ⊕
∧2𝑀 ⊗ 𝐿∨ = 𝑅 ⊕

∧2 (O/𝑅 ⊗ 𝑃∨) ⊗ 𝐿∨

' 𝑅 ⊕
∧2 (O/𝑅) ⊗ (𝑃⊗2 ⊗ 𝐿)∨

' 𝑅 ⊕ O/𝑅 ⊗
∧3 (O/𝑅) ⊗ (𝑃⊗2 ⊗ 𝐿)∨

' 𝑅 ⊕ O/𝑅

(22.8.14)

where we have used 22.7.12 and in the last step we used the parity factorization 𝑝

giving a natural isomorphism of the last piece to 𝑅. To check that the corresponding
map is an 𝑅-algebra homomorphism, by functoriality we can do so over 𝐹, and we
suppose that 𝐵 is given by a good basis, and then the verification is as in 22.6.8. To
finish, we show that the parity factorization is also canonically identified: we have∧3𝑀 ⊗ (𝐿∨)⊗2 =

∧3 (
∧2 (O/𝑅) ⊗ 𝑃∨) ⊗ (𝐿∨)⊗2

'
∧3 (

∧3O/𝑅)⊗2 ⊗ (𝑃∨)⊗3 ⊗ (𝐿∨)⊗2 ' 𝑃
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where now we use (22.7.11) and then again (twice) the parity factorization. Therefore
we have a natural isomorphism of parity factorizations∧4 Clf0 (𝜓O, 𝑝)

𝑝𝜓O, 𝑝 //

o
��

(
∧3𝑀 ⊗ 𝐿∨)⊗2 ⊗ 𝐿

o
��∧4 O

𝑝 // 𝑃⊗2 ⊗ 𝐿

(22.8.15)

This completes the verification that the composition in this order is naturally isomor-
phic to the identity.

Now for the second composition. Let 𝑄 : 𝑀 → 𝐿 be a (nondegenerate ternary)
quadratic module over 𝑅. We associate O = Clf0𝑄 and 𝑝𝑄 its parity factorization,
and then 𝜓O, 𝑝𝑄 . In (22.7.18), using (22.7.16)–(22.7.17), we showed that we had an
natural isometry ∧2O/𝑅 ⊗ 𝑃∨

𝜓O, 𝑝𝑄 //

𝑓 o
��

𝐿

𝑀
𝑄 // 𝐿

(22.8.16)

and this completes the proof. �

Exercises

I 14. Prove Lemma 22.7.10, as follows. Let 𝑅 be a noetherian domain and let 𝑀 be
a projective 𝑅-module of rank 3.
We first show that ∧3 (

∧2𝑀) ∼−→ (
∧3𝑀)⊗2.

Define the map

𝑠 : 𝑀∧6 →
(∧3𝑀

) ⊗2

𝑥 ∧ 𝑥 ′ ∧ 𝑦 ∧ 𝑦′ ∧ 𝑧 ∧ 𝑧′ ↦→ (𝑥 ∧ 𝑥 ′ ∧ 𝑦′) ∧ (𝑦 ∧ 𝑧 ∧ 𝑧′)
− (𝑥 ∧ 𝑥 ′ ∧ 𝑦) ∧ (𝑦′ ∧ 𝑧 ∧ 𝑧′)

with 𝑥, 𝑥 ′, 𝑦, 𝑦′, 𝑧, 𝑧′ ∈ 𝑀 .
(a) Show that 𝑠 descends to a map from (

∧2𝑀)⊗3.
(b) Show that 𝑠 descends to a map from

∧3 (
∧2𝑀). [Hint: Localize so 𝑀 is

free with basis 𝑒1, 𝑒2, 𝑒3, and argue by linearity.]
(c) Conclude that the induced map is an isomorphism.
(d) Repeat to show that

∧2 (
∧2𝑀) ∼−→ 𝑀 ⊗

∧3𝑀 via the map

𝑀 ⊗4 → 𝑀 ⊗
∧3𝑀

𝑥 ⊗ 𝑥 ′ ⊗ 𝑦 ⊗ 𝑦′ ↦→ 𝑥 ′ ⊗ (𝑥 ∧ 𝑦 ∧ 𝑦′) − 𝑥 ⊗ (𝑥 ′ ∧ 𝑦 ∧ 𝑦′).
(22.8.17)

15. Let 𝑄 : 𝑀 → 𝐿 be a quadratic module.
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(a) Suppose that 𝑄 ′ : 𝑀 ′ → 𝐿 ′ is similar to 𝑄. Show that 𝑄 is primitive if
and only if 𝑄 ′ is primitive.

(b) Let 𝑑 : 𝑃→ 𝐼 be a twisting quadratic module. Show that 𝑄 is primitive if
and only if 𝑄 ⊗ 𝑑 is primitive.

16. Let𝑄 be a nondegenerate ternary quadratic module over 𝑅 and let (Clf0 (𝑄), 𝑝𝑄)
be the associated paritized quaternion 𝑅-order by Theorem 22.8.11. Show that
O(𝑄) (𝑅) ' Aut𝑅 (Clf0 (𝑄), 𝑝𝑄) and SO(𝑄) (𝑅) ' Aut𝑅 (Clf0 (𝑄)).

17. Let O be a quaternion 𝑅-order. Then the standard involution defines an iso-
morphism : O ∼−→ Oop. This isomorphism induces a self-similarity on the
exterior form 𝑄 :

∧2 (O/𝑅) →
∧4 O, since O = Oop as 𝑅-modules. Compute

the similarity factor of this self-similarity.
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Chapter 26

Classical zeta functions

26.2 Analytic class number formula

We provide a proof of the following technical result.

Theorem 26.2.19. Let 𝑋 ⊆ R𝑛 be a cone. Let 𝑁 : 𝑋 → R>0 be a function satisfying

𝑁 (𝑡𝑥) = 𝑡𝑛𝑁 (𝑥) for all 𝑥 ∈ 𝑋 , 𝑡 ∈ R>0.

Suppose that
𝑋≤1 := {𝑥 ∈ 𝑋 : 𝑁 (𝑥) ≤ 1} ⊆ R𝑛 (26.2.20)

is a bounded subset with volume vol(𝑋≤1). Let Λ ⊆ R𝑛 be a (full) Z-lattice in R𝑛, and
let

𝜁Λ,𝑋 (𝑠) :=
∑︁

𝜆∈𝑋∩Λ

1
𝑁 (𝜆)𝑠 .

Then 𝜁Λ,𝑋 (𝑠) converges for Re 𝑠 > 1 and has a simple pole at 𝑠 = 1 with residue

𝜁∗Λ,𝑋 (1) = lim
𝑠↘1
(𝑠 − 1)𝜁Λ,𝑋 (𝑠) =

vol(𝑋≤1)
covol(Λ) .

Proof. We have

vol(𝑋≤1) = lim
𝑡→∞

vol(Λ)
𝑡𝑛

#( 1
𝑡
Λ ∩ 𝑋≤1) = vol(Λ) lim

𝑡→∞

#( 1
𝑡
Λ ∩ 𝑋≤1)
𝑡𝑛

.

By the homogeneity condition on 𝑁 ,

#( 1
𝑡
𝐿 ∩ 𝑋≤1) = #(𝐿 ∩ 𝑋≤𝑡𝑛 ).

Label the points of Λ ∩ 𝑋 = {𝜆1, 𝜆2, . . .} so that 𝑁 (𝜆1) ≤ 𝑁 (𝜆2) ≤ . . .; we claim
that

lim
𝑘→∞

𝑘

𝑁 (𝜆𝑘 )
=

vol(𝑋≤1)
covol(Λ) = 𝑣.

49
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To prove this claim, write 𝑏(𝑥) = #(Λ ∩ 𝑋≤𝑥𝑛 ) for 𝑥 > 0. From the previous
paragraph, 𝑏(𝑥)/𝑥𝑛 → 𝑣. Let 𝑥𝑛

𝑘
= 𝑁 (𝜆𝑘 ) for 𝑘 ≥ 1. Then for all 𝜖 > 0, we have

𝑏(𝑥𝑘 − 𝜖) < 𝑘 ≤ 𝑏(𝑥𝑘 ). So

𝑏(𝑥𝑘 − 𝜖)
(𝑥𝑘 − 𝜖)𝑛

(
1 − 𝜖

𝑥𝑛
𝑘

)
<

𝑘

𝑁 (𝜆𝑘 )
≤ 𝑏(𝑥𝑘 )

𝑥𝑛
𝑘

.

Taking the limit as 𝑘 → ∞, since 𝑥𝑛
𝑘
→ ∞ we have lim𝑘→∞ 𝑘/𝑁 (𝜆𝑘 ) = 𝑣 by the

sandwich theorem, proving the claim.
Now, for all 𝜖 > 0, there exists 𝐾 such that for 𝑘 ≥ 𝐾 we have

(𝑣 − 𝜖)𝑠 1
𝑘𝑠

<
1

𝑁 (𝜆𝑘 )𝑠
< (𝑣 + 𝜖)𝑠 1

𝑘𝑠
;

summing over 𝑘 ≥ 𝐾 , we multiply by (𝑠 − 1) and let 𝑠→ 1+ to get

(𝑣 − 𝜖)𝜁∗Q (1) ≤ 𝜁
∗
Λ,𝑋 (1) ≤ (𝑣 + 𝜖)𝜁

∗
Q (1)

where 𝜁∗
Q
(1) = 1 is the residue of the Riemann zeta function (25.2.4). Now letting

𝜖 → 0,
𝜁∗Λ,𝑋 (1) = 𝑣 =

vol(𝑋≤1)
covol(Λ) . �



Chapter 30

Optimal embeddings

30.10 Algorithmic aspects

In Lemma 30.6.17, we computed local embedding numbers for Eichler orders when the
residue field has odd cardinality. Suppose now that 𝑅 is local, with residue field of even
cardinality. Then the calculation of the local embedding number is quite painful and as
such is not conducive to a formula that is both compact and intelligible; nevertheless,
the representation in Proposition 30.6.12(c) shows that the local embedding number is
effectively computable.

30.10.1. We can improve upon the brute force method of calculating 𝑚(𝑆,O) by
calculating𝑀 (𝑠)more directly as follows. The map 𝑆/2𝑆 → 𝑆/2𝑆 given by 𝑥 ↦→ 𝑥2−𝑡𝑥
is F2-linear, and therefore by linear algebra over F2 one can compute all solutions to
𝑓 (𝑥) = 𝑥2 − 𝑡𝑥 + 𝑛 ≡ 0 (mod 𝔭 𝑓 ) if 𝑓 ≤ ord𝔭 (2). For each of these solutions, one
can then use Hensel lifting to test which among them give rise to solutions modulo 𝔭 𝑓

for 𝑓 ≤ ord𝔭 (4); and then Hensel’s lemma implies that each such solution lifts to a
unique solution modulo 𝔭 𝑓 whenever 𝑓 > ord𝔭 (4).
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Geometry and topology
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Chapter 33

Hyperbolic plane

33.3 Upper half-plane

We provide a further elaboration of the proof of the following theorem.

Theorem 33.3.14. The group PSL2 (R) acts on H2 via orientation-preserving isome-
tries, i.e., PSL2 (R) ↩→ Isom+ (H2).

Proof elaboration. Let 𝜐 be a (piecewise continuously differentiable) path in H2 given
by 𝑧(𝑡) for 𝑡 ∈ [0, 1]; then by definition

ℓ(𝜐) =
∫ 1

0

����d𝑧d𝑡 ���� d𝑡
Im 𝑧(𝑡) .

The path 𝑔𝜐 is given by 𝑧′(𝑡) = 𝑔(𝑧(𝑡)), and by the chain rule

ℓ(𝑔(𝜐)) =
∫ 1

0

����d𝑧′(𝑡)d𝑡

���� d𝑡
Im 𝑧′(𝑡)

=

∫ 1

0

����d𝑔(𝑧(𝑡))d𝑧
d𝑧(𝑡)

d𝑡

���� d𝑡
Im 𝑔(𝑧(𝑡))

=

∫ 1

0

����d𝑧(𝑡)d𝑡

���� d𝑡
Im 𝑧(𝑡) ,

the latter equality from (33.3.15). The fact that lengths are preserved immediately
implies the invariance of the hyperbolic metric. �

33.6 Hyperbolic area and the Gauss–Bonnet formula

We prove the Gauss–Bonnet formula.

Theorem 33.6.1 (Gauss–Bonnet formula). Let 𝑇 be a hyperbolic triangle with angles
𝛼, 𝛽, 𝛾. Then

𝜇(𝑇) = 𝜋 − (𝛼 + 𝛽 + 𝛾).
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Proof. We first consider the case where 𝑇 has at least one vertex in bd H2. Since the
group PSL2 (R) acts transitively on the boundary bd H2, by applying an element of
PSL2 (R), we may suppose this vertex is∞ (without changing the area). Then there is
a diagram as follows:

The fact that the angles are duplicated along the real axis is explained by the following
diagram:

The semicircular segment lies along a circle with some radius 𝑐; applying the isometry

𝑔 =

(
1/
√
𝑐 0

0
√
𝑐

)
∈ PSL2 (R)

with the effect 𝑔(𝑧) = 𝑧/𝑐, and then translating, we may suppose that this segment lies
along the unit circle. Then∫ ∫

𝑇

d𝑥d𝑦
𝑦2 =

∫ 𝑏

𝑎

∫ ∞

√
1−𝑥2

d𝑦
𝑦2 d𝑥 =

∫ 𝑏

𝑎

−1
𝑦

����∞√
1−𝑥2

d𝑥

=

∫ 𝑏

𝑎

d𝑥
√

1 − 𝑥2
=

∫ 𝛽

𝜋−𝛼
−d𝜃 = 𝜋 − (𝛼 + 𝛽)

where we make the substitution 𝑥 = cos 𝜃. If 𝑇 has two or three vertices in bd H2, the
same argument applies, but with possibly 𝛼 = 0 (and 𝑎 = −1) or 𝛽 = 0 (and 𝑏 = 1).

So we are left with the case where 𝑇 has all vertices in H2. We then consider the
following diagram:
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The triangle with vertices 𝐵,𝐶,∞ has area 𝜋 − (𝛿 + (𝜋 − 𝛾)) = 𝛾 − 𝛿, and the triangle
with vertices 𝐴, 𝐵,∞ has area 𝜋 − 𝛼 − 𝛽 − 𝛿, so our triangle with vertices 𝐴, 𝐵, 𝐶 has
area equal the difference,

𝜋 − (𝛼 + 𝛽 + 𝛿) − (𝛾 − 𝛿) = 𝜋 − (𝛼 + 𝛽 + 𝛾). �





Part V

Arithmetic geometry

59





Chapter 40

Classical modular curves and modular
forms

40.3 Classical modular forms

We prove (most of) the following proposition.

Proposition 40.3.4. Let 𝑓 : H2 → C be a meromorphic modular form of weight 𝑘 ,
not identically zero. Then

ord∞ ( 𝑓 ) +
∑︁

Γ𝑧∈Γ\H2

1
𝑒𝑧

ord𝑧 ( 𝑓 ) =
𝑘

12
(40.3.5)

where 𝑒𝑧 = # StabΓ (𝑧).

The sum (40.3.5) has only finitely many terms, by 40.3.1, and the stabilizers are
given in 40.3.2.

Proof. See Serre [Ser73, §3, Theorem 3]. To prove this theorem, we perform a contour

integration
1

2𝜋𝑖
d 𝑓
𝑓

on the boundary of ◊. More precisely, first suppose that 𝑓 has

neither zero nor pole on the boundary of ◊ except possibly at 𝑖, 𝜔,−𝜔2. We consider
the contour 𝐶 containing all zeros or poles of 𝑓 in int(◊).
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By the argument principle,
1

2𝜋𝑖

∫
𝐶

d 𝑓
𝑓

=
∑︁

𝑧∈int(◊)
ord𝑧 ( 𝑓 ). (40.3.6)

We write 𝐶 as the sum of several contours as indicated. In the change of variable
𝑧 ↦→ 𝑞 = 𝑒2𝜋𝑖𝑧 , the contour 𝐶1 transforms into a circle centered at 𝑞 = 0 with negative
orientation whose only enclosed zero or pole is∞. Thus

1
2𝜋𝑖

∫
𝐶1

d 𝑓
𝑓

= − ord∞ ( 𝑓 ). (40.3.7)

We have 𝑇−1 (𝐶8) = 𝐶2 with opposite orientation; since 𝑓 (𝑧 + 1) = 𝑓 (𝑧), these
contributions cancel. On 𝐶3, as the radius of this arc of a circle tends to 0,

1
2𝜋𝑖

∫
𝐶3

d 𝑓
𝑓
→ 1

2𝜋𝑖

(
−𝜋𝑖
3

)
ord𝜔 ( 𝑓 ) = −

1
6

ord𝜔 ( 𝑓 ) (40.3.8)

as the angle formed with 𝜔 by the endpoints of 𝐶2 is 𝜋/3 (Exercise 40.1). Similarly,
1

2𝜋𝑖

∫
𝐶5

d 𝑓
𝑓
→ −1

2
ord𝑖 ( 𝑓 ) and

1
2𝜋𝑖

∫
𝐶7

d 𝑓
𝑓
→ −1

6
ord−𝜔2 ( 𝑓 ). (40.3.9)

Finally, 𝑆(𝐶6) = 𝐶4 with opposite orientation; but now 𝑓 (𝑆𝑧) = 𝑧𝑘 𝑓 (𝑧) so
d 𝑓 (𝑆𝑧)

d𝑧
= 𝑘𝑧𝑘−1 𝑓 (𝑧) + 𝑧𝑘 d 𝑓 (𝑧)

d𝑧
and hence

d 𝑓 (𝑆𝑧)
𝑓 (𝑆𝑧) = 𝑘

d𝑧
𝑧
+ d 𝑓 (𝑧)
𝑓 (𝑧) ,

so
1

2𝜋𝑖

∫
𝐶4∪𝐶6

d 𝑓
𝑓

=
1

2𝜋𝑖

∫
𝐶4

d 𝑓
𝑓
− 1

2𝜋𝑖

∫
𝐶4

(
𝑘

d𝑧
𝑧
+ d 𝑓
𝑓

)
=

1
2𝜋𝑖

∫
𝐶4

−𝑘 d𝑧
𝑧
→ −𝑘

2𝜋𝑖

(
−𝜋𝑖
6

)
=
𝑘

12

(40.3.10)

as the angle formed with 0 is 𝜋/6. Summing, we obtain the result.
If 𝑓 has a zero or pole on the boundary of ◊, we repeat the same argument with a

contour modified as follows:
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The details are omitted. �





Hints and comments on exercises
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Appendix A

Hints and comments on exercises

1.2. For part (a), see May [May66, p. 290].
1.3(b). The minimal polynomial is irreducible, because 𝐷 is a division algebra. The

minimal polynomial divides the characteristic polynomial of degree 3 which
factors over R, so the minimal polynomial has degree at most 2. If the minimal
polynomial has degree 2 (irreducible), then since every irreducible factor of the
characteristic polynomial is a factor of the minimal polynomial, we conclude that
the characteristic polynomial has even degree, a contradiction. So the minimal
polynomial has degree 1, and this implies that 𝛼 ∈ R for all 𝛼 ∈ 𝐷, contradicting
𝐷 ≠ R.

2.3. For such a map, we must have 𝑖 𝑗 ↦→
(

0 1
−1 0

)
. Check that the four matrices

are linearly independent, so the map is an 𝐹-linear isomorphism. Then, us-
ing the universal property of algebras given by generators and relations, show
that the given matrices satisfy the relations in 𝐵, so the map is an 𝐹-algebra
homomorphism.

2.5. Try 𝑗 ′ = 𝑖′ 𝑗 − 𝑗𝑖′, and show that 𝑗 ′𝑖′ + 𝑖′ 𝑗 ′ = 0. If ( 𝑗 ′)2 = 0, consider instead
𝑗 ′ = 𝑖′𝑘 − 𝑘𝑖′.

2.7. Use Exercise 2.4(c) and show that the center over 𝐹 has dimension 1 or compute
directly with 𝛼𝑖 − 𝑖𝛼 = 𝛼 𝑗 − 𝑗𝛼 = 0 for 𝛼 = 𝑡 + 𝑥𝑖 + 𝑦 𝑗 + 𝑧𝑘 ∈ 𝐵.

2.11. 𝐵 acts on itself by left multiplication, which in the standard basis gives a map

𝐵 ↩→ M4 (𝐹)

𝑡 + 𝑥𝑖 + 𝑦 𝑗 + 𝑧𝑘 ↦→
©­­­«
𝑡 𝑎𝑥 𝑏𝑦 −𝑎𝑏𝑧
𝑥 𝑡 −𝑏𝑧 𝑏𝑦

𝑦 𝑎𝑧 𝑡 −𝑎𝑥
𝑧 𝑦 −𝑥 𝑡

ª®®®¬ .
2.20. Use the left regular representation either to 𝐹 or a subfield 𝐾 , and use the block

matrix determinant. See also Aslaksen [Asl96].
3.2. Define 𝑥 + 𝑦𝛼 = 𝑥 + 𝑦(𝑡 − 𝛼) = (𝑥 + 𝑡𝑦) − 𝑦𝛼 for 𝑥, 𝑦 ∈ 𝐹.
3.4. The standard involution on 𝐹 × 𝐹 is given by (𝑥, 𝑦) ↦→ (𝑦, 𝑥). (Note that 𝐹

embeds diagonally in 𝐹 × 𝐹, so 𝑎 ↦→ (𝑎, 𝑎), and so 𝐹 is indeed fixed under this
map.)
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3.6. (The first part holds even if 𝐵 = M2 (𝐹).)
3.8. 𝑔 ↦→ 𝑔−1 is a standard involution if and only if 𝐺 has exponent 2 and char 𝐹 = 2

(so the standard involution is the identity and 𝐹 [𝐺] is commutative). This
remains true even if 𝐺 is an infinite group (but then dim𝐹 F[𝐺] = ∞).

3.10. Let 𝑖, 𝑗 ∈ 𝐾 \ 𝐹. Then 𝑖 + 𝑗 satisfies a quadratic polynomial, but 𝑗𝑖 = 𝑖 𝑗 , so we
have (𝑖+ 𝑗)2 = 𝑖2 +2𝑖 𝑗 + 𝑗2 ∈ 𝐹 (𝑖+ 𝑗) +𝐹 hence 2𝑖 𝑗 = 𝑐(𝑖+ 𝑗) + 𝑑 with 𝑐, 𝑑 ∈ 𝐹:
but then since 2 ≠ 0, we have 2𝑖 ≠ 𝑐 ∈ 𝐹 so 𝑗 = (𝑐𝑖 + 𝑑)/(2𝑖 − 𝑐) ∈ 𝐾 .

3.12. For part (a), Suppose 𝐵 has degree 2. Choose a basis 1, 𝑥2, . . . , 𝑥𝑚. For each
𝑖, the quadratic 𝐹-algebras 𝐹 [𝑥𝑖] have a standard involution, and so extending
by 𝐹-linearity we obtain a map : 𝐵 → 𝐵. For 𝑥 ∈ 𝐵, let 𝑡 (𝑥) = 𝑥 + 𝑥 and
𝑛(𝑥) = 𝑥𝑥.
By induction and 𝐹-linearity, we may suppose 1, 𝑥, 𝑦 are 𝐹-linearly independent.
Suppose (𝑥 + 𝑦)2− 𝑠(𝑥 + 𝑦) +𝑚 = 0 with 𝑠, 𝑚 ∈ 𝐹. We show that 𝑠 = 𝑡 (𝑥) + 𝑡 (𝑦).
We have

(𝑥 − 𝑦)2 = 𝑥2 − (𝑥𝑦 + 𝑦𝑥) + 𝑦2 = 2(𝑥2 + 𝑦2) − 𝑠(𝑥 + 𝑦) + 𝑚
= (2𝑡 (𝑥) − 𝑠)𝑥 + (2𝑡 (𝑦) − 𝑠)𝑦 + (𝑚 − 2𝑛(𝑥) − 2𝑛(𝑦))

But (𝑥 − 𝑦)2 ∈ 𝐹 (𝑥 − 𝑦) + 𝐹 so 2𝑡 (𝑥) − 𝑠 = 𝑠 − 2𝑡 (𝑦), i.e. 2𝑠 = 2𝑡 (𝑥) + 2𝑡 (𝑦).
Since char 𝐹 ≠ 2, we have 𝑠 = 𝑡 (𝑥) + 𝑡 (𝑦) as desired.
To conclude, we show 𝑥𝑦 = 𝑦 𝑥. We may suppose 𝑥𝑦 ∉ 𝐹. We verify that both
(𝑥𝑦)2 − (𝑥𝑦 + 𝑦 𝑥)𝑥𝑦 + (𝑦 𝑥) (𝑥𝑦) = 0 and (𝑥𝑦)2 − (𝑥𝑦 + 𝑥𝑦)𝑥𝑦 + 𝑥𝑦(𝑥𝑦) = 0, so
the result follows by uniqueness of the minimal polynomial.
For part (b), by the uniqueness of the standard involution, we have 𝑥 = 𝑥 + 1 if
𝑥 ∉ 𝐹. But then if 1, 𝑥, 𝑦 are 𝐹-linearly independent we have 𝑥 + 𝑦 + 1 = 𝑥 + 𝑦 =
𝑥 + 𝑦 = (𝑥 + 1) + (𝑦 + 1) = 𝑥 + 𝑦, a contradiction. So dimF2 𝐵 ≤ 2. Since a
Boolean ring consists of idempotents, we have 𝐵 = F2 or 𝐵 � F2

2.
3.13. Under right multiplication by 𝐵 = M𝑛 (𝐹), a matrix is nothing other than the

direct sum of its rows, so in particular, the characteristic polynomial of right
multiplication by 𝐴 ∈ M𝑛 (𝐹) acting on M𝑛 (𝐹) will be the 𝑛th power of the usual
characteristic polynomial of 𝐴 acting on row vectors 𝑉 � 𝐹𝑛. (In the language
of Chapter 7, 𝐵 = M𝑛 (𝐹) as a right 𝐵-module is 𝐵 � 𝑉𝑛 where 𝑉 � 𝐹𝑛 is the
unique simple right 𝐵-module.)

3.15. By 𝐹-linearity, it suffices to verify these statements on a basis for 𝐵.
3.16. The class equation reads

𝑞4 − 1 = (𝑞 − 1) + 𝑚(𝑞2 + 1)

for some 𝑚 ∈ Z≥0. Thus (𝑞2 + 1) | (𝑞 − 1), a contradiction.
This argument can be generalized in a natural way to prove Wedderburn’s theo-
rem in full: see Schue [Schu88], for example.

3.18. See van Praag [vPr68, vPr02].
4.9. For part (c), by the transitivity of trace, we may assume𝐾/𝐹 is purely inseparable

and [𝐾 : 𝐹] is a multiple of 𝑝. But then all roots of the minimal polynomial
of 𝑥 ∈ 𝐾 over 𝐹 are equal, so the characteristic polynomial of multiplication by
𝑥 ∈ 𝐾 has all roots equal and there are a multiple of 𝑝 of them and thus the trace
is zero.
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For part (d), tr((𝑎 + 𝑏
√

5)2) = 2(𝑎2 + 5𝑏2) and

tr((𝑎 + 𝑏𝛼 + 𝑐𝛼2)2) = 2(𝑎2 − 2𝑎𝑏 + 10𝑎𝑐 + 5𝑏2 − 8𝑏𝑐 + 13𝑐2).

4.10. Choosing bases for 𝑉,𝑉 ′ and writing 𝑓 as a matrix 𝐴 ∈ GL𝑛 (𝐹) in these bases,
we find that 𝑢𝑥𝑡 [𝑇]𝑥 = 𝑥𝑡 (𝐴𝑡 [𝑇 ′]𝐴)𝑥 for all 𝑥 ∈ 𝑉 ' 𝐹𝑛, so 𝑢[𝑇] = 𝐴𝑡 [𝑇 ′]𝐴.
Taking determinants, we find det𝑇 ′ = 𝑢𝑛 det𝑇 ∈ 𝐹/𝐹×2.

4.11. See Lam [Lam2005, Chapter X] for more on Pfister forms; in particular, for (c)
see Lam [Lam2005, Theorem X.1.7].

5.3. The implication (vi) ⇒ (v) follows similarly: if 𝑎 ∈ 𝐹×2 then already 〈𝑎〉
represents 1; if 𝑎 ∉ 𝐹×2 and we have 𝑥2−𝑎𝑦2 = 𝑏 then either 𝑥 = 0, in which case
〈𝑎, 𝑏〉 is isotropic and thus represents 1, or 𝑥 ≠ 0 and then 𝑎(𝑦/𝑥)2+𝑏(1/𝑥)2 = 1
as desired.

5.4. If 𝐵 =

(
𝑎, 𝑏

F𝑞

)
then 𝐾 = F𝑞 (𝑖) � F𝑞2 and Nm : F𝑞2 → F𝑞 is surjective so

𝑏 ∈ Nm𝐾/𝐹 (𝐾×).
5.9. See Lam [Lam2005, Examples III.2.12–13]. For the first, exhibit an explicit

isometry 〈1, 1, 1〉 � 〈2, 3, 6〉. For the second, note that 〈2, 5, 10〉 represents 7
but 〈1, 1, 1〉 does not (by showing 𝑥2+𝑦2+𝑧2+𝑤2 . 0 (mod 8) for 𝑥, 𝑦, 𝑧, 𝑤 ∈ Z
with gcd(𝑥, 𝑦, 𝑧, 𝑤) = 1); or note that 〈1, 1, 1〉 represents 1 but 〈2, 5, 10〉 (looking
modulo 5, and arguing similarly).

5.12. Indeed, for any 𝑥, 𝑦, 𝑧 ∈ 𝑉 , by Clifford multiplication we have

(𝑥 + 𝑦𝑧) (𝑥 + 𝑦𝑧) = (𝑥 + 𝑦𝑧) (𝑥 + 𝑧𝑦) = 𝑞(𝑥) + 𝑦𝑧𝑥 + 𝑥𝑧𝑦 + 𝑞(𝑦)𝑞(𝑧)
= 𝑞(𝑥) + 𝑞(𝑦)𝑞(𝑧) − 𝑇 (𝑥, 𝑦)𝑧 + 𝑇 (𝑥, 𝑧)𝑦 + 𝑇 (𝑦, 𝑧)𝑥.

Suppose that : Clf(𝑄) → Clf (𝑄) is a standard involution and rk(𝑉) ≥ 3.
If 𝑥, 𝑦, 𝑧 are 𝐹-linearly independent, then we must have 𝑇 (𝑥, 𝑦) = 𝑇 (𝑥, 𝑧) =
𝑇 (𝑦, 𝑧) = 0. Then the fact that (𝑥 + 1) (𝑥 + 1) = 𝑄(𝑥) + 1 + 2𝑥 for all 𝑥 ∈ 𝑉
implies that 2 = 0 ∈ 𝐹, a contradiction. A similar argument works for Clf0 (𝑄).

5.21. See Auel [Auel2015, Theorem 1.8] for a proof of a more general result.
6.2. Since 𝐾 is separable, the restriction of the reduced norm to 𝐾 is nondegenerate.

Let 𝑗 ∈ 𝐾⊥\{0} be a nonzero element in the orthogonal complement of𝐾 . Then
𝐵 = 𝐾+𝐾 𝑗 since dim𝐹 (𝐾+𝐾 𝑗) = 4. Since 1 ∈ 𝐾 , we have𝑇 (1, 𝑗) = trd( 𝑗) = 0
(recall (4.2.14)) so 𝑗 = − 𝑗 and 𝑏 = 𝑗2 ∈ 𝐹×. By (4.2.16) we have trd( 𝑗𝛼) = 0
so

𝑗𝛼 + 𝛼 𝑗 = 𝛼 𝑗 − 𝑗𝛼 = 0
so 𝑗𝛼 = 𝛼 𝑗 .

6.12. Let 𝑒1, . . . , 𝑒𝑛 be a normalized basis for 𝑉 , and let 𝑛 = 2𝑚 + 1. By Example
6.3.10, since 𝑄 is nondegenerate we may take 𝑎1 · · · 𝑎𝑚 = 1 and 𝑐1 = 𝑑, i.e.,
𝑄 ' [1, 𝑏1] ⊥ · · · ⊥ [1, 𝑏𝑚] ⊥ 〈1〉. Then

𝑒𝑖𝑒 𝑗 − 𝑒 𝑗𝑒𝑖 = 𝑒𝑖𝑒 𝑗 + 𝑒𝑖𝑒 𝑗 = 𝑇 (𝑒𝑖 , 𝑒 𝑗 )

for all 𝑖, 𝑗 . For 𝐼 = {𝑖1, . . . , 𝑖𝑟 } ⊆ {1, . . . , 𝑛}, let 𝑒𝐼 = 𝑒𝑖1 · · · 𝑒𝑖𝑟 . By the orthog-
onal decomposition, 𝑒𝑖 centralizes 𝑒𝐼 if and only if 𝑖 ∉ 𝐼 for each 𝑖 = 1, . . . , 2𝑛,
and 𝑒𝑛 centralizes Clf (𝑄). Therefore 𝑍 (Clf (𝑄)) ' 𝐹 [𝑒𝑛] ' 𝐹 [𝑥]/(𝑥2 − 𝑑). If
𝑑 = 1, the unique solution to 𝜁2 = 1 in 𝑍 (Clf (𝑄)) ∩ Clf1 (𝑄) is 𝑒𝑛.
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7.3. The map 𝑎 ⊗ 𝑏 ↦→ (𝑥 ↦→ 𝑎𝑥𝑏) gives an 𝐹-algebra homomorphism 𝐵 ⊗𝐹 𝐵 →
End𝐹 (𝐵) � M4 (𝐹), which is injective since 𝐵 ⊗𝐹 𝐵 is simple and therefore an
isomorphism by a dimension count.

7.13. See e.g. Drozd–Kirichenko [DK94, Theorem 6.1.2].
7.14. The augmentation ideal is the kernel of the surjective map

∑
𝑔 𝑎𝑔𝑔 ↦→

∑
𝑔 𝑎𝑔,

so is nontrivial.
7.15. See Reiner [Rei2003, Exercise 7.8], Lam [Lam2001, Theorem 6.1], etc.
7.20. Lemma 7.4.8 characterizes rad 𝐵 as the largest two-sided ideal in which every

element is nilpotent, so we show that rad nrd has this property. First, rad nrd
is a two-sided ideal: if 𝜖 ∈ rad nrd and 𝛼 ∈ 𝐵, then trd(𝛽𝛼𝜖) = 0 for all
𝛽 ∈ 𝐵 so 𝛼𝜖 ∈ rad nrd and similarly trd(𝛽𝜖𝛼) = trd(𝛼𝛽𝜖) = 0 so 𝜖𝛼 ∈ rad nrd.
Next, every 𝜖 ∈ rad nrd is nilpotent: we have trd(𝜖) = 0, so 𝜖2 = − nrd(𝜖) and
trd(𝜖2) = −2 nrd(𝜖) = 0 so nrd(𝜖) = 0 and 𝜖2 = 0.

7.23. This exercise was given in a course by Bjorn Poonen in Spring 2000 at the
University of California, Berkeley.
First, parts (a) and (b). Choose 𝑥 ∈ 𝐷 \ 𝐹. Then 𝐾 = 𝐹 (𝑥) is a purely
inseparable extension of 𝐹 so the minimal polynomial of 𝑥 in 𝐷 (or in 𝐹) is of
the form 𝑇 𝑝

𝑛 − 𝑎. In particular, 𝑝 | [𝐾 : 𝐹], but 𝐷 is a left 𝐾-vector space and
[𝐷 : 𝐹] = [𝐷 : 𝐾] [𝐾 : 𝐹] so 𝑝 | [𝐷 : 𝐹].
For part (c), all roots of the minimal polynomial of 𝑥 are equal, hence all
eigenvalues of 𝑥 ⊗ 1 ∈ M𝑛 (𝐹) are equal, and the number of them is divisible by
𝑝 by (a), so the trace is zero. For part (d), by (c), all elements of M𝑛 (𝐹) have
trace zero, which is a contradiction.

7.26. Apply the Skolem–Noether theorem to a nontrivial automorphism of 𝐾; verify
that the conjugating element has trace zero.
Let 𝑗 ∈ 𝐵× satisfy 𝑗𝛼 𝑗−1 = 𝛼. Then 𝐵 = 𝐾 ⊕𝐾 𝑗 , but 𝑗2𝛼 𝑗−2 = 𝛼 so 𝑗2 ∈ 𝑍 (𝐵)
so 𝑗2 = 𝑏 ∈ 𝐹×.

7.29. By Corollary 7.7.11, every maximal subfield 𝐾 of 𝐵 has the same dimension,
so since 𝐹 is a finite field they are isomorphic (as abstract fields). But then by
the Skolem–Noether theorem, since every element lies in a maximal subfield,
we have 𝐵× =

⋃
𝛼∈𝐵× 𝛼

−1𝐾×𝛼, which is a contradiction.
One can also proceed without using the maximal subfield dimension theorem.
Suppose 𝐵 is a minimal counterexample (by cardinality); then 𝐵 is a division
ring, but every subalgebra of 𝐵 is a field. Let 𝐹 = 𝑍 (𝐵). Let 𝑖 ∈ 𝐵 \ 𝐹; then
by minimality, the centralizer of 𝑖 is a maximal subfield 𝐾 . We may assume
𝐾 = 𝐹 (𝑖). If 𝐵 = 𝐾 , we are done. Otherwise, let 𝑖 have multiplicative order 𝑚.
Consider 𝐿 : 𝐵→ 𝐵 by 𝐿 (𝛼) = 𝑖𝛼𝑖−1. Then 𝐿 is a 𝐾-linear map with 𝐿𝑚 equal
to the identity. We may therefore decompose 𝐵 into eigenspaces for 𝐿. Arguing
as in the case of quaternion division rings, we show that each such nonzero
eigenspace has dimension 1 as 𝐾-vector space. Now consider the normalizer
𝑁 = 𝑁𝐵 (𝐾). Then there is a bijection between the set of cosets of 𝑁/𝐾× and
the eigenspaces of 𝐿. But 𝑁 acts on 𝐾 as 𝐹-linear automorphisms with kernel
𝐾×, so 𝑁/𝐾× is a subgroup of the Galois group Gal(𝐾/𝐹). It must be the
full Galois group, otherwise 𝑁/𝐾× fixes some subfield and its centralizer is a
noncommutative 𝐹-subalgebra, contradicting minimality. Therefore dim𝐾 𝐵 =

dim𝐹 𝐾 . We now proceed as above.
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There are a large number of proofs of Wedderburn’s little theorem: see for
example Kaczynski [Kacz64].

8.2. If 𝑖, 𝑗 and 𝑖′, 𝑗 ′ are standard generators of 𝐵 and 𝐵′, respectively, then consider
the subalgebras generated by the pair 𝑖 ⊗ 1 and 𝑗 ⊗ 𝑗 ′ and then pair 𝑖 ⊗ 𝑖′ and
1 ⊗ 𝑗 ′.

8.11. See Weil [Weil60, §7, Propositions 2–3].
10.6. Using the matrix units, show that if 𝑀 = (𝑚𝑖 𝑗 )𝑖, 𝑗 ∈ O then 𝑚𝑖 𝑗 · 1 ∈ O, but then

𝑚𝑖 𝑗 is integral over 𝑅 so in fact 𝑚𝑖 𝑗 ∈ 𝑅 and hence 𝑀 ∈ M𝑛 (𝑅).
10.9. The converse is true if char 𝐹 ≠ 2 and 𝑅 is integrally closed. It is immediate if

1/2 ∈ 𝑅 since trd(𝛼2) = trd(𝛼)2 − 2 nrd(𝛼), so 2 nrd(𝛼) ∈ 𝑅. But for the same
reason more generally we have 2 nrd(𝛼𝑛) = 2 nrd(𝛼)𝑛 ∈ 𝑅 so 𝑅[nrd(𝛼)] ⊆
(1/2)𝑅; so if 𝑅 is integrally closed we have in fact nrd(𝛼) ∈ 𝑅.
The statement is false if char 𝐹 = 2: take 𝐵 = 𝐹 × 𝐹 (with char 𝐹 = 2) and
𝛼 = (𝑎, 𝑎) with 𝑎 ∈ 𝐹 not integral over 𝑅. Then trd(𝛼𝑛) = 2𝑎𝑛 = 0 for all 𝑛 but
𝛼 is not integral.

12.6. Let 𝑘 = F𝑞 . If 𝑄 is not nondegenerate, then it is isotropic already. Otherwise,
choosing a normalized basis for 𝑉 we may assume the quadratic form 𝑄 is of
the form 𝑧2 = 𝑓 (𝑥, 𝑦) where 𝑓 (𝑥, 𝑦) is a quadratic form in two variables. If 𝑞
is even we are now done since every element of 𝑘 is a square. So suppose 𝑞 is
odd. Then function 𝑓 (𝑥, 1) takes exactly (𝑞 + 1)/2 values in 𝑘 , but there are
(𝑞 − 1)/2 nonsquares in 𝑘×, so at least one of the values must be a square.

12.7. The quadratic form 〈−1, 𝑒,−1〉 is isotropic by a previous exercise, so diagonal-
izing we have 〈−1, 𝑒〉 � 〈1, 𝑠〉 for some 𝑠 ∈ 𝑘×. But disc(〈−1, 𝑒〉) = −𝑒 = 𝑠 =

disc(〈1, 𝑠〉) ∈ 𝑘×/𝑘×2, so 〈1, 𝑠〉 � 〈1,−𝑒〉. More generally, this argument shows
that two nonsingular binary quadratic forms over a finite field are isometric if
and only if they have the same discriminant.

12.4. For (a), under the multiplication map𝑚 : 𝐺×𝐺 → 𝐺, we have𝑚(1, 1) = 1; since
multiplication is continuous, there exists an open neighborhood𝑉1 ×𝑉2 3 (1, 1)
with 𝑉1 ×𝑉2 ⊆ 𝑚−1 (𝑈), i.e., 𝑉1𝑉2 ⊆ 𝑈. Letting 𝑉 = 𝑉1 ∩𝑉2 3 1, then 𝑉2 ⊆ 𝑈.
Statement (b) follows similarly, using that inversion is continuous.

12.5. Let 𝑥𝐻, 𝑦𝐻 ∈ 𝐺/𝐻 be distinct. Then 𝑦𝐻𝑥−1 ⊆ 𝐺 is closed and 1 ∉ 𝑦𝐻𝑥−1.
By Exercise 12.4, there is an open neighborhood 𝑉 3 1 in 𝐺 such that 𝑉−1𝑉 ⊆
𝐺 r 𝑦𝐻𝑥−1. So 𝑉𝑥𝐻 3 𝑥𝐻 and 𝑉𝑦𝐻 3 𝑦𝐻 are disjoint open neighborhoods as
desired.

12.10. Exercise suggested by Grant Molnar.

13.1. Write 𝐵 in the form 𝐵 =

(
𝐾, 2
Q2

)
with 𝐾 ⊇ Q2 the unique unramified extension

of Q2.
13.5. The standard involution on 𝐵 has O = O and 𝑃 = 𝑃 since 𝑗 = − 𝑗 , therefore it

induces a standard involution on the quotient O/𝑃. Recall the classification of
these algebras (Theorem 3.5.1, extended to Theorem 6.2.8 in all characteristics).

13.16 First proof: the symbol is trivial if and only if 𝐹 is a splitting field for (−1,−1 |
Q2) if and only if [𝐹 : Q2] is even, by Proposition 13.4.4.
Second, more direct proof: Let 𝑒 be the ramification degree of 𝐹 over Q2 and 𝑓

the inertial degree, so [𝐹 : Q2] = 𝑒 𝑓 . We need to show (−1,−1)𝐹 = 1 if and
only if 𝑒 is even or 𝑓 is even. By a change of basis, we have (−1,−1 | 𝐹) =
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(−3,−2 | 𝐹), so we need to show (−3,−2)𝐹 = 1 if and only if 𝑒 is even or 𝑓 is
even. The 𝐹-algebra 𝐾 = 𝐹 [𝑥]/(𝑥2 + 3) is not a field if and only if 𝑓 is even,
and then the quaternion algebra splits. So suppose 𝑓 is odd. Then 𝐾 is a field,
the unramified quadratic extension of 𝐹, so the algebra is split if and only if −2
is a norm from 𝐾 to 𝐹 if and only if 𝑒 = ord𝑣 (2) is even.

13.18. The proof that addition and multiplication are continuous with respect to the
absolute value | | induced by 𝑤 is identical to the commutative case. We have a
filtration O ⊃ 𝑃 ⊃ 𝑃2 ⊃ . . . where 𝑃 is generated by 𝑗 and thus to show that 𝐵 is
complete it suffices to note that the limit of the partial sums 𝑥0+𝑥1 𝑗 +𝑥2 𝑗

2+· · · =
(𝑥0 + 𝑥2𝜋 + . . . ) + (𝑥1 + 𝑥3𝜋 + . . . ) 𝑗 ∈ 𝐾 + 𝐾 𝑗 exists since 𝐾 is complete. The
set O is compact since it is complete and totally bounded. By translating, since
O is open we have that 𝐵 is locally compact. Finally, if 𝑥 ∉ O then 𝑤(𝑥) < 0
so the ring generated by O and 𝑥 is equal to 𝐵; but 𝐵 is not compact, since the
open cover

⋃
𝑖 𝜋
−𝑖O has no subcover. See Vignéras [Vig80a, Lemme II.1.6].

14.10. Take 𝑡 = ±𝑞∏𝑝∈Σ\{∞} 𝑝
ord𝑝 (𝑡𝑝) . Select the prime 𝑞 to satisfy congruences to

ensure that the conditions hold. [See also Cassels [Cas78, Corollary to Theorem
6.5.1].]

14.13. There are infinitely many separable quadratic splitting fields of 𝐵 (by the Hasse–
Minkowski theorem), and only finitely many of them can be contained in 𝐿.
Check that a separable quadratic field 𝐾 ⊇ 𝐹 that is not contained in 𝐿 is
linearly disjoint with 𝐿 over 𝐹.

15.18. See Reiner [Rei2003, Theorem 41.3]; the result generalizes to the statement that
if O′ ⊇ O is a maximal order containing O, then O′ ' O′1 × · · · ×O′𝑟 , and

(O′ : O)L =

𝑟⊕
𝑖=1

𝑛

𝑛𝑖
codiff (O′𝑖)

a result due to Jacobinski [Jaci66]. See also Reiner [Rei2003, Exercises 41.1–
41.3].

16.16. See Shimura [Shi71, Proposition 4.11, (5.4.2)].
16.18. This exercise is due to Kaplansky [Kap69]. We compute that

OL (𝐼) =
©­«
𝑅 𝑅 (𝑎)
(𝑎) 𝑅 (𝑎2)
𝑅 𝑅 𝑅

ª®¬ and OR (𝐼) =
©­«
𝑅 𝑅 𝑅

𝑅 𝑅 𝑅

(𝑎2) (𝑎2) 𝑅

ª®¬
and

𝐼−1 =
©­«
𝑅 𝑅 𝑅

𝑅 𝑅 𝑅

(𝑎) 𝑅 (𝑎2)
ª®¬

has 𝐼−1𝐼 = OR (𝐼) but

𝐼 𝐼−1 =
©­«
(𝑎) 𝑅 (𝑎)
(𝑎) 𝑅 (𝑎2)
𝑅 𝑅 𝑅

ª®¬ ≠ OL (𝐼).

17.7(a). The norm is Euclidean because 𝐵∞ ' H and H has the standard Euclidean
norm. The order Z〈𝑖, 𝑗 , 𝑘〉 is discrete in 𝐵∞ (taking coordinate neighborhoods);
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it follows that O is discrete in 𝐵∞ as well, since O is commensurable with
Z〈𝑖, 𝑗 , 𝑘〉 (a coordinate neighborhood contains only finitely many points).

17.7(b). See also Goren–Lauter [GL2007, Lemma 2.1.1].
17.7(c). See also Goren–Lauter [GL2007, Corollary 2.1.2].

18.2. Suppose that 𝐼𝐽 ⊆ {0} with 𝐼, 𝐽 two-sided O-ideals. Then (𝐼𝐹) (𝐽𝐹) = 𝐹 (𝐼𝐽) =
{0}. If 𝐼, 𝐽 are both nonzero, then by Paragraph 18.2.1, 𝐼𝐹 = 𝐽𝐹 = 𝐵, so
𝐵 = {0}, impossible.

18.3. 𝐽 has the structure of an 𝑅-module, since 𝑅 ⊆ 𝑍 (O). Since 𝑅 is noetherian and
O is finitely generated as an 𝑅-module, 𝐽 is finitely generated as an 𝑅-module;
and 𝐽𝐹 ⊆ 𝐵 is a nonzero two-sided ideal of 𝐵, so since 𝐵 is simple, we have
𝐽𝐹 = 𝐵.

18.6. See Fröhlich [Frö73], with thanks to Ardakov [Ard-MO].
20.6. We first show the inclusion (⊆) following (a)–(c). Since rad 𝐴 is a two-sided

ideal, it suffices to show that 1 − 𝛽 ∈ 𝐴×. Suppose 𝐴(1 − 𝛽) ( 𝐴, then there
is a maximal left ideal 𝐼 ⊆ 𝐴 such that 𝐴(1 − 𝛽) ⊆ 𝐼 and so 1 − 𝛽 ∈ 𝐼; but
since rad 𝐴 ⊆ 𝐼, we conclude 1 ∈ 𝐼, a contraduction. Therefore 𝐴(1 − 𝛽) = 𝐴,
so there exists 𝛼 ∈ 𝐴 such that 𝛼(1 − 𝛽) = 1 and 1 − 𝛽 has the left inverse 𝛼.
Further, 1 − 𝛼 = −𝛼𝛽 ∈ rad 𝐴. Repeating the argument again, we conclude
that 𝐴(1 − (1 − 𝛼)) = 𝐴𝛼 = 𝐴, so there exists 𝛾 ∈ 𝐴 such that 𝛾𝛼 = 1, and
𝛾 = 𝛾(𝛼(1− 𝛽)) = 1− 𝛽; thus 𝛼 is also a right inverse of 1− 𝛽. Thus 1− 𝛽 ∈ 𝐴×.
Conversely, we show (⊇) to show (d). Let 𝛽 ∈ 𝐴 be such that 1 − 𝛼𝛽𝛾 ∈ 𝐴×
for all 𝛼, 𝛾 ∈ 𝐴. Let 𝑀 be a simple left 𝐴-module; we show that 𝛼𝑀 = {0}.
Let 𝑥 ∈ 𝑀 , 𝑥 ≠ 0; if 𝛽𝑥 ≠ 0, then by simplicity 𝑀 = 𝐴𝛽𝑥 so 𝛽 = 𝛼𝛽𝑥 for some
𝛼 ∈ 𝐴 and (1 − 𝛼𝛽)𝑥 = 0; since 1 − 𝛼𝛽 ∈ 𝐴×, we have 𝑥 = 0, a contradiction.

21.4. Let 𝐼 be a two-sided integral O-ideal. Then since O is a finitely generated 𝑅-
module and 𝑅 is noetherian, we conclude that 𝐼 is contained in a proper maximal
(integral) O-ideal 𝑀 . From 𝐼 ⊆ 𝑀 we conclude that 𝐼𝑀−1 ⊆ O, so 𝐼𝑀−1 is
integral. But nrd(𝐼𝑀−1) = nrd(𝐼)/nrd(𝑀) | nrd(𝐼). It follows that 𝐼 can be
written as the product of maximal ideals 𝑀 by induction on the reduced norm.
We will now show that in fact a maximal O-ideal is prime. For suppose that
𝐼𝐽 ⊆ 𝑀 and that 𝐼 * 𝑀 . Then 𝐼 + 𝑀 is a two-sided O-ideal strictly containing
𝑀 so 𝐼 + 𝑀 = O. But then 𝐽 = 𝐼𝐽 + 𝑀𝐽 ⊆ 𝑀 . Conversely, if 𝑃 is prime and
𝑃 ⊆ 𝐼 where 𝐼 is a proper two-sided integral O-ideal. Since O is hereditary, 𝐼 is
invertible and 𝑃 = 𝐼 (𝐼−1𝑃); but 𝐼−1𝑃 ⊆ 𝑃 implies 𝐼−1 ⊆ O which is impossible
so 𝐼 ⊆ 𝑃 hence 𝑃 = 𝐼.
To conclude, we show that this group is abelian. Let 𝑃,𝑄 be prime ideals. Then
𝑃𝑄 ⊆ 𝑃, so as above 𝑃𝑄𝑃−1 is integral, say 𝑃𝑄𝑃−1 = 𝑄 ′. If 𝑄 ′ = O then
𝑄 = O, a contradiction. But then choosing 0 ≠ 𝑝 ∈ 𝑃∩𝑅 then𝑄 = 𝑝𝑄𝑝−1 ⊆ 𝑄 ′,
but 𝑄 is maximal so 𝑄 = 𝑄 ′. Thus 𝑃𝑄 = 𝑄 ′𝑃, so the group is abelian.

21.6(a). We follow Reiner [Rei2003, Exercise 39.2]. Let 𝐽 = rad O. Certainly O + 𝐽 ′ is
an 𝑅-order, since O𝐽 ′O ⊆ O′𝐽 ′O′ ⊆ 𝐽 ′.

21.6(b). We want to show that 𝐽 ⊆ rad(O + 𝐽 ′), and for that we can show 𝐽 + 𝐽 ′ ⊆
rad(O + 𝐽 ′). By Corollary 20.5.5, for 𝑟 large we have 𝐽𝑟 ⊆ 𝔭O. Thus

(𝐽 + 𝐽 ′)𝑟 ⊆ 𝐽𝑟 + 𝐽 ′ ⊆ 𝔭O + 𝐽 ′ ⊆ 𝔭O′ + 𝐽 ′;



74 APPENDIX A. HINTS AND COMMENTS ON EXERCISES

and for 𝑟 possible larger by Theorem 20.5.1, we have (𝐽 ′)𝑟 ⊆ 𝔭O′ so

(𝔭O′ + 𝐽 ′)𝑟 ⊆ 𝔭O′ ⊆ (𝐽 ′)𝑟 ⊆ 𝔭O′.

Combining these, and making 𝑟 even larger,

(𝐽 + 𝐽 ′)𝑟3 ⊆ (𝔭O′)𝑟 ⊆ 𝔭O ⊆ 𝔭(O + 𝐽 ′).

Now by Corollary 20.5.5, we have 𝐽 + 𝐽 ′ ⊆ rad(O + 𝐽 ′).
21.6(c). We have shown (𝐽 ′)𝑟 ⊆ 𝔭O; if 𝐽 ′ ⊆ O, then by Corollary 20.5.5 we conclude

𝐽 ′ ⊆ 𝐽.
21.9. See Small [Sma66].

21.10. See Reiner [Rei2003, Theorem 40.7].
21.13. See [AG60, Theorem 2.3].

22.14(a). See Voight [Voi2011a, Lemma 3.7]. The map 𝑠 descends first to (
∧2𝑀)⊗3 since

𝑠(𝑥 ⊗ 𝑥 ′ ⊗ 𝑦 ⊗ 𝑦′ ⊗ 𝑧 ⊗ 𝑧′) = 0

whenever 𝑥 = 𝑥 ′ and

𝑠(𝑥 ⊗ 𝑥 ′ ⊗ 𝑦 ⊗ 𝑦′ ⊗ 𝑧 ⊗ 𝑧′) = −𝑠(𝑥 ′ ⊗ 𝑥 ⊗ 𝑦 ⊗ 𝑦′ ⊗ 𝑧 ⊗ 𝑧′),

with similar statements for 𝑦, 𝑧.
22.14(b). To show that 𝑠 in fact descends to

∧3 (
∧2𝑀), we observe that

𝑠(𝑥 ∧ 𝑥 ′ ⊗ 𝑦 ∧ 𝑦′ ⊗ 𝑧 ∧ 𝑧′) = 0

whenever 𝑥 = 𝑦 and 𝑥 ′ = 𝑦′ (with similar statements for 𝑥, 𝑧 and 𝑦, 𝑧). To finish,
we show that

𝑠((𝑥 ∧ 𝑥 ′) ⊗ (𝑦 ∧ 𝑦′) ⊗ (𝑧 ∧ 𝑧′)) = −𝑠((𝑦 ∧ 𝑦′) ⊗ (𝑥 ∧ 𝑥 ′) ⊗ (𝑧 ∧ 𝑧′)).

To prove this, we may do so locally and hence assume that 𝑀 is free with basis
𝑒1, 𝑒2, 𝑒3; by linearity, it is enough to note that

𝑠((𝑒1 ∧ 𝑒2) ⊗ (𝑒2 ∧ 𝑒3) ⊗ (𝑒3 ∧ 𝑒1)) = (𝑒1 ∧ 𝑒2 ∧ 𝑒3) ⊗ (𝑒2 ∧ 𝑒3 ∧ 𝑒1)
= (𝑒2 ∧ 𝑒3 ∧ 𝑒1) ⊗ (𝑒2 ∧ 𝑒3 ∧ 𝑒1)
= −𝑠((𝑒2 ∧ 𝑒3) ⊗ (𝑒1 ∧ 𝑒2) ⊗ (𝑒3 ∧ 𝑒1)).

22.14(c). It follows then also that 𝑠 is an isomorphism, since it maps the generator

(𝑒1 ∧ 𝑒2) ∧ (𝑒2 ∧ 𝑒3) ∧ (𝑒3 ∧ 𝑒1) ∈
∧3 (

∧2𝑀)

to the generator (𝑒1 ∧ 𝑒2 ∧ 𝑒3) ⊗ (𝑒2 ∧ 𝑒3 ∧ 𝑒1) ∈ (
∧3𝑀)⊗2.

22.8. Exercise suggested by Asher Auel.
22.17. We have

𝜓(𝑥 ∧ 𝑦) = 1 ∧ 𝑥 ∧ 𝑦 ∧ 𝑥𝑦 = 1 ∧ (−𝑥) ∧ (−𝑦) ∧ (−𝑥𝑦) = −(1 ∧ 𝑥 ∧ 𝑦 ∧ 𝑥𝑦)

for all 𝑥, 𝑦 ∈ O, with similitude factor ℎ = −1 :
∧4 O ∼−→

∧4 O.
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23.6. By the computation(
𝑎 𝑏

𝑐 𝑑

) (
𝔭 𝑅

𝔭𝑒 𝔭

)
=

(
𝑎𝔭 + 𝑏𝔭𝑒 𝑎𝑅 + 𝑏𝔭
𝑐𝔭 + 𝑑𝔭𝑒 𝑐𝑅 + 𝑑𝔭

)
we see that

(
𝑎 𝑏

𝑐 𝑑

)
∈ OL (𝐽) if and only if 𝑎 ∈ 𝑅, 𝑏 ∈ 𝔭−1, 𝑐 ∈ 𝔭𝑒−1, and 𝑑 ∈ 𝑅.

A similar calculation holds on the right.
23.7. Start with any 𝑅-basis 𝑥1, 𝑥2 of 𝐿; writing a basis of 𝑀 in terms of 𝑥1, 𝑥2 yields

the columns of a matrix in GL2 (𝐹). If we change the basis of 𝐿 or of 𝑀 , we are
applying the group GL2 (𝑅) on the left or right to this matrix, i.e., we can perform
integral row and column operations on this matrix. Now by direct manipulation
with 2× 2-matrices (more abstractly, the theory of elementary divisors), we can
transform this matrix into a diagonal matrix of the desired form.

24.2. See Faddeev [Fad65, Proposition 24.2].
25.1(b). The inverse is given by

(𝑥, 𝑦) ↦→ ©­«cos−1

√︄
1 − 𝑥2

1 − 𝑥2𝑦2 , cos−1

√︄
1 − 𝑦2

1 − 𝑥2𝑦2
ª®¬ .

To prove that this inverse map has the correct codomain, recall that if 0 < 𝜃, 𝜙 <
𝜋/2, then 𝜃 + 𝜙 < 𝜋/2 if and only if cos(𝜃 + 𝜙) > 0.

25.3. See Weston [Wes, Lemma 1.19].
25.4. We follow Weston [Wes, Proposition 4.5], working through each part. Write

𝜁𝐾, [𝔟] (𝑠) =
1

𝑤(Nm(𝔟)𝑠)

∞∑︁
𝑏=1

𝑏𝑛

𝑛𝑠

where
𝑏𝑛 := #{𝑎 ∈ 𝔟−1 : Nm(𝑎) = 𝑛}.

Since Nm(𝑎) = |𝑎 |2, for all 𝑥 > 1∑︁
𝑛≤𝑥

𝑏𝑛 = #{𝑎 ∈ 𝔟−1 : 0 < |𝑎 | ≤
√
𝑥};

from Lemma 25.2.11, we conclude�����∑︁
𝑛≤𝑥

𝑏𝑛 −
𝜋𝑥

𝐴

����� ≤ 𝐶√𝑥
where 𝐴 is the coarea of 𝔟−1 and 𝐶 is a constant that does not depend on 𝑥. We
compute that

𝐴 = Nm(𝔟−1)
√︁
|𝑑 |
2

.

This proves (a).
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Now consider the Dirichlet series

𝑓 (𝑠) :=
1

𝑤𝑁 (𝔟)𝑠
∞∑︁
𝑛=1

(
𝑏𝑛 −

𝜋

𝐴

) 1
𝑛𝑠
.

Then the estimate �����∑︁
𝑛≤𝑥

(
𝑏𝑛 −

𝜋

𝐴

)����� =
�����∑︁
𝑛≤𝑥

𝑏𝑛 −
𝜋𝑥

𝐴

����� ≤ 𝐶√𝑥
by the comparison test implies that 𝑓 (𝑠) converges for all Re 𝑠 > 1/2 and in
particular 𝑓 (𝑠) converges at 𝑠 = 1, proving (b).
For 𝑠 > 1,

𝑓 (𝑠) = 𝜁𝐾, [𝔟] (𝑠) −
𝜋

𝐴𝑤Nm(𝔟)𝑠 𝜁 (𝑠)

so
𝜁𝐾, [𝔟] (𝑠) = 𝑓 (𝑠) + 2𝜋

𝑤
√︁
|𝑑 |

Nm(𝔟)1−𝑠𝜁 (𝑠).

hence

res𝑠=1 𝜁𝐾 (𝑠) = lim
𝑠↘1
(𝑠 − 1)𝜁𝐾, [𝔟] (𝑠)

= lim
𝑠↘1
(𝑠 − 1) 𝑓 (𝑠) + 2𝜋

𝑤
√︁
|𝑑 |

lim
𝑠↘1
(𝑠 − 1) Nm(𝔟)1−𝑠𝜁 (𝑠)

= 0 + 2𝜋
𝑤
√︁
|𝑑 |
· 1 =

2𝜋
𝑤
√︁
|𝑑 |
.

This proves (c).
Finally, (d): 𝜁𝐾, [𝔟] (𝑠) has a simple pole at 𝑠 = 1 with residue independent of
[𝔟]. Summing the residues over [𝔟] ∈ Cl(𝐾), from (25.2.9) we conclude the
result.

25.6. For further reading, see Fitzgerald [Fit2011] and Clark–Jagy [CJ2014].
25.7(b). We follow Lenstra [Len79, Lemma 1.5]. Let 𝐽 be an invertible right O-ideal;

without loss of generality, we may suppose 𝐽 ⊆ O is integral. We argue by
induction on nrd(𝐽) > 0. The base case nrd(𝐽) = 1 implies that 𝐽 = O, which
is true. Since 𝐼, 𝐽 are invertible, we have 𝐽−1𝐼 ≠ 𝐼, so there exists 𝛾 ∈ 𝐽−1𝐼 \ 𝐼.
Since 𝐼 is Euclidean, there exists 𝜇 ∈ 𝐼 such that nrd(𝛾 − 𝜇) < nrd(𝐼). Let
𝜈 = 𝛾 − 𝜇. Then 𝜈 ≠ 0, else 𝛾 = 𝜇 ∈ 𝐼. Since 𝛾 ∈ 𝐽−1𝐼 and 𝜇 ∈ 𝐼 we have
𝜈 ∈ 𝐽−1𝐼, so 𝐽 ′ = 𝜈𝐼−1𝐽 ⊆ O is an integral, invertible right O-ideal. We have

nrd(𝐽 ′) = nrd(𝜈) nrd(𝐼)−1 nrd(𝐽) < nrd(𝐽).

So by induction, for [𝐽 ′] ∈ Cl(O) we have either [𝐽 ′] = 1 or [𝐽 ′] = [𝐼], and
thus [𝐽] = [𝐼−1] = [𝐼] or [𝐽] = 1, the latter using the fact that Pic(O) has
exponent dividing 2.
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26.3 First (a). Let𝑉 = 𝐹R be the ambient space. The group 𝑅× acts by preserving the
norm, so we can write (𝑉/𝑅×)≤1 = 𝑉≤1/𝑅×. Choose a system of fundamental
units for 𝑅× and let Z𝑟+𝑐−1 ' 𝐸 ≤ 𝑅× be the group generated by them; then
𝑅× = 𝐸𝑅×tors, and so

vol(𝑉≤1/𝑅×) =
1
𝑤

vol(𝑉≤1/𝐸) =
2𝑐

𝑤

∫
𝑉≤1/𝐸

d𝑥 d𝑧

with 𝑥𝑖 , 𝑧 𝑗 standard coordinates on R𝑟 × C𝑐—and we use multi-index notation
to simplify.
Now (b). Let 𝜌 𝑗 , 𝜃 𝑗 be polar coordinates on C𝑐 , and for symmetry restrict the
domain 𝑉 to the domain 𝑉+ with 𝑥𝑖 > 0 for all 𝑖. Then∫

𝑉≤1/𝐸
d𝑥 d𝑧 = 2𝑟

∫
𝑉 +≤1/𝐸

d𝑥 (𝜌 d𝜌 d𝜃) = 2𝑟 (2𝜋)𝑐
∫
𝑊 +,≤1/𝐸

𝜌 d𝑥 d𝜌

where 𝑊+ is the projection of 𝑉+ onto the 𝑥, 𝜌-coordinate plane. Now let
𝑥𝑟+ 𝑗 = 𝜌2

𝑗
to get

2𝑟 (2𝜋𝑐)
∫
𝑊 +≤1/𝐸

𝜌 d𝑥 d𝜌 = 2𝑟𝜋𝑐
∫
𝑊 +,≤1/𝐸

d𝑥

and the norm is now simply the product of 𝑟 + 𝑐 (positive) coordinates.
Next, (c): we apply the change of variables 𝑢𝑖 = log 𝑥𝑖; the condition

∏
𝑖 𝑥𝑖 =

𝑡 ≤ 1 becomes
∑
𝑖 𝑢𝑖 = log 𝑡 ≤ 0, and we obtain∫

𝑊 +,≤1/𝐸
d𝑥 =

∫
log(𝑊 +,≤1/𝐸)

𝑒𝑢 d𝑢 =

∫ 0

−∞
𝑒𝑡 d𝑡

∫
𝑃

d𝑢 =

∫
𝑃

d𝑢

where 𝑃 is the fundamental parallelogram for the additive (logarithmic) action
of 𝑅×.
Finally (d): by definition, 𝑃 has covolume Reg𝐹 , and putting all of these together,
we conclude that

vol(𝑉≤1/𝑅×) =
2𝑐

𝑤
2𝑟𝜋𝑐Reg𝐹 =

2𝑟 (2𝜋)𝑐Reg𝐹
𝑤𝐹

as claimed.
28.4(a). See Newman [New72, Theorem II.7].

28.7. We show that 𝛼̂ ∉ 𝐵×Ô×. Indeed, suppose that 𝛼̂ = 𝛽𝜇 with 𝛽 ∈ 𝐵× and
𝜇 ∈ Ô×. Since nrd(Ô×) ∩ Q×

>0 = {1}, we must have 𝛽 ∈ 𝐵1. But then
ℓ𝛼̂𝜇−1 = ℓ𝛽 = 𝛾 ∈ 𝐵 ∩ Ô = O; thus nrd(𝛾) = ℓ2. But nrd |O = 〈1,−𝑝,−𝑞, 𝑝𝑞〉
only represents ℓ2 by ±ℓ, a contradiction.

29.3(a). It suffices to show that 𝐻 has a compact neighborhood in 𝐺/𝐻. Since 𝐺 is
locally compact, there is a compact neighborhood 𝑈 3 1 in 𝐺. By Exercise
12.4(b), there exists an open neighborhood 𝑉 3 1 such that 𝑉−1𝑉 ⊆ 𝑈. The
projection map 𝜋 : 𝐺 → 𝐺/𝐻 is open by definition of the quotient topology, so
𝜋(𝑉) ⊆ 𝐺/𝐻 is an open neighborhood of 𝐻. The closure cl(𝜋(𝑉)) ⊆ 𝜋(𝑈) is
therefore compact.
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29.11. We know that 𝐵\𝐵 is compact, so 𝜇(𝐵\𝐵) < ∞. Let 𝐸 ⊆ 𝐵× be a compact set
with measure 𝜇(𝐸) > 𝜇(𝐵\𝐵). Then (generalizing Minkowski), we claim that
the map 𝐵→ 𝐵\𝐵 is not injective on 𝐸 : otherwise, integrating the characteristic
function Φ of 𝐸 we find 𝜇(𝐸) ≤ 𝜇(𝐵\𝐵), a contradiction:

𝜇(𝐸) =
∫
𝐵

Φ(𝛼) d𝜇(𝛼) =
∫
𝐵\𝐵

∑︁
𝛽∈𝐵

Φ(𝛼 + 𝛽) d𝜇(𝛼)

≤
∫
𝐵\𝐵

d𝜇(𝛼) = 𝜇(𝐵\𝐵).

30.7. Referring to Lemma 30.6.16, we need to consider the case where 𝑆 is not
maximal; then without loss of generality (translating), we may assume 𝛾/𝜋 is
integral so 𝑓𝛾 (𝑥) ≡ 𝑥2 (mod 𝔭). Then by Proposition 30.6.12, 𝑚(𝑆,O; O×) ≥
1.

32.2. First compute all elements in O of norm 2, then show the product of any two of
these elements belongs to 2O.

32.4. Write 𝑗−1𝛾 𝑗 = 𝑎𝛾/nrd(𝛾) with 𝑎 ∈ 𝐹×, and taking reduced norms we get
nrd(𝛾) = 𝑎2/nrd(𝛾), so nrd(𝛾) = ±𝑎 and 𝑗−1𝛾 𝑗 = ±𝛾; then taking reduced
trace to get trd(𝛾) = ± trd(𝛾); if trd(𝛾) ≠ 0 then we are done, otherwise
trd(𝛾) = 0 so 𝛾 = −𝛾 and the result is true anyway.

32.5. See Chinburg–Friedman [CF2000, Lemma 2.8].
32.7. See Hallouin–Maire [HM2006, Proposition 5].

33.1(a). Estimate the integral defining the length above and below.
33.5. We refer to the method of proof in the Iwasawa decomposition (Proposition

33.4.2). First, we translate by −Re 𝑧 to assume that 𝑧 = 𝑦𝑖 and then stretch to
obtain 𝑧 = 𝑖. To conclude, we rotate (fixing 𝑧) to obtain 𝑧′ purely imaginary;
that this is possible is easiest to see in D2, or it can be verified directly.
Alternatively, if 𝑧, 𝑧′ are on a vertical line we can translate; otherwise there is
a unique circle through 𝑧, 𝑧′ that is orthogonal to the real axis, having center 𝑐,

and the matrix
(
0 −1
1 −𝑐

)
acting by 𝑧 ↦→ −1/(𝑧 − 𝑐) maps this circle to a vertical

line, so we reduce to the previous case.

33.6. If 𝑔 =

(
𝑎 𝑏

𝑐 𝑑

)
, then the image of 𝑔−1 (R>0𝑖) is equal to

Re
(
𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

)
= 0

so by (33.3.8) is given by 𝑎𝑐 |𝑧 |2 + (1 + 2𝑏𝑐) Re 𝑧 + 𝑏𝑑 = 0, and this is a circle
whose center is on the real axis if 𝑎𝑐 ≠ 0 and a vertical line if 𝑎𝑐 = 0.

33.8. By Exercise 33.5, we may assume that the points lie on the imaginary axis.
We then move to the unit disc, taking the center to be the unique midpoint
of the geodesic between these two points; then the points are −𝑡, 𝑡 ∈ D2 with
𝑡 ∈ R>0. We then compute using the formula (33.7.5) for distance that the line
𝐿 is described by |𝑤 − 𝑡 |2 = |𝑤 + 𝑡 |2, and expanding this consists of the set of
points Re𝑤 = 0. This set is geodesic and is the perpendicular bisector of the
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geodesic segment [−𝑡, 𝑡]. It follows that 𝐻 (𝛾; 𝑧0) is geodesic, because for two
distinct points 𝑤, 𝑤′ in the right half-plane Re(𝑤),Re(𝑤′) ≥ 0, say, the geodesic
between them is an arc of a circle also in the right half-plane.

33.10. Checking this on the generators in Lemma 33.4.4 make the result almost imme-

diate. Alternatively, note that if 𝑔 =

(
𝑎 𝑏

𝑐 𝑑

)
and 𝑧, 𝑧′ ∈ H2 then

𝑔𝑧 − 𝑔𝑧′ = 𝑧 − 𝑧′
(𝑐𝑧 + 𝑑) (𝑐𝑧′ + 𝑑)

so plugging in recovers the result.
33.11. We have 2 cosh(log(𝑥)) = exp(log(𝑥)) + exp(− log(𝑥)) = 𝑥 + 1/𝑥 for 𝑥 ∈ R>0,

and
𝑥 + 𝑦
𝑥 − 𝑦 +

𝑥 − 𝑦
𝑥 + 𝑦 = 2

(
1 + 2𝑦2

𝑥2 − 𝑦2

)
for 𝑥, 𝑦 ∈ R with 𝑥 ≠ ±𝑦. Now simplify, and enjoy the magical cancellation.

33.12. We have
1 − |𝜙(𝑧) |2 =

4 Im(𝑧)
|𝑧 + 𝑖 |2

and 𝜙′(𝑧) = (2𝑖)/(𝑧 + 𝑖)2, so
2|𝜙′(𝑧) |

1 − |𝜙(𝑧) |2
=

1
Im 𝑧

.

Part (b) follows from plugging in d𝑤 = 𝜙′(𝑧)d𝑧 into part (a).
33.15. Let 𝑤 = 𝑢 + 𝑖𝑣, so the map has (𝑢, 𝑣) = (𝑥/(1 + 𝑡), 𝑦/(1 + 𝑡)). By the chain rule,

we have

d𝑢 = − 𝑥

(1 + 𝑡)2
d𝑡 + 1

1 + 𝑡 d𝑥

d𝑣 = − 𝑦

(1 + 𝑡)2
d𝑡 + 1
(1 + 𝑡)2

d𝑡

Now square; and then substitute −𝑡d𝑡 + 𝑥d𝑥 + 𝑦d𝑦 = 0 from differentiating
−𝑡2 + 𝑥2 + 𝑦2 = −1, get

d𝑢2 + d𝑣2 =
𝑥2 + 𝑦2 − 2𝑡 (1 + 𝑡)

(1 + 𝑡)4
d𝑡2 + d𝑥2 + d𝑦2

(1 + 𝑡)2
.

Finally, from −𝑡2 + 𝑥2 + 𝑦2 = −1 show that 1−𝑢2 − 𝑣2 = 2/(1+ 𝑡), and substitute
to get the result.

33.16. Or work directly, with 𝑝 = (𝑡, 𝑥, 𝑦) show we may assume 𝑣 = (1, 𝑎, 𝑏), in which
case 𝑡 − 𝑎𝑥 − 𝑏𝑦 = 0, and given that 𝑡2 − 𝑥2 − 𝑦2 = 1, then show 𝑎2 + 𝑏2 − 1 > 0
by the Cauchy–Schwarz inequality.

34.4. We check that multiplication is continuous. Let 𝑈 = 𝑉 (ℎ; 𝑥, 𝜖) ⊆ Isom(𝑋) be
an open ball. Suppose 𝑓 𝑔 = ℎ ∈ 𝑈. Let 𝑔(𝑥) = 𝑦 and let

𝑉 𝑓 = 𝑉 ( 𝑓 ; 𝑦, 𝜖/2) 3 𝑓 and 𝑉𝑔 = 𝑉 (𝑔; 𝑥, 𝜖/2) 3 𝑔.

We claim that 𝑉 𝑓 𝑉𝑔 ⊆ 𝑈, so that (𝑉 𝑓 , 𝑉𝑔) 3 ( 𝑓 , 𝑔) is an open neighborhood,
and thus the inverse image of𝑈 is open as desired. So let 𝑓 ′ ∈ 𝑉 𝑓 and 𝑔′ ∈ 𝑉𝑔.
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Then by the triangle inequality, we have

𝜌( 𝑓 ′𝑔′(𝑥), ℎ(𝑥)) ≤ 𝜌( 𝑓 ′𝑔′(𝑥), 𝑓 ′(𝑦)) + 𝜌( 𝑓 ′(𝑦), ℎ(𝑥))

= 𝜌(𝑔′(𝑥), 𝑔(𝑥)) + 𝜌( 𝑓 ′(𝑦), 𝑓 (𝑦)) < 𝜖

2
+ 𝜖

2
= 𝜖 .

34.6. See Shimura [Shi71, Theorem 1.1, Lemma 1.2].
34.7. To show that it is a local homeomorphism, let 𝑥 ∈ 𝑋 . By definition, we find an

open neighborhood 𝑈 3 𝑥 such that 𝑔𝑈 ∩𝑈 ≠ ∅ if and only if 𝑔 ∈ Stab𝐺 (𝑥);
since 𝐺 acts freely, we have Stab𝐺 (𝑥) = {1}, so in fact 𝑔𝑈 ∩ 𝑈 = ∅ for all
𝑔 ≠ 1. Therefore 𝑈 maps injectively into 𝐺\𝑋: if 𝜋(𝑦) = 𝜋(𝑦′) for 𝑦, 𝑦′ ∈ 𝑈
then 𝑦′ = 𝑔𝑦 ∈ 𝑈 ∩ 𝑔𝑈 for some 𝑔 ∈ 𝐺, so 𝑔 = 1 and 𝑦 = 𝑦′. To conclude,
we need to show that this injection is continuous, and for that it suffices to
show that if 𝑉 ⊆ 𝑈 then 𝜋(𝑉) is open; and indeed, 𝜋(𝑉) is open if and only if
𝜋−1 (𝜋(𝑉)) = ⋃

𝑔∈𝐺 𝑔𝑉 is open by definition of the quotient topology, and the
latter is open as each 𝑔𝑉 is open (𝐺 acts continuously).
(Indeed, one can show that the quotient topology is the unique topology on𝐺\𝑋
such that the quotient map is continuous and a local homeomorphism.)

34.8. Let 𝑉 3 𝑥 be an open neighborhood with cl(𝑉) compact; replacing𝑈 by𝑈 ∩𝑉 ,
we may suppose 𝑈 has cl(𝑈) compact. The boundary bd(𝑈) ⊆ cl(𝑈) is closed
so compact. Now there exists an open neighborhood 𝑉 3 𝑥 and an open set
𝑊 ⊇ bd(𝑈) such that 𝑉 ∩𝑊 = ∅. (Since 𝑋 is Hausdorff, the compact set bd(𝑈)
is covered by finitely many separating open sets, so we can take an intersection.)
In particular, cl(𝑉) ∩ bd(𝑈) = ∅. Let 𝑉 ′ = 𝑈 ∩𝑉 . Then

cl(𝑉 ′) = cl(𝑈) ∩ cl(𝑉) = (𝑈 ∪ bd(𝑈)) ∩ cl(𝑉) = 𝑈 ∩ cl(𝑉) ⊆ 𝑈.

34.14. Let 𝑥 = (1, 0, . . . , 0) ∈ R𝑛+1. We have SO(𝑛) ' Stab𝑥 (SO(𝑛+1)) ≤ SO(𝑛+1).
Gram–Schmidt orthogonalization implies that SO(𝑛 + 1) acts transitively on
S𝑛. Next, SO(𝑛 + 1) is compact, because it is closed (defined by polynomial
equations) and bounded; thus SO(𝑛+1) acts properly on S𝑛 (Proposition 34.4.9).
The result follows then from 34.4.11.

34.16. See Lee [Lee2011, Proposition 12.25].
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34.17. From the formula (33.5.3) for distance, we have:

2 cosh 𝜌(𝑖, 𝑔𝑖) = 2 + |𝑖 − 𝑔𝑖 |
2

Im 𝑔𝑖
= 2 +

����𝑖 − 𝑎𝑖 + 𝑏𝑐𝑖 + 𝑑

����2
1

|𝑐𝑖 + 𝑑 |2

= 2 + | (𝑐𝑖 + 𝑑)𝑖 − (𝑎𝑖 + 𝑏) |2 = 2 + (𝑏 + 𝑐)2 + (𝑑 − 𝑎)2

= 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 − 2𝑎𝑑 + 2𝑏𝑐 + 2 = ‖𝑔‖2.

35.1. We have ∫
◊

d𝑥d𝑦
𝑦2 =

∫ 1/2

−1/2

∫ ∞

√
1−𝑥2

d𝑦d𝑥
𝑦2 =

∫ 1/2

−1/2

d𝑥
√

1 − 𝑥2

= sin−1 (1/2) − sin−1 (−1/2) = 𝜋

3
.

36.3. Compute

(𝑎𝑤+𝑏) (𝑐𝑤+𝑑)−1 = (𝑎𝑤+𝑏) (𝑐𝑤 + 𝑑) nrd(𝑐𝑤+𝑑) = 𝑎𝑤𝑐𝑤+𝑏𝑐𝑤+𝑎𝑤𝑑 +𝑏𝑑

and continue.
36.4. To show that 𝑔 is a hyperbolic isometry, compute the Jacobian.

37.4(c). Under the map to the unit disc, 𝑔−1 =

(
𝑑 −𝑏
−𝑐 𝑎

)
becomes

1
2

(
𝑎 + 𝑑 + 𝑖(−𝑏 + 𝑐) −𝑎 + 𝑑 + 𝑖(𝑏 + 𝑐)
−𝑎 + 𝑑 − 𝑖(𝑏 + 𝑐) 𝑎 + 𝑑 + 𝑖(𝑏 − 𝑐)

)
.

Mapping back to the unit disc, the bisector is described by

| (−𝑎 + 𝑑 − 𝑖(𝑏 + 𝑐)) (𝑧 − 𝑖) + (𝑎 + 𝑑 + 𝑖(𝑏 − 𝑐)) (𝑧 + 𝑖) | = |𝑧 + 𝑖 |

which simplifies to

| (𝑑 − 𝑖𝑐)𝑧 + 𝑖(𝑎 + 𝑖𝑏) | = |𝑧 + 𝑖 |.

Expanding with 𝑧 = 𝑥 + 𝑦𝑖, we get

(𝑐2 + 𝑑2 − 1) (𝑥2 + 𝑦2) − 2(𝑎𝑐 + 𝑏𝑑)𝑥 + (𝑎2 + 𝑏2 − 1) = 0

and we can read the result from this.
37.6. We have

𝑧′ = 𝑔𝑧 ∈ 𝐼 (𝑔−1) ⇔ 𝜌(𝑔−1𝑧′, 0) = 𝜌(𝑧′, 0) ⇔ 𝜌(𝑧, 0) = 𝜌(𝑔𝑧, 0) ⇔ 𝑧 ∈ 𝐼 (𝑔)

and the result follows.
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